1 2 и 3 закон ньютона: первый, второй, третий закон кратко с объяснением, формулами

Содержание

первый, второй, третий закон кратко с объяснением, формулами

Мы уже говорили об основах классической механики. Настала пора поговорить о них подробнее и затронуть в обсуждении чуть больше, чем просто основу. В этой статье мы подробно разберем основные законы классической механики. Как вы уже догадались, речь пойдет о законах Ньютона.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Основные законы классической механики Исаак Ньютон (1642-1727) собрал и опубликовал в 1687 году. Три знаменитых закона были включены в труд, который назывался «Математические начала натуральной философии».

Был долго этот мир глубокой тьмой окутан
Да будет свет, и тут явился Ньютон.

(Эпиграмма 18-го века)

Но сатана недолго ждал реванша –
Пришел Эйнштейн, и стало все как раньше.

(Эпиграмма 20-го века)

Что стало, когда пришел Эйнштейн, читайте в отдельном материале про релятивистскую динамику.

А мы пока приведем формулировки и примеры решения задач на каждый закон Ньютона.

Первый закон Ньютона

Первый закон Ньютона гласит:

Существуют такие системы отсчета, называемые инерциальными, в которых тела движутся равномерно и прямолинейно, если на них не действуют никакие силы или действие других сил скомпенсировано.

Проще говоря, суть первого закона Ньютона можно сформулировать так: если мы на абсолютно ровной дороге толкнем тележку и представим, что можно пренебречь силами трения колес и сопротивления воздуха, то она будет катиться с одинаковой скоростью бесконечно долго.

Инерция – это способность тела сохранять скорость как по направлению, так и по величине, при отсутствии воздействий на тело. Первый закон Ньютона еще называют законом инерции.

До Ньютона закон инерции был сформулирован в менее четкой форме Галилео Галилеем. Инерцию ученый называл «неистребимо запечатленным движением». Закон инерции Галилея гласит: при отсутствии внешних сил тело либо покоится, либо движется равномерно.
Огромная заслуга Ньютона в том, что он сумел объединить принцип относительности Галилея, собственные труды и работы других ученых в своих “Математических началах натуральной философии”.

Понятно, что таких систем, где тележку толкнули, а она покатилась без действия внешних сил, на самом деле не бывает. На тела всегда действуют силы, причем скомпенсировать действие этих сил полностью практически невозможно.

Например, все на Земле находится в постоянном поле силы тяжести. Когда мы передвигаемся (не важно, ходим пешком, ездим на машине или велосипеде), нам нужно преодолевать множество сил: силу трения качения и силу трения скольжения, силу тяжести, силу Кориолиса.

 

Второй закон Ньютона

Помните пример про тележку? В этот момент мы приложили к ней силу! Интуитивно понятно, что тележка покатится и вскоре остановится. Это значит, ее скорость изменится.

В реальном мире скорость тела чаще всего изменяется, а не остается постоянной. Другими словами, тело движется с ускорением. Если скорость нарастает или убывает равномерно, то говорят, что движение равноускоренное.

Если рояль падает с крыши дома вниз, то он движется равноускоренно под действием постоянного ускорения свободного падения g. Причем любой дугой предмет, выброшенный из окна на нашей планете, будет двигаться с тем же ускорением свободного падения.

Второй закон Ньютона устанавливает связь между массой, ускорением и силой, действующей на тело. Приведем формулировку второго закона Ньютона:

Ускорение тела (материальной точки) в инерциальной системе отсчета прямо пропорционально приложенной к нему силе и обратно пропорционально массе.

 

Если на тело действует сразу несколько сил, то в данную формулу подставляется равнодействующая всех сил, то есть их векторная сумма.

В такой формулировке второй закон Ньютона применим только для движения со скоростью, много меньшей, чем скорость света.

Существует более универсальная формулировка данного закона,  так называемый дифференциальный вид.

В любой бесконечно малый промежуток времени dt сила, действующая на тело, равна производной импульса тела по времени.

Третий закон Ньютона

В чем состоит третий закон Ньютона? Этот закон описывает взаимодействие тел.

3 закон Ньютона говорит нам о том, что на любое действие найдется противодействие. Причем, в прямом смысле:

Два тела воздействуют друг на друга с силами, противоположными по направлению, но равными по модулю.

Формула, выражающая третий закон Ньютона:

Другими словами, третий закон Ньютона – это закон действия и противодействия.

 

Пример задачи на законы Ньютона

Вот типичная задачка на применение законов Ньютона. В ее решении используются первый и второй законы Ньютона.

Десантник раскрыл парашют и опускается вниз с постоянной скоростью. Какова сила сопротивления воздуха? Масса десантника – 100 килограмм.

Решение:  

Движение парашютиста – равномерное и прямолинейное, поэтому, по первому закону Ньютона, действие сил на него скомпенсировано.

На десантника действуют сила тяжести и сила сопротивления воздуха. Силы направлены в противоположные стороны.

По второму закону Ньютона

, сила тяжести равна ускорению свободного падения, умноженному на массу десантника.

Ответ: Сила сопротивления воздуха равна силе тяжести по модулю и противоположна направлена.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

А вот еще одна физическая задачка на понимание действия третьего закона Ньютона.

Комар ударяется о лобовое стекло автомобиля. Сравните силы, действующие на автомобиль и комара.

Решение:

По третьему закону Ньютона, силы, с которыми тела действуют друг на друга, равны по модулю и противоположны по направлению. Сила, с которой комар действует на автомобиль, равна силе, с которой автомобиль действует на комара.

Другое дело, что действие этих сил на тела сильно отличаются вследствие различия масс и ускорений.

Исаак Ньютон: мифы и факты из жизни

На момент публикации своего основного труда Ньютону было 45 лет. За свою долгую жизнь ученый внес огромный вклад в науку, заложив фундамент современной физики и определив ее развитие на годы вперед.

Он занимался не только механикой, но и оптикой, химией и другими науками, неплохо рисовал и писал стихи. Неудивительно, что личность Ньютона окружена множеством легенд.

Ниже приведены некоторые факты и мифы из жизни И. Ньютона. Сразу уточним, что миф – это не достоверная информация. Однако мы допускаем, что мифы и легенды не появляются сами по себе и что-то из перечисленного вполне может оказаться правдой.

  • Факт. Исаак Ньютон был очень скромным и застенчивым человеком. Он увековечил себя благодаря своим открытиям, однако сам никогда не стремился к славе и даже пытался ее избежать.
  • Миф. Существует легенда, согласно которой Ньютона осенило, когда на наго в саду упало яблоко. Это было время чумной эпидемии (1665-1667), и ученый был вынужден покинуть Кембридж, где постоянно трудился. Точно неизвестно, действительно ли падение яблока было таким роковым для науки событием, так как первые упоминания об этом появляются только в биографиях ученого уже после его смерти, а данные разных биографов расходятся.
  • Факт. Ньютон учился, а потом много работал в Кембридже. По долгу службы ему нужно было несколько часов в неделю вести занятия у студентов. Несмотря на признанные заслуги ученого, занятия Ньютона посещались плохо. Бывало, что на его лекции вообще никто не приходил. Скорее всего, это связано с тем, что ученый был полностью поглощен своими собственными исследованиями.
  • Миф. В 1689 году Ньютон был избран членом Кембриджского парламента. Согласно легенде, более чем за год заседания в парламенте вечно поглощенный своими мыслями ученый взял слово для выступления всего один раз.
    Он попросил закрыть окно, так как был сквозняк.
  • Факт. Неизвестно, как бы сложилась судьба ученого и всей современной науки, если бы он послушался матери и начал заниматься хозяйством на семейной ферме. Только благодаря уговорам учителей и своего дяди юный Исаак отправился учиться дальше вместо того, чтобы сажать свеклу, разбрасывать по полям навоз и по вечерам выпивать в местных пабах.

Дорогие друзья, помните – любую задачу можно решить! Если у вас возникли проблемы с решением задачи по физике, посмотрите на основные физические формулы. Возможно, ответ перед глазами, и его нужно просто рассмотреть. Ну а если времени на самостоятельные занятия совершенно нет, специализированный студенческий сервис всегда к вашим услугам!

В самом конце предлагаем посмотреть видеоурок на тему “Законы Ньютона”.

Три закона Ньютона | Физика

Раздел механики, в котором изучают, как взаимодействие тел влияет на их движение, называют динамикой.

Основные законы динамики открыли итальянский ученый Галилео Галилей и английский ученый Исаак Ньютон. Вы изучали эти законы в курсе физики основной школы. Напомним их.

1. Первый закон ньютона (закон инерции)

Повторим один из опытов, которые поставил итальянский ученый Галилео Галилей.

Поставим опыт
Будем скатывать шар по наклонной плоскости и наблюдать за его дальнейшим движением по горизонтальной поверхности.
Если она посыпана песком, шар остановится очень скоро (рис. 13.1, а).
Если она покрыта тканью, шар катится значительно дольше (рис. 13.1, б).
А вот по стеклу шар катится очень долго (рис. 13.1, в).

На основании этого и подобных опытов Галилей открыл закон инерции:

если на тело не действуют другие тела или действия других тел скомпенсированы, то тлело движется равномерно и прямолинейно или покоится.

Сохранение скорости тела, когда на него не действуют другие тела или действия других тел скомпенсированы, называют явлением инерции.

? 1. Почему при встряхивании мокрого зонта с него слетают капли воды?

Особенно красиво смотрится явление инерции в фигурном катании (рис. 13.2).

Закон инерции называют также первым законом Ньютона, потому что Ньютон включил его в качестве первого закона в систему трех законов динамики, которые называют «тремя законами Ньютона».

Инерциальные системы отсчета

Закон инерции выполняется с хорошей точностью в системе отсчета, связанной с Землей. Но он не выполняется, например, в системе отсчета, связанной с тормозящим автобусом: при резком торможении пассажиры отклоняются вперед, хотя на них не действуют направленные вперед силы.
Системы отсчета, в которых выполняется закон инерции, называют инерциальными.

Инерциальных систем отсчета бесконечно много. Ведь если некоторая система отсчета является инерциальной, то инерциальной будет любая другая система отсчета, движущаяся относительно нее прямолинейно и равномерно.

Сформулируем теперь первый закон Ньютона с указанием систем отсчета, в которых он выполняется.

Существуют системы отсчета (называемые инерциальными), относительно которых тела сохраняют свою скорость неизменной, если на них не действуют другие тела или действия других тел скомпенсированы.

Изучать влияние взаимодействия тел на их движение удобнее всего именно в инерциальных системах отсчета, потому что в этих системах отсчета изменение скорости тела обусловлено только действием других тел на это тело.

Принцип относительности Галилея

Как показывает опыт, во всех инерциальных системах отсчета все механические явления протекают одинаково при одинаковых начальных условиях.

Это утверждение называют принципом относительности Галилея.

В справедливости принципа относительности Галилея легко убедиться, сидя в поезде, который плавно движется с постоянной скоростью. В таком случае все опыты с механическими явлениями, поставленные в вагоне, дадут одинаковые результаты независимо от того, едет поезд или стоит: например, лежащее на столе яблоко будет покоиться, а свободно падающие предметы будут падать вертикально вниз (относительно вагона!).

Поэтому пассажир может определить, едет поезд или стоит на станции, только посмотрев в окно (рис. 13.3).

2. Второй закон ньютона

Равнодействующая

Как вы уже знаете из курса физики основной школы, силы – векторные величины: каждая сила характеризуется числовым значением (модулем) и направлением. Силы измеряют с помощью динамометров. Единицей силы в СИ является 1 ньютон (Н). Определение ньютона мы дадим позже.

Если на тело, которое можно считать материальной точкой, действуют несколько сил, то их можно заменить одной силой, которая является векторной суммой этих сил. Ее называют равнодействующей.

На рисунке 13.4 показано, как найти равнодействующую двух сил: а

? 2. К телу приложены две силы, равные по модулю 1 Н и 2 Н. Отвечая на следующие вопросы, сделайте пояснительные чертежи.
а) Какое наименьшее значение может принимать равнодействующая этих сил? Как направлены силы в этом случае?
б) Какое наибольшее значение может быть у равнодействующей этих сил? Как направлены силы в атом случае?
в) Может ли равнодействующая этих сил быть равной 2 Н?

? 3. К телу приложены две силы, равные по модулю 3 Н и 4 Н. Может ли их равнодействующая быть равной 5 Н? Если да, то чему в этом случае равен угол между приложенными силами?

? 4. К телу приложены три равные по модулю силы по 1 Н каждая. Как они должны быть направлены, чтобы:
а) равнодействующая была равна 1 Н?
б) равнодействующая была равна нулю?
в) равнодействующая была равна 2 Н?

Масса тела

В курсе физики основной школы рассказывалось также об опытах, которые доказывают, что под действием постоянной силы тело движется с постоянным ускорением.

Коэффициент пропорциональности между силой и ускорением характеризует инертные свойства тела и называется массой тела. Чем больше масса тела, тем большую силу надо приложить к телу, чтобы сообщить ему то же ускорение.

Единицей массы в СИ является 1 килограмм (кг). Это масса эталона, хранящегося в Международном бюро мер и весов (Франция). Приближенно можно считать, что одному килограмму равна масса 1 л воды.

Обозначают массу буквой m.

Второй закон Ньютона

Соотношение между равнодействующей всех сил, приложенных к телу, массой тела и его ускорением Ньютон сформулировал как второй из трех основных законов механики.

Равнодействующая всех сил, приложенных к телу, равна произведению массы тела на его ускорение:

В инерциальной системе отсчета сила является причиной ускорения, поэтому второй закон Ньютона часто записывают так:

Итак, приобретаемое телом ускорение прямо пропорционально равнодействующей приложенных к телу сил, одинаково с ней направлено и обратно пропорционально массе тела.

Заметим, что второй закон Ньютона справедлив только в инерциальных системах отсчета. Напомним: в этих системах отсчета ускорение тела обусловлено только действием на него других тел.

Единицу силы в СИ определяют на основе второго закона Ньютона: сила в 1 ньютон сообщает телу массой 1 кг ускорение 1 м/с2. Поэтому 1 Н = 1 кг * м/с2.

Сила тяжести

Как вы уже знаете, под действием притяжения Земли все тела падают с одинаковым ускорением – ускорением свободного падения . Силу притяжения, действующую на тело со стороны Земли, называют силой тяжести и обозначают т.

Когда тело свободно падает, на него действует только сила тяжести, поэтому она и является равнодействующей всех приложенных к телу сил. При атом тело движется с ускорением , поэтому из второго закона Ньютона получаем:

? 5. С какой силой Земля притягивает:
а) килограммовую гирю?
б) человека массой 60 кг?

Сила, скорость и ускорение – кто «третий лишний»?

Неочевидное следствие второго закона Ньютона состоит в том, что он утверждает: направление ускорения тела совпадает с направлением равнодействующей приложенных телу сил. Скорость же вела может быть при этом направлена как угодно!

Поставим опыт

Бросим шарик вниз, затем – вверх, а потом – под углом к горизонту (рис. 13.5)

На шарик во время всего движения действует только направленная вниз сила тяжести. Однако в первом случае (а) скорость шарика совпадает по направлению с этой силой, во втором случае (б) – скорость вначале противоположна силе тяжести, а в третьем (в) – скорость направлена под углом к силе тяжести (например, в верхней точке траектории скорость перпендикулярна силе тяжести).

? 6. Тело равномерно движется по окружности. Чему равен угол между скоростью тела и равнодействующей?

? 7. Чему равен угол между скоростью автомобиля и равнодействующей приложенных к нему сил, когда автомобиль:
а) разгоняется на прямой дороге?
б) тормозит на прямой дороге?
в) движется равномерно по дуге окружности?

3. Третий закон ньютона

Поставим опыт

Предложим первокласснику и десятикласснику посоревноваться в перетягивании каната, стоя на скейтбордах: тогда трением между колесами и полом можно пренебречь (схема опыта показана на рисунке 13.6).

Мы увидим, что оба соперника движутся с ускорением. Значит, на каждого из них действу другого. Ускорения соперников направлено противоположно, причем ускорение первоклассника намного больше ускорения десятиклассника.

Точные опыты, подобные описанном выше, показывают, что модули ускорений обратно пропорциональны массам тел:

a1/a2 = m2/m1.

Поскольку ускорения направлены противоположно,

Согласно второму закону Ньютона m11 = 1 и m22 = 2, где 1 – сила, действующая на первое тело со стороны второго, а 2 – сила, действующая на второе тело со стороны первого.

Из соотношения (5) следует, что 1 = –2. Это и есть третий закон Ньютона.

Тела взаимодействуют друг с другом с силами, равными по модулю и противоположными по направлению.

Свойстве сил, с которыми тела взаимодействуют друг с другом:
– эти силы обусловлены одним и тем же взаимодействием и поэтому имеют одну и ту же физическую природу;
– эти силы направлены вдоль одной прямой;
– эти силы приложены к разным телам и поэтому не могут уравновешивать друг друга.

Примеры проявления третьего закона Ньютона

Когда камень падает на Землю, на него действует сила тяжести 1 со стороны Земли, а на Землю – сила 2 притяжения со стороны камня (рис. 13.7, для наглядности масштаб не соблюден). Обе эти силы относятся к силам всемирного тяготения.

? 8. Согласно третьему закону Ньютона F1 = F2. Почему же ускорение камня заметно, а ускорение Земли – нет?

Когда камень лежит на Земле, на него кроме силы тяжести, которую будем обозначать теперь т, действует еще направленная вверх сила давления со стороны опоры (рис. 13.8, а). Она направлена перпендикулярно поверхности опоры, поэтому ее называют силой нормальной реакции (перпендикуляр называют часто нормалью). (Когда тело можно считать материальной точкой, все действующие на него силы желательно изображать на чертежах приложенными в одной точке.)

Когда камень покоится, его ускорение равно нулю. Значит, согласно второму закону Ньютона равнодействующая приложенных к камню сил и т, равна нулю (будем говорить, что в таком случае силы уравновешивают друг друга):

Отсюда следует:

Опора давит на камень силой , направленной вверх, а камень, по третьему закону Ньютона, давит на опору силан , направленной вниз (рис. 13.8, 6). Обе эти силы – силы упругости.

Силу, с которой тело вследствие действия на него силы тяжести давит на горизонтальную опору или растягивает вертикальный поднес, называют весом тела.

Итак, – это вес камня. По третьему закону Ньютона

Из формул (8) и (9) следует:

Итак, вес покоящегося тела равен действующей на это тело силе тяжести. Однако несмотря на это вес и сила тяжести существенно отличаются друг от друга:
– эти силы приложены к разным телам: вес действует на опору или поднес, а сила тяжести – на само тело;
– эти силы имеют разную физическую природу: вес – это сила упругости, а сила тяжести – проявление сил всемирного тяготения.

Кроме того, как мы увидим несколько позже (§ 16), вес может быть не равен силе тяжести и даже быть равным нулю.

Дополнительные вопросы и задания

9. Ускорение тела в некоторой инерциальной системе отсчета равно 3 м/с2 и направлено вдоль оси x. Чему равно ускорение этого тела в инерциальной системе отсчета, движущейся относительно заданной со скоростью 4 м/с, направленной вдоль оси y? Есть ли здесь лишние данные?

10. Брусок массой 0,5 кг соскальзывает с наклонной плоскости с углом наклона 30º. Скорость бруска увеличивается. Ускорение бруска равно 2 м/с2. Изобразите на чертеже равнодействующую приложенных к бруску сил. Чему она равна? Есть ли в задаче лишние данные?

11. Зависимость координаты x автомобиля от времени выражается в единицах СИ формулой x = 20 – 10t + t2. Ось x направлена вдоль дороги, масса автомобиля 1 т.
а) Чему равна равнодействующая приложенных к автомобилю сил?
б) Как она направлена в начальный момент – в направлении скорости автомобиля или противоположно ей?

12. Автомобиль массой 1 т едет со скоростью 72 км/ч по выпуклому мосту, имеющему форму дуги окружности радиусом 50 м. Сделайте чертеж и ответьте на вопросы.
а) Чему равна и как направлена равнодействующая сил, приложенных к автомобилю в верхней точке моста?
б) Какие силы действуют на автомобиль в этой точке? Как они направлены и чему они равны?
в) Во сколько раз вес автомобиля в верхней точке моста меньше действующей на автомобиль силы тяжести?

Законы механики Ньютона • Джеймс Трефил, энциклопедия «Двести законов мироздания»

Законы Ньютона — в зависимости от того, под каким углом на них посмотреть, — представляют собой либо конец начала, либо начало конца классической механики. В любом случае это поворотный момент в истории физической науки — блестящая компиляция всех накопленных к тому историческому моменту знаний о движении физических тел в рамках физической теории, которую теперь принято именовать классической механикой. Можно сказать, что с законов движения Ньютона пошел отсчет истории современной физики и вообще естественных наук.

Однако Исаак Ньютон взял названные в его честь законы не из воздуха. Они, фактически, стали кульминацией долгого исторического процесса формулирования принципов классической механики. Мыслители и математики — упомянем лишь Галилея (см. Уравнения равноускоренного движения) — веками пытались вывести формулы для описания законов движения материальных тел — и постоянно спотыкались о то, что лично я сам для себя называю непроговоренными условностями, а именно — обе основополагающие идеи о том, на каких принципах зиждется материальный мир, которые настолько устойчиво вошли в сознание людей, что кажутся неоспоримыми. Например, древним философам даже в голову не приходило, что небесные тела могут двигаться по орбитам, отличающимся от круговых; в лучшем случае возникала идея, что планеты и звезды обращаются вокруг Земли по концентрическим (то есть вложенным друг в друга) сферическим орбитам. Почему? Да потому, что еще со времен античных мыслителей Древней Греции никому не приходило в голову, что планеты могут отклоняться от совершенства, воплощением которой и является строгая геометрическая окружность. Нужно было обладать гением Иоганна Кеплера, чтобы честно взглянуть на эту проблему под другим углом, проанализировать данные реальных наблюдений и вывести из них, что в действительности планеты обращаются вокруг Солнца по эллиптическим траекториям (см. Законы Кеплера).

Первый закон Ньютона

Учитывая столь серьезный, исторически сложившийся провал, первый закон Ньютона сформулирован безоговорочно революционным образом. Он утверждает, что если какую-либо материальную частицу или тело попросту не трогать, оно будет продолжать прямолинейно двигаться с неизменной скоростью само по себе. Если тело равномерно двигалось по прямой, оно так и будет двигаться по прямой с неизменной скоростью. Если тело покоилось, оно так и будет покоиться, пока к нему не приложат внешних сил. Чтобы просто сдвинуть физическое тело с места, к нему нужно обязательно приложить стороннюю силу. Возьмем самолет: он ни за что не стронется с места, пока не будут запущены двигатели. Казалось бы, наблюдение самоочевидное, однако, стоит нам отвлечься от прямолинейного движения, как оно перестает казаться таковым. При инерционном движении тела по замкнутой циклической траектории его анализ с позиции первого закона Ньютона только и позволяет точно определить его характеристики.

Представьте себе что-то типа легкоатлетического молота — ядро на конце струны, раскручиваемое вами вокруг вашей головы. Ядро в этом случае движется не по прямой, а по окружности — значит, согласно первому закону Ньютона, его что-то удерживает; это «что-то» — и есть центростремительная сила, которую вы прилагаете к ядру, раскручивая его. Реально вы и сами можете ее ощутить — рукоять легкоатлетического молота ощутимо давит вам на ладони. Если же вы разожмете руку и выпустите молот, он — в отсутствие внешних сил — незамедлительно отправится в путь по прямой. Точнее будет сказать, что так молот поведет себя в идеальных условиях (например, в открытом космосе), поскольку под воздействием силы гравитационного притяжения Земли он будет лететь строго по прямой лишь в тот момент, когда вы его отпустили, а в дальнейшем траектория полета будет всё больше отклоняться в направлении земной поверхности. Если же вы попробуете действительно выпустить молот, выяснится, что отпущенный с круговой орбиты молот отправится в путь строго по прямой, являющейся касательной (перпендикулярной к радиусу окружности, по которой его раскручивали) с линейной скоростью, равной скорости его обращения по «орбите».

Теперь заменим ядро легкоатлетического молота планетой, молотобойца — Солнцем, а струну — силой гравитационного притяжения: вот вам и ньютоновская модель Солнечной системы.

Такой анализ происходящего при обращении одного тела вокруг другого по круговой орбите на первый взгляд кажется чем-то само собой разумеющимся, но не стоит забывать, что он вобрал в себя целый ряд умозаключений лучших представителей научной мысли предшествующего поколения (достаточно вспомнить Галилео Галилея). Проблема тут в том, что при движении по стационарной круговой орбите небесное (и любое иное) тело выглядит весьма безмятежно и представляется пребывающим в состоянии устойчивого динамического и кинематического равновесия. Однако, если разобраться, сохраняется только модуль (абсолютная величина) линейной скорости такого тела, в то время как ее направление постоянно меняется под воздействием силы гравитационного притяжения. Это и значит, что небесное тело движется равноускоренно. Кстати, сам Ньютон называл ускорение «изменением движения».

Первый закон Ньютона играет и еще одну важную роль с точки зрения нашего естествоиспытательского отношения к природе материального мира. Он подсказывает нам, что любое изменение в характере движения тела свидетельствует о присутствии внешних сил, воздействующих на него. Условно говоря, если мы наблюдаем, как железные опилки, например, подпрыгивают и налипают на магнит, или, доставая из сушилки стиральной машины белье, выясняем, что вещи слиплись и присохли одна к другой, мы можем чувствовать себя спокойно и уверенно: эти эффекты стали следствием действия природных сил (в приведенных примерах это силы магнитного и электростатического притяжения соответственно).

Второй закон Ньютона

Если первый закон Ньютона помогает нам определить, находится ли тело под воздействием внешних сил, то второй закон описывает, что происходит с физическим телом под их воздействием. Чем больше сумма приложенных к телу внешних сил, гласит этот закон, тем большее ускорение приобретает тело. Это раз. Одновременно, чем массивнее тело, к которому приложена равная сумма внешних сил, тем меньшее ускорение оно приобретает. Это два. Интуитивно эти два факта представляются самоочевидными, а в математическом виде они записываются так:

    F = ma

где F — сила, m — масса, а — ускорение. Это, наверное, самое полезное и самое широко используемое в прикладных целях из всех физических уравнений. Достаточно знать величину и направление всех сил, действующих в механической системе, и массу материальных тел, из которых она состоит, и можно с исчерпывающей точностью рассчитать ее поведение во времени.

Именно второй закон Ньютона придает всей классической механике ее особую прелесть — начинает казаться, будто весь физический мир устроен, как наиточнейший хронометр, и ничто в нем не ускользнет от взгляда пытливого наблюдателя. Назовите мне пространственные координаты и скорости всех материальных точек во Вселенной, словно говорит нам Ньютон, укажите мне направление и интенсивность всех действующих в ней сил, и я предскажу вам любое ее будущее состояние. И такой взгляд на природу вещей во Вселенной бытовал вплоть до появления квантовой механики.

Третий закон Ньютона

За этот закон, скорее всего, Ньютон и снискал себе почет и уважение со стороны не только естествоиспытателей, но и ученых-гуманитариев и попросту широких масс. Его любят цитировать (по делу и без дела), проводя самые широкие параллели с тем, что мы вынуждены наблюдать в нашей обыденной жизни, и притягивают чуть ли не за уши для обоснования самых спорных положений в ходе дискуссий по любым вопросам, начиная с межличностных и заканчивая международными отношениями и глобальной политикой. Ньютон, однако, вкладывал в свой названный впоследствии третьим закон совершенно конкретный физический смысл и едва ли замышлял его в ином качестве, нежели как точное средство описания природы силовых взаимодействий. Закон этот гласит, что если тело А воздействует с некоей силой на тело В, то тело В также воздействует на тело А с равной по величине и противоположной по направлению силой. Иными словами, стоя на полу, вы воздействуете на пол с силой, пропорциональной массе вашего тела. Согласно третьему закону Ньютона пол в это же время воздействует на вас с абсолютно такой же по величине силой, но направленной не вниз, а строго вверх. Этот закон экспериментально проверить нетрудно: вы постоянно чувствуете, как земля давит на ваши подошвы.

Тут важно понимать и помнить, что речь у Ньютона идет о двух силах совершенно разной природы, причем каждая сила воздействует на «свой» объект. Когда яблоко падает с дерева, это Земля воздействует на яблоко силой своего гравитационного притяжения (вследствие чего яблоко равноускоренно устремляется к поверхности Земли), но при этом и яблоко притягивает к себе Землю с равной силой. А то, что нам кажется, что это именно яблоко падает на Землю, а не наоборот, это уже следствие второго закона Ньютона. Масса яблока по сравнению с массой Земли низка до несопоставимости, поэтому именно его ускорение заметно для глаз наблюдателя. Масса же Земли, по сравнению с массой яблока, огромна, поэтому ее ускорение практически незаметно. (В случае падения яблока центр Земли смещается вверх на расстояние менее радиуса атомного ядра.)

По совокупности же три закона Ньютона дали физикам инструменты, необходимые для начала комплексного наблюдения всех явлений, происходящих в нашей Вселенной. И, невзирая на все колоссальные подвижки в науке, произошедшие со времен Ньютона, чтобы спроектировать новый автомобиль или отправить космический корабль на Юпитер, вы воспользуетесь все теми же тремя законами Ньютона.

См. также:

Знаменитые законы Ньютона

4 января – это особая дата в научном обществе, ведь именно в этот день появился на свет Исаак Ньютон. О том, как его законы действуют в “Артеке”, читайте в статье медиаотряда д/л “Янтарный”

4 января весь мир отмечает День Ньютона. 
Не слышали о таком празднике? Сейчас мы вам расскажем!

Кто такой Исаак Ньютон? Это выдающийся английский ученый, разработавший и открывший ряд важнейших для мировой науки законов и теорий в физике, математике и астрономии. Многие из его открытий входят в школьную программу для старших классов.

Самый знаменитый закон Ньютона — это закон всемирного тяготения: Два любых тела притягиваются друг к другу с силой, прямо пропорциональной массе каждого из них и обратно пропорциональной квадрату расстояния между ними. 
 


                 Каждую смену артековцы обязательно притягиваются к вкусной анимации.

Второй закон Ньютона: Ускорение тела прямо пропорционально равнодействующей всех сил, приложенных к телу, и обратно пропорционально его массе.

Приходя к Дереву Желаний, каждый артековец хочет, чтобы его мечта сбылась намного скорее.

Третий закон Ньютона гласит: Взаимодействия двух тел друг на друга равны между собой и направлены в противоположные стороны.

Интересный факты:

– Хотя многоцветный спектр радуги непрерывен, по традиции в нём выделяют семь цветов. Считается, что первым выбрал число семь Исаак Ньютон. Причём первоначально, он различал только пять цветов – красный, жёлтый, зелёный, голубой и фиолетовый, о чём и написал в своей книге ”Оптика”.

– Благодаря Ньютону сократилось создание фальшивых монет, так как он сообразил по бокам делать линии, которые предотвращали срезание металла.

– На первом логотипе Apple был изображён Исаак, который сидел под яблоней.

Авторы: медиаотряд д/л «Янтарный», 15 смена 2019 года

Физики изучили условия, при которых не работает третий закон Ньютона

https://ria.ru/20200818/1575917036.html

Физики изучили условия, при которых не работает третий закон Ньютона

Физики изучили условия, при которых не работает третий закон Ньютона – РИА Новости, 18.08.2020

Физики изучили условия, при которых не работает третий закон Ньютона

Российские ученые из Объединенного института высоких температур (ОИВТ) РАН и лаборатории активных сред и систем МФТИ совместно с американскими коллегами… РИА Новости, 18.08.2020

2020-08-18T03:27

2020-08-18T03:27

2020-08-18T07:41

наука

россия

физика

российский научный фонд

московский физико-технический институт

российская академия наук

сша

/html/head/meta[@name=’og:title’]/@content

/html/head/meta[@name=’og:description’]/@content

https://cdn23.img.ria.ru/images/155936/84/1559368462_0:236:2801:1812_1920x0_80_0_0_afbaa0c10ee8fdb9376f31d85caa92d8.jpg

МОСКВА, 18 авг — РИА Новости. Российские ученые из Объединенного института высоких температур (ОИВТ) РАН и лаборатории активных сред и систем МФТИ совместно с американскими коллегами экспериментально получили и детально исследовали систему взаимодействующих частиц, для которых формально не выполняется третий закон Ньютона, рассказали РИА Новости в пресс-службе ОИВТ.”Третий закон Ньютона, который все помнят из школьной программы, утверждает, что сила действия равняется силе противодействия. Однако для некоторых открытых и неравновесных дисперсных систем — частиц в среде — симметрия эффективной силы межчастичного взаимодействия может нарушаться, и возникает очень интересная физика: например, частицы самоорганизуются в сложные структуры, система аномально разогревается, появляются необычные неравновесные фазовые переходы”, — отметил заведующий лабораторией диагностики пылевой плазмы ОИВТ Евгений Лисин.Впервые систему с несимметричным взаимодействием частиц удалось получить в конце 1990-х годов в Германии. Но с тех пор, несмотря на подготовленную теоретическую базу, одной из важных нерешенных проблем оставалось прямое экспериментальное исследование особенностей несимметричного взаимодействия между частицами. “Точно измерить силу межчастичного взаимодействия и определить степень нарушения симметрии в зависимости от условий среды ранее не удавалось”, — рассказали в пресс-службе ОИВТ.Решение этой проблемы стало возможным благодаря оригинальному спектральному методу измерения, который был разработан отечественными специалистами при поддержке Российского научного фонда.Как отметили в ОИВТ, нарушения симметрии межчастичного взаимодействия имеют общие закономерности с поведением колоний бактерий, косяков рыб, стай птиц и т.д. Данное направление исследований также может быть интересно в контексте разработки новых материалов с “программируемым” откликом на механические напряжения, магнитные и тепловые поля. “Появляются также перспективные приложения, связанные с сепарацией вещества, коллективной адресной доставкой микрогруза (например, лекарств) и преобразованием механической энергии хаотического движения”, — рассказали в пресс-службе.Научная статья “Экспериментальное исследование несимметричных взаимодействий между микрочастицами в анизотропной плазме” опубликована российскими учеными в журнале Scientific Reports в соавторстве с американскими физиками из астрофизического центра CASPER Бейлорского университета.

https://ria.ru/20200817/1575904769.html

https://ria.ru/20200731/1575205075.html

россия

сша

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

2020

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

Новости

ru-RU

https://ria.ru/docs/about/copyright.html

https://xn--c1acbl2abdlkab1og.xn--p1ai/

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

https://cdn22.img.ria.ru/images/155936/84/1559368462_36:0:2767:2048_1920x0_80_0_0_d19f807bc728e2d75a215f8302a54681.jpg

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

россия, физика, российский научный фонд, московский физико-технический институт, российская академия наук, сша

МОСКВА, 18 авг — РИА Новости. Российские ученые из Объединенного института высоких температур (ОИВТ) РАН и лаборатории активных сред и систем МФТИ совместно с американскими коллегами экспериментально получили и детально исследовали систему взаимодействующих частиц, для которых формально не выполняется третий закон Ньютона, рассказали РИА Новости в пресс-службе ОИВТ.

“Третий закон Ньютона, который все помнят из школьной программы, утверждает, что сила действия равняется силе противодействия. Однако для некоторых открытых и неравновесных дисперсных систем — частиц в среде — симметрия эффективной силы межчастичного взаимодействия может нарушаться, и возникает очень интересная физика: например, частицы самоорганизуются в сложные структуры, система аномально разогревается, появляются необычные неравновесные фазовые переходы”, — отметил заведующий лабораторией диагностики пылевой плазмы ОИВТ Евгений Лисин.

17 августа 2020, 18:00НаукаАстрономы зафиксировали необычное “сердцебиение” черной дыры

Впервые систему с несимметричным взаимодействием частиц удалось получить в конце 1990-х годов в Германии. Но с тех пор, несмотря на подготовленную теоретическую базу, одной из важных нерешенных проблем оставалось прямое экспериментальное исследование особенностей несимметричного взаимодействия между частицами. “Точно измерить силу межчастичного взаимодействия и определить степень нарушения симметрии в зависимости от условий среды ранее не удавалось”, — рассказали в пресс-службе ОИВТ.

Решение этой проблемы стало возможным благодаря оригинальному спектральному методу измерения, который был разработан отечественными специалистами при поддержке Российского научного фонда.

Как отметили в ОИВТ, нарушения симметрии межчастичного взаимодействия имеют общие закономерности с поведением колоний бактерий, косяков рыб, стай птиц и т.д. Данное направление исследований также может быть интересно в контексте разработки новых материалов с “программируемым” откликом на механические напряжения, магнитные и тепловые поля. “Появляются также перспективные приложения, связанные с сепарацией вещества, коллективной адресной доставкой микрогруза (например, лекарств) и преобразованием механической энергии хаотического движения”, — рассказали в пресс-службе.

31 июля 2020, 11:05НаукаУченые выяснили, что Вселенная более однородная, чем ожидалось

Научная статья “Экспериментальное исследование несимметричных взаимодействий между микрочастицами в анизотропной плазме” опубликована российскими учеными в журнале Scientific Reports в соавторстве с американскими физиками из астрофизического центра CASPER Бейлорского университета.{n}Fi$.

Первый закон Ньютона: если на тело не действуют другие тела, то тело движется прямолинейно и равномерно: $\overrightarrow{F} = 0$.

Важно! Если есть ИСО, то любая другая система, движущаяся относительно неё прямолинейно и равномерно, также является инерциальной.

Второй закон Ньютон: ускорение тела прямо пропорционально силе, действующей на него, и обратно пропорционально его массе: $\overrightarrow{a} = \frac{\overrightarrow{F}}{m}$.

Другая запись формулы второго закона Ньютона (основное уравнение динамики): $\overrightarrow{F} = m \overrightarrow{a}$ .

Третий закон Ньютона: тела действуют друг на друга с силами, равными по модулю и противоположными по направлению: $\overrightarrow{F}_{12} = -\overrightarrow{F}_{21}$.

Второй закон Ньютона для системы тел: приращение импульса $\Delta \overrightarrow{P}$ системы тел равно по величине и по направлению импульсу внешних сил, действующих на тело, за то же время: $\Delta \overrightarrow{p} = \overrightarrow{F} \Delta t$.

Границы применимости: справедливы для материальных точек или поступательно движущихся тел; для скоростей много меньше скорости света в вакууме; выполняются в ИСО.

Решение задачи на применение второго закона Ньютона

Силы, законы Ньютона — базовый урок по физике

А вот в неинерциальных системах скорость тела может меняться без силы.

Например: представьте, что вы стоите в центре автобуса, равномерно едущего по ровной дороге. Находясь внутри, вы даже не чувствуете, что автобус едет. В какой-то момент автобус резко тормозит и вас «бросает» вперед, хотя не действует никакая сила. То есть вы начинаете двигаться относительно автобуса без всякой причины. В таком случае автобус — это пример неинерциальной системы отсчета.

Неинерциальные системы отсчета — это системы, которые двигаются с ускорением. В таких системах вводятся так называемые силы инерции, чтобы при расчетах также можно было пользоваться законами Ньютона.

Нашу Землю можно условно отнести к инерциальным системам отсчета, поскольку вращение Земли есть ни что иное, как движение с центростремительным ускорением. Но так как Земля вращается достаточно медленно, то и центростремительное ускорение получается небольшим.

С высокой степенью точности инерциальной является гелиоцентрическая система отсчета (или система Коперника), начало которой помещено в центр Солнца, а оси направлены на далекие звезды. Вообще всякая система отсчета, движущаяся относительно какой-либо инерциальной системы поступательно, равномерно и прямолинейно, также является инерциальной. Например, поезд, идущий с постоянной скоростью по прямому участку пути.

Первый закон постулирует существование инерциальных систем отсчета, но не говорит, какую из множества таких систем предпочтительней выбирать. Однако многочисленные опыты показывают, что все инерциальные системы отсчета являются равноправными.

Когда мы говорим о скорости какого-либо тела, мы обязательно должны указать, относительно какой инерциальной системы отсчета она измерена, так как в разных инерциальных системах эта скорость будет различна, хотя бы на тело и не действовали никакие другие тела. Ускорение же тела будет одним и тем же относительно всех инерциальных систем отсчета.

законов движения Ньютона | Определение, примеры и история

Законы движения Ньютона , отношения между силами, действующими на тело, и движением тела, впервые сформулированные английским физиком и математиком сэром Исааком Ньютоном.

Ньютон, Исаак; законы движения

Титульный лист книги Исаака Ньютона Philosophiae Naturalis Principia Mathematica (1687; Mathematical Principles of Natural Philosophy ), работы, в которой физик представил свои три закона движения.

Photos.com/Thinkstock

Популярные вопросы

Каковы законы движения Ньютона?

Законы движения Ньютона связывают движение объекта с силами, действующими на него. В первом законе объект не изменит своего движения, если на него не действует сила. Во втором законе сила, действующая на объект, равна его массе, умноженной на его ускорение. В третьем законе, когда два объекта взаимодействуют, они прикладывают друг к другу силы равной величины и противоположного направления.

Почему законы движения Ньютона важны?

Законы движения Ньютона важны, потому что они лежат в основе классической механики, одного из основных разделов физики.Механика – это изучение того, как объекты движутся или не двигаются, когда на них действуют силы.

Первый закон Ньютона гласит, что если тело находится в состоянии покоя или движется с постоянной скоростью по прямой линии, оно будет оставаться в покое или продолжать движение по прямой с постоянной скоростью, если на него не действует сила. Этот постулат известен как закон инерции. Закон инерции был впервые сформулирован Галилео Галилеем для горизонтального движения на Земле, а затем был обобщен Рене Декартом. До Галилея считалось, что любое горизонтальное движение требует прямой причины, но Галилей вывел из своих экспериментов, что движущееся тело будет оставаться в движении, если сила (например, трение) не заставит его остановиться.

баскетбол; Законы движения Ньютона

Когда баскетболист делает бросок в прыжке, мяч всегда следует по дуге. Мяч следует по этому пути, потому что его движение подчиняется законам движения сэра Исаака Ньютона.

© Mark Herreid / Shutterstock.com

Второй закон Ньютона – это количественное описание изменений, которые сила может вызвать при движении тела. В нем говорится, что скорость изменения количества движения тела по величине и направлению равна силе, приложенной к нему.Импульс тела равен произведению его массы на его скорость. Импульс, как и скорость, является векторной величиной, имеющей как величину, так и направление. Сила, приложенная к телу, может изменить величину импульса или его направление, или и то, и другое. Второй закон Ньютона – один из самых важных во всей физике. Для тела, масса которого м постоянна, это можно записать в виде F = м a , где F (сила) и a (ускорение) являются векторными величинами.Если на тело действует чистая сила, оно ускоряется в соответствии с уравнением. И наоборот, если тело не ускоряется, на него не действует действующая сила.

Третий закон Ньютона гласит, что при взаимодействии двух тел они прикладывают друг к другу силы, равные по величине и противоположные по направлению. Третий закон также известен как закон действия и противодействия. Этот закон важен при анализе задач статического равновесия, в которых все силы уравновешены, но он также применим к телам в равномерном или ускоренном движении.Силы, которые он описывает, являются реальными, а не просто бухгалтерскими приборами. Например, книга, лежащая на столе, прикладывает направленную вниз силу, равную ее весу на столе. Согласно третьему закону, стол прикладывает к книге равную и противоположную силу. Эта сила возникает из-за того, что вес книги заставляет стол слегка деформироваться, так что он толкает книгу назад, как спиральная пружина.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас Законы

Ньютона впервые появились в его шедевре Philosophiae Naturalis Principia Mathematica (1687), широко известном как Principia .В 1543 году Николай Коперник предположил, что в центре Вселенной может находиться Солнце, а не Земля. За прошедшие годы Галилей, Иоганн Кеплер и Декарт заложили основы новой науки, которая заменит аристотелевское мировоззрение, унаследованное от древних греков, и объяснит работу гелиоцентрической вселенной. В Принципах Ньютон создал эту новую науку. Он разработал свои три закона, чтобы объяснить, почему орбиты планет представляют собой эллипсы, а не круги, что ему удалось, но оказалось, что он объяснил гораздо больше.Серия событий от Коперника до Ньютона известна под общим названием Научная революция.

В 20 веке законы Ньютона были заменены квантовой механикой и теорией относительности как наиболее фундаментальными законами физики. Тем не менее законы Ньютона продолжают давать точное описание природы, за исключением очень маленьких тел, таких как электроны, или тел, движущихся со скоростью, близкой к скорости света. Квантовая механика и теория относительности сводятся к законам Ньютона для более крупных тел или для тел, движущихся медленнее.

Законы движения Ньютона | Исследовательский центр Гленна

Каковы законы движения Ньютона?

  1. Покоящийся объект остается неподвижным, а объект в движении остается в движении с постоянной скоростью и по прямой, если на него не действует неуравновешенная сила.
  2. Ускорение объекта зависит от массы объекта и величины приложенной силы.
  3. Каждый раз, когда один объект оказывает силу на другой объект, второй объект оказывает равное и противоположное воздействие на первый.

Сэр Исаак Ньютон работал во многих областях математики и физики. Он разработал теории гравитации в 1666 году, когда ему было всего 23 года. В 1686 году он представил свои три закона движения в «Principia Mathematica Philosophiae Naturalis».

Разработав свои три закона движения, Ньютон произвел революцию в науке. Законы Ньютона вместе с законами Кеплера объяснили, почему планеты движутся по эллиптическим орбитам, а не по кругу.

Ниже приведен небольшой фильм с участием Орвилла и Уилбура Райтов и обсуждение того, как законы движения Ньютона применимы к полету их самолета.

Первый закон Ньютона: инерция

Покоящийся объект остается неподвижным, а объект в движении остается в движении с постоянной скоростью и по прямой, если на него не действует неуравновешенная сила.

Первый закон Ньютона гласит, что каждый объект будет оставаться в покое или в равномерном движении по прямой линии, если только он не будет вынужден изменить свое состояние под действием внешней силы. Эта тенденция сопротивляться изменениям в состоянии движения составляет инерции .Нет чистой силы , действующей на объект (если все внешние силы нейтрализуют друг друга). Тогда объект будет поддерживать постоянную скорость . Если эта скорость равна нулю, объект остается в покое. Если на объект действует внешняя сила, скорость изменится из-за силы.

Примеры инерции, связанные с аэродинамикой:

  • Движение самолета, когда пилот меняет положение дроссельной заслонки двигателя.
  • Движение шара, падающего в атмосфере.
  • Модель ракеты, запускаемой в атмосферу.
  • Движение воздушного змея при перемене ветра.

Второй закон Ньютона: сила

Ускорение объекта зависит от массы объекта и величины приложенной силы.

Его второй закон определяет, что сила равна изменению импульса (масса, умноженная на скорость) за изменение во времени. Импульс определяется как масса объекта м , умноженная на его скорость V .

Предположим, что у нас есть самолет в точке «0», определяемой его местоположением X0 и временем t0 . Самолет имеет массу m0 и движется со скоростью V0 . Внешняя сила F на самолет, показанный выше, перемещает его в точку «1». Новое местоположение самолета X1 , время t1 .

Масса и скорость самолета изменяются во время полета до значений м1 и V1 .Второй закон Ньютона может помочь нам определить новые значения V1 и m1 , если мы знаем, насколько велика сила F . Давайте просто возьмем разницу между условиями в точке «1» и условиями в точке «0».

F = (m1 * V1 – m0 * V0) / (t1 – t0)

Второй закон Ньютона говорит об изменениях количества движения (м * В), поэтому на данный момент мы не можем отделить, насколько изменилась масса и насколько изменилась скорость. Мы знаем только, сколько продукта (m * V) изменилось.

Предположим, что масса остается постоянной величиной, равной м . Это предположение довольно хорошо для самолета, единственное изменение массы будет для топлива, сожженного между точкой «1» и точкой «0». Вес топлива, вероятно, невелик по сравнению с весом остальной части самолета, особенно если мы будем смотреть только на небольшие изменения во времени. Если бы мы обсуждали полет бейсбольного мяча, то, конечно, масса остается постоянной. Но если бы мы обсуждали полет баллонной ракеты, то масса не остается постоянной, и мы можем смотреть только на изменение количества движения.Для постоянной массы м второй закон Ньютона выглядит так:

F = m * (V1 – V0) / (t1 – t0)

Изменение скорости, деленное на изменение во времени, и есть определение ускорения a . Затем второй закон сводится к более знакомому произведению массы и ускорения:

F = м * а

Помните, что это соотношение подходит только для объектов с постоянной массой. Это уравнение говорит нам, что объект, на который действует внешняя сила, будет ускоряться и что величина ускорения пропорциональна величине силы.Величина ускорения также обратно пропорциональна массе объекта; при равных силах более тяжелый объект будет испытывать меньшее ускорение, чем более легкий объект. Рассматривая уравнение количества движения, сила вызывает изменение скорости; и аналогично изменение скорости порождает силу. Уравнение работает в обоих направлениях.

Скорость, сила, ускорение и импульс имеют как величину , так и направление , связанное с ними. Ученые и математики называют это векторной величиной.Показанные здесь уравнения на самом деле являются векторными уравнениями и могут применяться в каждом из направлений компонентов. Мы рассмотрели только одно направление, и, как правило, объект движется во всех трех направлениях (вверх-вниз, влево-вправо, вперед-назад).

Пример силы, связанной с аэродинамикой:

Третий закон Ньютона: действие и противодействие

Каждый раз, когда один объект оказывает силу на второй объект, второй объект оказывает на первый равную и противоположную силу.

Его третий закон гласит, что на каждые действия (силы) в природе существует равное и противоположное противодействие .Если объект A оказывает силу на объект B, объект B также оказывает равную и противоположную силу на объект A. Другими словами, силы возникают в результате взаимодействий.

Примеры действий и противодействий, связанных с аэродинамикой:

  • Движение подъемной силы от аэродинамического профиля, воздух отклоняется вниз под действием аэродинамического профиля, и в ответ крыло толкается вверх.
  • Движение вращающегося шара, воздух отклоняется в одну сторону, а мяч реагирует движением в противоположную сторону.
  • Движение реактивного двигателя вызывает тягу, и горячие выхлопные газы выходят из задней части двигателя, а сила тяги создается в противоположном направлении.

Обзор законов движения Ньютона
1. Первый закон движения Ньютона (инерция) Покоящийся объект остается неподвижным, а объект в движении остается в движении с постоянной скоростью и по прямой, если на него не действует неуравновешенная сила.
2. Второй закон движения Ньютона (Сила) Ускорение объекта зависит от массы объекта и величины приложенной силы.
3. Третий закон движения Ньютона (Действие и противодействие) Каждый раз, когда один объект оказывает силу на другой объект, второй объект оказывает равное и противоположное воздействие на первый.

Законы движения Ньютона | Живая наука

Три закона движения сэра Исаака Ньютона описывают движение массивных тел и их взаимодействие. Хотя сегодня законы Ньютона могут показаться нам очевидными, более трех веков назад они считались революционными.

Ньютон был одним из самых влиятельных ученых всех времен. Его идеи легли в основу современной физики. Он опирался на идеи, выдвинутые из работ предыдущих ученых, включая Галилея и Аристотеля, и смог доказать некоторые идеи, которые в прошлом были только теориями. Он изучал оптику, астрономию и математику – он изобрел исчисление. (Немецкому математику Готфриду Лейбницу также приписывают независимую разработку примерно в то же время.)

Ньютон, возможно, наиболее известен своими работами по изучению гравитации и движения планет.По настоянию астронома Эдмона Галлея после признания того, что он потерял свое доказательство эллиптических орбит за несколько лет до этого, Ньютон опубликовал свои законы в 1687 году в своей основополагающей работе «Philosophiæ Naturalis Principia Mathematica» («Математические принципы естественной философии»), в которой он формализовал описание того, как массивные тела движутся под действием внешних сил.

Формулируя свои три закона, Ньютон упростил рассмотрение массивных тел, рассматривая их как математические точки без размера и вращения.Это позволило ему игнорировать такие факторы, как трение, сопротивление воздуха, температуру, свойства материала и т. Д., И сосредоточиться на явлениях, которые можно описать исключительно в терминах массы, длины и времени. Следовательно, эти три закона нельзя использовать для точного описания поведения больших твердых или деформируемых объектов; однако во многих случаях они обеспечивают достаточно точные приближения.

Законы Ньютона относятся к движению массивных тел в инерциальной системе отсчета , иногда называемой ньютоновской системой отсчета , хотя сам Ньютон никогда не описывал такую ​​систему отсчета.Инерциальная система отсчета может быть описана как трехмерная система координат, которая либо неподвижна, либо находится в равномерном линейном движении, то есть не ускоряется и не вращается. Он обнаружил, что движение в такой инерциальной системе отсчета можно описать тремя простыми законами.

Первый закон движения гласит: «Покоящееся тело будет оставаться в покое, а тело в движении будет оставаться в движении, если на него не действует внешняя сила». Это просто означает, что вещи не могут запускаться, останавливаться или менять направление сами по себе.Чтобы вызвать такое изменение, требуется некоторая сила, действующая на них извне. Это свойство массивных тел сопротивляться изменениям в их состоянии движения иногда называют инерцией .

Второй закон движения описывает, что происходит с массивным телом, когда на него действует внешняя сила. В нем говорится: «Сила, действующая на объект, равна массе этого объекта, умноженной на его ускорение». Это записывается в математической форме как F = m a , где F – сила, m – масса и a – ускорение.Жирными буквами обозначено, что сила и ускорение векторных величин, что означает, что они имеют как величину, так и направление. Сила может быть одной силой или векторной суммой более чем одной силы, которая представляет собой результирующую силу после объединения всех сил.

Когда на массивное тело действует постоянная сила, она заставляет его ускоряться, то есть изменять свою скорость с постоянной скоростью. В простейшем случае сила, приложенная к неподвижному объекту, заставляет его ускоряться в направлении силы.Однако, если объект уже находится в движении или если эта ситуация рассматривается из движущейся системы отсчета, это тело может казаться ускоряющимся, замедляющимся или меняющим направление в зависимости от направления силы и направлений, в которых объект и системы отсчета движутся относительно друг друга.

Третий закон движения гласит: «На каждое действие есть равное и противоположное противодействие». Этот закон описывает, что происходит с телом, когда оно воздействует на другое тело. Силы всегда возникают парами, поэтому, когда одно тело толкает другое, второе тело с такой же силой отталкивается.Например, когда вы толкаете тележку, тележка толкает вас назад; когда вы тянете за веревку, веревка тянется назад против вас; когда сила тяжести прижимает вас к земле, земля толкает вас вверх по ногам; и когда ракета воспламеняет свое топливо позади себя, расширяющийся выхлопной газ толкает ракету, заставляя ее ускоряться.

Если один объект намного, намного массивнее другого, особенно в случае, когда первый объект привязан к Земле, практически все ускорение передается второму объекту, и ускорение первого объекта может быть безопасно игнорировать.Например, если бы вы бросили бейсбольный мяч на запад, вам не нужно было бы учитывать, что вы фактически заставили вращение Земли хоть сколько-нибудь ускоряться, пока мяч находился в воздухе. Однако, если бы вы стояли на роликовых коньках и бросили шар для боулинга вперед, вы бы начали двигаться назад с заметной скоростью.

Три закона были подтверждены бесчисленными экспериментами за последние три столетия, и они все еще широко используются по сей день для описания типов объектов и скоростей, с которыми мы сталкиваемся в повседневной жизни.Они составляют основу того, что сейчас известно как классической механики , которая представляет собой исследование массивных объектов, которые больше, чем очень маленькие масштабы, рассматриваемые квантовой механикой, и движутся медленнее, чем очень высокие скорости, рассматриваемые релятивистской механикой.

Дополнительные ресурсы

5.3 Второй закон Ньютона – Университетская физика, том 1

Какая ракетная тяга ускоряет этот снегоход?
До космических полетов с участием космонавтов ракетные сани использовались для проверки самолетов, ракетного оборудования и физиологических воздействий на людей на высоких скоростях.Они состояли из платформы, которая была установлена ​​на одной или двух направляющих и приводилась в движение несколькими ракетами.

Рассчитайте величину силы, прилагаемой каждой ракетой, которая называется ее тягой T , для четырехракетной двигательной установки, показанной на рис. 5.14. Начальное ускорение салазок составляет 49 м / с 249 м / с 2, масса системы 2100 кг, сила трения, препятствующая движению, составляет 650 Н.

Рис. 5.14. Салазки испытывают ракетную тягу, которая ускоряет их вправо. Каждая ракета создает одинаковую тягу Т .Система здесь – это сани, его ракеты и его всадник, поэтому никакие силы между этими объектами не учитываются. Стрелка, обозначающая трение (f →) (f →), нарисована больше масштаба.
Стратегия
Хотя силы действуют как вертикально, так и горизонтально, мы предполагаем, что вертикальные силы компенсируются, потому что нет вертикального ускорения. Это оставляет нам только горизонтальные силы и более простую одномерную задачу. Направления обозначены знаками “плюс” или “минус”, при этом направление вправо считается положительным.См. Диаграмму свободного тела на рис. 5.14.
Решение
Поскольку ускорение, масса и сила трения даны, мы начнем со второго закона Ньютона и ищем способы найти тягу двигателей. Мы определили направление силы и ускорения как действующее «вправо», поэтому в расчетах нам нужно учитывать только величины этих величин. Следовательно, мы начинаем с

, где FnetFnet – чистая сила в горизонтальном направлении. Из рисунка видно, что тяга двигателя увеличивается, а трение противодействует тяге.В форме уравнения чистая внешняя сила равна

.

Подставляя это во второй закон Ньютона, получаем

Fnet = ma = 4T − f. Fnet = ma = 4T − f.

Используя небольшую алгебру, мы решаем общую тягу 4 T :

Подстановка известных значений дает

4T = ma + f = (2100 кг) (49 м / с2) + 650N. 4T = ma + f = (2100 кг) (49 м / с2) + 650N.

Следовательно, общая тяга

4T = 1.0 × 105N, 4T = 1.0 × 105N,

и индивидуальные тяги

T = 1.0 × 105N4 = 2.5 × 104N, T = 1.0 × 105N4 = 2.5 × 104N.
Значение
Цифры довольно большие, поэтому результат может вас удивить.Подобные эксперименты проводились в начале 1960-х годов, чтобы проверить пределы человеческой выносливости, и установка была разработана для защиты людей при аварийных выбросах реактивных истребителей. Была получена скорость 1000 км / ч с ускорением 45 g ‘с. (Напомним, что g , ускорение свободного падения составляет 9,80 м / с 29,80 м / с2. Когда мы говорим, что ускорение составляет 45 g , это 45 × 9,8 м / с2,45 × 9,8 м / с2. , что составляет примерно 440 м / с 2440 м / с2.) Хотя живые предметы больше не используются, с помощью ракетных саней была получена сухопутная скорость 10 000 км / ч.

В этом примере, как и в предыдущем, интересующая система очевидна. В последующих примерах мы увидим, что выбор интересующей системы имеет решающее значение, и этот выбор не всегда очевиден.

Второй закон Ньютона – это больше, чем определение; это соотношение между ускорением, силой и массой. Это может помочь нам делать прогнозы. Каждую из этих физических величин можно определить независимо, поэтому второй закон говорит нам что-то основное и универсальное о природе.

Лаборатория 3 – Второй закон Ньютона

Введение

Сэр Исаак Ньютон выдвинул много важных идей в своей знаменитой книге The Principia .Его три закона движения – самые известные из них. Кажется, что первый закон противоречит нашему повседневному опыту. Первый закон Ньютона гласит, что любой объект в состоянии покоя, на который не действуют внешние силы, будет оставаться в состоянии покоя, и что любой объект в движении, на который не действуют внешние силы, будет продолжать движение по прямой линии с постоянной скоростью. Если мы катим мяч по полу, мы знаем, что он в конечном итоге остановится, что, по-видимому, противоречит Первому закону. Наш опыт, кажется, согласуется с идеей Аристотеля о том, что «импульс», данный мячу, исчерпывается по мере его катания.Но Аристотель ошибался, как и наше первое впечатление о движении мяча. Суть в том, что мяч действительно испытывает внешнюю силу, то есть трение, на мяч , когда он катится по полу. Эта сила заставляет мяч замедляться (то есть имеет «отрицательное» ускорение). Согласно второму закону Ньютона объект будет ускоряться в направлении чистой силы . Поскольку сила трения противоположна направлению движения, это ускорение заставляет объект замедлять свое поступательное движение и в конечном итоге останавливаться.Цель этого лабораторного упражнения – проверить второй закон Ньютона.

Обсуждение принципов

Второй закон Ньютона в векторной форме имеет вид Эта сила заставляет шарик, катящийся по полу, замедляться (то есть иметь «отрицательное» ускорение). Согласно второму закону Ньютона, объект будет ускоряться в направлении действующей силы. Если

F

– это величина чистой силы, и если

м

– масса объекта, то ускорение определяется по формуле

(2)

a =
F
м
Поскольку сила трения имеет направление, противоположное направлению движения, это ускорение заставляет объект замедлять свое поступательное движение и в конечном итоге останавливаться.Обратите внимание, что уравнение. (1) и уравнение. (2) a =
F
m
записываются в векторной форме. Это означает, что второй закон Ньютона верен во всех направлениях. Вы всегда можете разделить силы и результирующее ускорение на соответствующие составляющие в направлениях

x

,

y

и

z

. Рассмотрим тележку на гусенице с низким коэффициентом трения, как показано на рис. 1. К тележке прикреплена легкая струна, которая проходит через шкив в конце гусеницы, а к концу этой струны прикреплена вторая масса.Вес подвешенной массы обеспечивает натяжение тетивы, что способствует ускорению тележки по рельсам. Этому движению будет сопротивляться небольшая сила трения. Мы предполагаем, что струна не имеет массы (или ее можно пренебречь) и между струной и шкивом нет трения. Следовательно, натяжение струны будет одинаковым во всех точках струны. Это приводит к тому, что обе массы имеют одинаковую величину ускорения, но направление ускорения будет разным. Тележка будет ускоряться вправо, в то время как подвешенная масса будет ускоряться в направлении вниз, как показано на рис.1.

Рисунок 1 : Двухмассовая система

Мы возьмем положительное направление в направлении ускорения двух масс, как показано системой координатных осей на рис. 1. Диаграммы свободного тела для двух масс показаны на рис. 2. Давайте посмотрим на силы. действуя на каждую массу.

Рисунок 2 : Диаграммы свободного тела для двух масс

Для падающей массы

м 1

отсутствуют силы, действующие в горизонтальном направлении.В вертикальном направлении он тянется вниз под действием силы тяжести, придавая объекту вес

W = m 1 г

и вверх за счет натяжения

T

в струне. См. Рис. 2b. Таким образом, второй закон Ньютона, примененный к падающей массе в направлении

y

, будет следующим:

(6)

F net, 1 = m 1 g – T = m 1 a

где направление вниз, было выбрано положительным.На рис. 2а показаны силы, действующие на

м 2

. Тележка в вертикальном направлении не движется. Следовательно, результирующая сила в вертикальном направлении будет равна нулю, как и ускорение. В горизонтальном направлении натяжение струны действует на тележку в направлении

+ x

, в то время как сила трения между шинами тележки и поверхностью гусеницы действует в направлении

– x

. Второй закон Ньютона в направлениях

x

и

y

соответственно равен

(7)

F сетка, 2x = T – f = m 2 a

(8)

F net, 2y = F N – m 2 g = 0

Поскольку тележка и подвешенная масса связаны веревкой, которая не растягивается, оба ускорения, появляющиеся в уравнении.(6)

F net, 1 = m 1 g – T = m 1 a

и уравнение. (7)

F net, 2x = T – f = m 2 a

представляют те же физические свойства. Напряженность такая же из-за третьего закона Ньютона. Объедините уравнение. (6)

F net, 1 = m 1 g – T = m 1 a

и уравнение. (7)

F net, 2x = T – f = m 2 a

для исключения

T

.

(9)

m 1 g = (m 1 + m 2 ) a + f

Обратите внимание, что уравнение.(9)

m 1 g = (m 1 + m 2 ) a + f

имеет форму линейного уравнения

y = mx + b

, где m – наклон, а

b

– это перехват

и

.

Объектив

Цель этого эксперимента – проверить справедливость второго закона Ньютона, который гласит, что результирующая сила, действующая на объект, прямо пропорциональна его ускорению. Уравнение (9)

m 1 g = (m 1 + m 2 ) a + f

было получено на основе этого закона.Поэтому мы можем рассмотреть уравнение. (9) быть предсказанием второго закона. В этом эксперименте мы постараемся проверить это конкретное предсказание и тем самым предоставить доказательства справедливости второго закона.

Оборудование

  • Гусеница с низким коэффициентом трения со шкивом
  • Корзина
  • Нить
  • Остаток средств
  • Программное обеспечение DataStudio
  • Два фотоката
  • Ассорти масс
  • Весовая вешалка
  • Компьютер
  • Сигнальный интерфейс

Процедура

Вы проведете несколько испытаний, сохраняя общую массу

M = m 1 + m 2

постоянной при изменении

m 1

и, следовательно,

m 2

, чтобы получить другое значение

a

. для каждого значения

м 1

.Построив график

a

против

m 1 g

, вы сможете найти

M

, общую массу системы из уравнения. (9)

m 1 g = (m 1 + m 2 ) a + f

. К тележке прикреплен металлический флажок, который заставит два фотозатвора, размещенных на фиксированном расстоянии друг от друга, реагировать, когда тележка проходит через них. Компьютер, подключенный к фотозатвору, будет измерять и отображать временные интервалы, прошедшие, пока флаг проходит через два фотозабора.По этим временным интервалам и длине флага компьютер вычислит скорости

v 1

и

v 2

тележки на каждом из фотозатворов. Кроме того, из компьютерных данных вы можете определить интервал времени

Δt

, который требуется тележке для перемещения между фотозатвором. Тогда ускорение

a

между двумя воротами можно рассчитать по формуле где

v 1

– скорость на первом фотозатворе, а

v 2

– скорость на втором фотозатворе.

Настройка оборудования

1

Используя регулировочные винты под ними, выровняйте гусеницу так, чтобы тележка не двигалась, когда она размещается сама по себе в центре гусеницы. Поскольку тележка имеет некоторое трение, проверьте, выровнена ли гусеница, слегка подтолкнув тележку вправо и сравнив движение с аналогичным толчком влево.

2

Разместите фотошиты достаточно далеко друг от друга. Убедитесь, что флажок тележки находится перед первыми воротами, когда подвеска полностью поднята рядом со шкивом, как показано на рис.3а. Кроме того, убедитесь, что флаг тележки проходит через второй фотозатвор до того, как вешалка упадет на землю. См. Рис. 3b. Это обеспечит ускорение тележки в области между двумя фотозатвором.

3

Отрегулируйте высоту каждой заслонки так, чтобы небольшой металлический флажок на тележке блокировал световой луч фотозатвора, когда он проходит.

Рисунок 3 : Настройка фотозатвора

Рисунок 4 : Экспериментальная установка

4

Подключите фотозатвор 1 к цифровому каналу 1, а фотозатвор 2 – к цифровому каналу 2.Если фотозатворы подключены правильно, красный светодиод на фотозатворе загорится, когда инфракрасный луч заблокирован.

5

Откройте соответствующий файл Capstone, связанный с этой лабораторной работой. На рис. 5 показан начальный экран в Capstone.

Рисунок 5 : Отображение второго закона Ньютона

6

Длина небольшого металлического флажка на тележке разная для каждой тележки. Измерьте свою тележку и запишите это на листе.

7

Вы должны ввести значение длины флажка и расстояния между фотозатвором, как показано на рис. 6. Не забудьте нажать кнопку «Сохранить».

Рисунок 6 : Ввод длины флажка

Сбор данных

8

Поместите тележку в конце гусеницы подальше от шкива. Добавьте в тележку три гири по 50 грамм.

9

Взвесьте весовую подвеску и запишите на листе массу

M h

.

10

Подсоедините один конец веревки к подвеске груза, а другой конец – к тележке, поместив веревку на шкив. См. Рис.3.

11

Удерживайте тележку в таком положении, чтобы при отпускании тележка ускорялась. Когда будете готовы к записи данных, нажмите кнопку Start . Освободите тележку и поймайте ее, когда она достигнет конца пути. Нажмите кнопку Stop , чтобы завершить запись данных. Данные о времени и скорости для каждого фотозатвора будут автоматически представлены в таблице.См. Рис.7.

Рисунок 7 : Пример таблицы данных

12

Скорость тележки плавно увеличивается в течение промежутка времени, пока флаг проходит через луч фотозатвора. В какой-то момент в течение этого интервала времени мгновенная скорость тележки равна средней скорости за интервал. Этот момент времени отображается в столбце «Время (с)» рядом с соответствующей скоростью.

13

Время, затраченное тележкой на прохождение между фотозаборами 1 и 2, составляет

Δt

.Это вычисляется путем вычитания значения времени в столбце Velocity in Gate, Ch2 из значения времени в столбце Velocity in Gate, Ch 2. Вычислите

Δt

и запишите это в Таблицу данных 1 на рабочем листе.

14

Используйте этот временной интервал вместе с двумя скоростями

v 1

и

v 2

в уравнении. (10), чтобы вычислить ускорение тележки между двумя фотозатвором и записать этот результат в Таблицу данных 1.

15

Переместите одну 50-граммовую гирю из тележки на вешалку. Примечание : Вы должны поддерживать постоянную общую массу, поэтому любую массу, снятую с тележки, необходимо добавлять на подвеску для грузов.

16

Повторите шаги с 11 по 15 еще три раза, пока у вас не будет в общей сложности четырех прогонов с разными значениями подвешенной массы для каждого прогона. Рассчитайте и запишите ускорение для каждого случая.

Контрольная точка 1:
Попросите своего технического специалиста проверить значения в вашей таблице, прежде чем продолжить.

Анализ результатов

17

Используя график Excel

м 1 g

по сравнению с

a

. См. Приложение G.

18

Используйте опцию линии тренда в Excel, чтобы нарисовать линию наилучшего соответствия для данных и определить наклон и интервал

y

. См. Приложение H. Запишите эти значения на листе.

19

По величине уклона определяют общую массу системы.

20

Используйте весы, чтобы измерить массу тележки.Добавьте это к массе подвески груза и добавленным массам, чтобы получить общую массу

M

системы.

21

Сравните эту измеренную массу с массой, определенной по наклону графика, вычислив разницу в процентах. Запишите это на листе. См. Приложение Б.

Контрольная точка 2:
Попросите своего технического специалиста проверить ваш рабочий лист Excel и график.

Авторские права © 2012 Advanced Instructional Systems Inc.и государственный университет Северной Каролины | Кредиты

В чем разница между первым законом движения Ньютона и вторым законом движения Ньютона?

Законы движения Исаака Ньютона стали основой классической физики. Эти законы, впервые опубликованные Ньютоном в 1687 году, до сих пор точно описывают мир, каким мы его знаем сегодня. Его Первый закон движения гласит, что движущийся объект имеет тенденцию оставаться в движении, если на него не действует другая сила. Этот закон иногда путают с принципами его второго закона движения, который устанавливает соотношение между силой, массой и ускорением.Однако в этих двух законах Ньютон обсуждает отдельные принципы, которые, хотя и часто взаимосвязаны, тем не менее описывают два разных аспекта механики.

Уравновешенные и несбалансированные силы

Первый закон Ньютона имеет дело с уравновешенными силами или теми, которые находятся в состоянии равновесия. Когда две силы уравновешены, они нейтрализуют друг друга и не имеют общего воздействия на объект. Например, если вы и ваш друг тянете за противоположные концы веревки с одинаковым усилием, центр веревки не сдвинется.Ваши равные, но противоположные силы нейтрализуют друг друга. Второй закон Ньютона, однако, описывает объекты, на которые действуют неуравновешенные силы или силы, которые не отменяются. Когда это происходит, возникает чистое движение в направлении более мощной силы.

Инерция и ускорение

Согласно первому закону Ньютона, когда все силы, действующие на объект, уравновешены, этот объект останется в том состоянии, в котором он находится навсегда. Если он движется, он будет продолжать двигаться с той же скоростью и в том же направлении.Если он не двигается, он никогда не двинется. Это известно как закон инерции. Согласно второму закону Ньютона, если статус-кво изменится так, что силы, действующие на объект, станут неуравновешенными, объект будет ускоряться со скоростью, описываемой уравнением F = ma, где «F» равняется чистой силе, действующей на объект. , «m» равняется его массе, а «a» равняется результирующему ускорению.

Безусловное и условное состояние

Инерция и ускорение описывают различные свойства объекта.Инерция – это безусловное свойство, которым всегда обладает каждый объект, независимо от того, что с ним происходит. Однако объект не всегда ускоряется. Это происходит только при определенных условиях; следовательно, вы можете описать ускорение как условное состояние. Скорость ускорения также является условной, поскольку она зависит от массы объекта и величины чистой силы. Например, сила в 1 ньютон, действующая на мяч весом 1 г, не заставит мяч разогнаться до такого же ускорения, как сила в 2 ньютона.

Пример

Инерция описывает, почему необходимо удерживать людей в движущемся транспортном средстве. Если машина внезапно остановится, люди внутри продолжат движение вперед, если только ремень безопасности не приложит противодействующую силу. Ускорение описывает, почему автомобиль внезапно остановился. Поскольку замедление – это отрицательное ускорение, оно регулируется вторым законом. Когда сила, противодействующая поступательному движению автомобиля, становилась больше, чем сила, заставляющая его двигаться, автомобиль замедлялся до тех пор, пока не остановился.

Законы Ньютона

http://en.wikipedia.org/wiki/Newton’s_laws_of_motion

Заимствовано 11 сентября 2006 г. для PHY205 Джейсоном Харлоу

Из Википедии, бесплатной энциклопедии

Ньютона Первый и Второй законы на латинском языке из оригинального издания Принципов 1687 года. Mathematica.

Законы движения Ньютона – это три физических закона, которые определяют отношения между силами, действующими на тело, и движением тела, прежде всего сформулирован сэром Исааком Ньютоном.Ньютона законы были впервые опубликованы в его работе Philosophiae Naturalis Принципы математики (1687). Законы составляют основу классической механики. Ньютон использовал они объясняют многие результаты, касающиеся движения физических объектов. в В третьем томе текста он показал, что законы движения в сочетании с его законом всемирного тяготения, объяснил законы движения планет Кеплера.

Три закона движения

Ньютона Законы движения описывают только движение тела в целом и действительны только для движений относительно системы отсчета.Ниже приведены краткие современные формулировки Ньютона три закона движения:

Первый закон
Объекты в движении имеют тенденцию оставаться в движении, а объекты в состоянии покоя имеют тенденцию оставаться в состоянии покоя, если на них не действует внешняя сила.

Второй закон
Скорость изменения количества движения тела прямо пропорциональна чистая сила, действующая на него, и направление изменения количества движения имеет место в направлении чистой силы.

Третий закон
На каждое действие (приложенная сила) существует равная, но противоположная реакция (равная сила, приложенная в противоположном направлении).

Важно отметить, что эти три закона вместе с его законом гравитация дает удовлетворительную основу для объяснения движения повседневные макроскопические объекты в повседневных условиях. Однако при применении к чрезвычайно высоким скоростям или чрезвычайно маленьким объектам законы Ньютона нарушаются; это было исправлено Специальной теории относительности Альберта Эйнштейна для высоких скоростей и квантовой механика для мелких предметов.

Первый закон Ньютона: закон инерции

Lex I: Corpus omne perseverare in statu suo quiescendi vel movendi Unformiter in directum, nisi quatenus a viribus Impressis cogitur statum illum мутаре.

  • “Покоящийся объект будет оставаться в покое, если на него не действует внешняя и неуравновешенная сила . Движущийся объект останется в движении, если на него не будет действовать внешняя и неуравновешенная сила »

Этот закон также называют законом инерции или принципом Галилея .

Чистая сила, действующая на объект, – это векторная сумма всех сил, действующих на объект. Ньютона Первый закон гласит, что если эта сумма равна нулю, состояние движения объекта не изменить. По сути, это делает следующие два момента:

  • Объект, который не движется не будет двигаться, пока на него не подействует сила.
  • Движущийся объект не изменит скорость (включая остановку), пока на него не подействует сила.

Первый пункт кажется большинству людей относительно очевидным, но второй может подумать, потому что все знают, что вещи не выдерживают двигаться вечно.Если провести хоккейную шайбу по столу, она не двинется. навсегда, он замедляется и в конце концов останавливается. Но по законам Ньютона это потому что на хоккейную шайбу действует сила и, конечно же, сила трения между столом и шайбой, и эта сила трения равна в направлении, противоположном движению. Именно эта сила заставляет объект замедлить до остановки. При отсутствии (или фактическом отсутствии) такой силы, как на стол для аэрохоккея или каток, движение шайбы ничем не затруднено.

Хотя «Закон инерции» обычно приписывают Галилею, Аристотелю написал первое известное его описание:

[Нельзя сказать, почему вещь когда-то приведенный в движение должен остановиться где угодно; почему он должен останавливать здесь скорее чем здесь ? Чтобы вещь либо стояла, либо ее нужно было переместить ad infinitum , если только на пути не встанет что-то более мощное.

Однако ключевое отличие идеи Галилея от идеи Аристотеля состоит в том, что Галилей понял, что сила, действующая на тело, определяет ускорение , не скорость.Это понимание приводит к Ньютону Первый закон – отсутствие силы означает отсутствие ускорения, и, следовательно, тело будет продолжать двигаться. поддерживать его скорость.

«Закон инерции», по-видимому, приходил в голову множеству различных естественных философы независимо друг от друга, например в Китае появляется инерция движения в 3 веке до нашей эры Мо-цзы и Рен Декарт также сформулировали закон, хотя он не проводил никаких экспериментов, чтобы подтвердить это.

Не существует идеальных демонстраций закона, так как трение обычно вызывает сила воздействовать на движущееся тело, и даже в космическом пространстве релятивистские эффекты или действуют гравитационные силы, но закон служит для подчеркивания элементарных причин изменений в состоянии движения объекта: сил .

Второй закон Ньютона – историческое развитие

В точном оригинальном переводе 1792 года (с латинского) Второй закон движения Ньютона гласит:

“ЗАКОН II: изменение движения всегда пропорционально мотиву сила впечатлена; и производится в направлении правой линии, в которой сила впечатляет. Если сила вызывает движение, двойная сила будет генерировать двойное движение, тройную силу утроить движение, будь то сила впечатляется сразу и сразу или постепенно и последовательно.И это движение (всегда направленное в одну сторону с генерирующей силой), если тело, перемещенное ранее, добавляется к предыдущему движению или вычитается из него, в соответствии с поскольку они напрямую вступают в сговор или прямо противоречат друг другу; или же косо соединены, когда они наклонены, чтобы произвести новое движение составлен из определения обоих “.

Ньютона здесь в основном говорит, что скорость изменения импульса объекта прямо пропорционально силе, приложенной к объекту.Он также утверждает, что изменение направления импульса определяется углом от к которому прилагается сила. Интересно, что Ньютон повторяет в своих дальнейших объяснение еще одной предшествующей идеи Галилея, которую мы сегодня называем галилейской преобразование или сложение скоростей.

Интересный факт при изучении Ньютона. Законы движения из Начала – это то, что Ньютон сам не пишет явно формулы для своих законов, которые были распространены в научные труды того времени.Фактически, сегодня обычно добавляют при формулировании второго закона Ньютона, который сказал Ньютон, «и обратно пропорционально массе объекта». Однако это не встречается у Ньютона Второй закон в прямом переводе выше. На самом деле идея массы не является введен до третьего закона.

В математических терминах дифференциальное уравнение можно записать как:

где F – сила, m – масса, v – скорость, t – время, а k – постоянная пропорциональности.Произведение массы и скорости – это импульс объект.

Если известно, что масса рассматриваемого объекта постоянна и используется Определение ускорения, это дифференциальное уравнение можно переписать как:

, где а – ускорение.

Используя только единицы СИ для определения Ньютона, коэффициент пропорциональности равен единство (1). Отсюда:

Тем не менее, было принято описывать второй закон Ньютона в математической формула F = ma где F – сила, a – ускорение, а m – масса.На самом деле это комбинация законов два и три Ньютона выражается в очень полезной форме. Эта формула в таком виде даже не начиналась использоваться до 18 века, после Ньютона смерть, но это подразумевается в его законах.

Третий Ньютон Закон Движения гласит: «ЗАКОН III: всякому действию всегда противопоставляется равное противодействие: или взаимные действия двух тел друг на друга всегда равны и направлены к противоположным частям. – Все, что притягивает или давит на другого, есть столько, сколько притягивает или давит другой.Если пальцем надавить на камень, палец тоже прижимается камнем. Если лошадь тянет камень, привязанный к веревка, лошадь (если можно так выразиться) будет в равной степени притянута к камню: поскольку растянутая веревка, при той же попытке расслабиться или разогнуться, будет притяните лошадь к камню так же сильно, как и камень к лошади, и будет препятствовать продвижению одного из них так же сильно, как и продвигаться вперед. другой. Если тело сталкивается с другим и своей силой изменяет движение из другого, это тело тоже (из-за равенства взаимного давления) будет претерпевать такое же изменение в своем собственном движении к противоположной части.В изменения, произведенные этими действиями, одинаковы не в скоростях, а в движения тел; то есть, если телам не препятствуют какие-либо другие препятствия. Поскольку, поскольку движения одинаково изменяются, изменения скорости, направленные к противоположным частям, обратно пропорциональны тела. Этот закон имеет место и в аттракционах, что будет доказано в следующем. схолия. “

Объяснение массы здесь впервые выражено словами «обратно пропорциональны телам», которые сейчас традиционно добавляется к Закону 2 как «обратно пропорционально массе объект.”Это потому, что Ньютон в его определении я уже сказал, что когда он сказал «тело», он означало “масса”. Таким образом, мы приходим к F = ma. Когда берется формула F = ma Принимая во внимание, Закон II можно также интерпретировать как количественное повторение Закон I, согласно которому масса также является мерой инерции.

Третий закон Ньютона: закон взаимных действий

Ньютона третий закон. Силы фигуристов друг на друга равны по величине, а в противоположные направления

Lex III: Actioni contrariam semper et qualem esse Reactionem: sive corporum duorum actiones in se mutuo semper esse quales et in partes Contrarias dirigi.

  • Все силы действуют попарно, и эти две силы равны по величине и противоположны по направлению.

Третий закон математически следует из закона сохранения импульс.

Как показано на диаграмме напротив, силы фигуристов друг на друга равны по величине и противоположны по направлению. Хотя силы равны, ускорений нет: у менее массивного фигуриста будет больше ускорение из-за Ньютона второй закон.Если баскетбольный мяч ударяется о землю, сила баскетбольного мяча на Земля – ​​это то же самое, что сила Земли в баскетболе. Однако из-за того, что мяч гораздо меньшая масса, ньютоновская второй закон предсказывает, что его ускорение будет намного больше, чем у Земля. Не только планеты ускоряются к звездам, но и звезды ускоряются. к планетам.

Две силы в третьем законе Ньютона имеют того же типа, например, если дорога оказывает прямое трение на Ускорение шин автомобиля, то это также сила трения, которую третий закон Ньютона предсказывает движение шин задним ходом по дороге.

Важность и диапазон срок действия

Ньютона законы были проверены экспериментом и наблюдением более 200 лет, и они являются отличными приближениями в масштабах и скоростях повседневной жизнь. Ньютона законы движения вместе с его законом всемирного тяготения и математические методы исчисления, впервые представившие единый количественное объяснение широкого круга физических явлений.

В квантовой механике такие понятия, как сила, импульс и положение определяется линейными операторами, которые работают с квантовым состоянием.На скоростях, которые намного ниже скорости света, ньютоновские законы для этих операторов столь же точны, как и для классических объектов. На скоростях, сравнимых со скоростью света, второй закон выполняется в исходная форма F = dp / dt , который говорит, что сила является производной импульса объекта с относительно времени, но некоторые из более новых версий второго закона (например, приближение постоянной массы выше) не выполняются при релятивистских скоростях.

Ссылки

  • Мэрион, Джерри и Торнтон, Стивен. Классическая динамика частиц и систем . Издательство HarcourtCollege, 1995.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *