Формула ускорения в физике через время и скорость – Формулы ускорения в физике

Формулы ускорения в физике

Ускорение: сущность и виды

Под действием различных физических сил тела ускоряют или замедляют свое движение.

Определение 1

Ускорением называют интенсивность изменения скорости движения. Оно характеризует изменение скорости за единицу времени.

В системе СИ ускорение измеряется в метрах в секунду за секунду, иными словами, в метрах в секунду в квадрате ($м/с^2$).

Движение с ускорением, вектор которого не меняется по модулю и направлению, называется равноускоренным.

Определить ускорение при равноускоренном прямолинейном движении можно по формуле:

$a = \frac{v_1 – v_0}{t} = \frac{\Delta v}{t}$,

где $v_1, v_0$ – скорости в начале и в конце рассматриваемого периода времени длительностью $t$.

Отношение изменения скорости к промежутку времени, за который произошло это изменение, называют средним ускорением:

$\vec{a} = \frac{\vec{v_1} – \vec{v_0}}{t} = \frac{\Delta \vec{v}}{t}$,

В отличие от равноускоренного, здесь имеют значение направления векторов.

Если начальная скорость больше конечной, происходит замедление, которое в физике также принято называть ускорением, но выраженным с отрицательным знаком.

Мгновенное ускорение – ускорение, развиваемое за очень малый промежуток времени (его длительность стремится к нулю):

$\vec{a} = \lim\limits_{t \to 0}\frac{\Delta \vec{v}}{\Delta t}$.

Ускорение при движении по окружности

Поскольку ускорение – векторная величина, при движении отличном от прямолинейного оно не остается неизменным даже если модуль скорости не изменяется. В связи с этим ускорение вычисляется из начальной и конечной скоростей по правилам векторной математики, т.е. с учетом изменения направления.

Тело, движущееся по окружности, удобно рассматривать как обладающее двумя ускорениями: тангенциальным ($a_{\tau}$), направленным по касательной к траектории, и центростремительным, направленным к центру ($a_n$). При равномерном движении по окружности тангенциальное ускорение, отражающее мгновенную скорость тела, может быть равно нулю, но центростремительное имеет место даже в этом случае. Поэтому любое движение по криволинейной траектории является движением с ускорением.

Замечание 1

Центростремительное ускорение называется также нормальным, тангенциальное – касательным.

Касательное ускорение определяется как мгновенное при движении на очень малое угловое расстояние, когда длина дуги и длина хорды между начальной и конечной точками малоразличимы (сравниваются мгновенные скорости в этих точках).

Формула для определения центростремительного ускорения:

$a_n = \frac{v^2}{R}$,

где $v$ – мгновенная скорость, $R$ – радиус траектории.

При движении по искривленной траектории величину результирующего ускорения получают из тангенциального и нормального исходя из теоремы Пифагора:

$\vec{a}^2 = \vec{a_{\tau}}^2 + \vec{a_n}^2 \implies \vec{a} = \sqrt{\vec{a_{\tau}}^2 + \vec{a_n}^2}$

Такое ускорение называется полным.

Пример 1

Найти ускорение тела, разгоняющегося за 10 с от 5 до 100 км/ч.

В начальный момент времени тело двигалось со скоростью

$v_{0} = \frac{5000}{3600} \approx 1,39 м/с.$

Скорость в конце интервала:

$v_{1} = \frac{100000}{3600} \approx 27,8 м/с.$

Подставив числовые значения в формулу, получаем:

$a = \frac{v_1 – v_0}{t}$

$a = \frac{27,8 – 1,39}{10} \approx 2,64 м/с^{2}$

Ответ: ускорение составило $ 2,64 м/с^{2}$

spravochnick.ru

Равноускоренное движение: формулы, примеры

Равноускоренное движение

Равноускоренное движение – это движение с ускорением, вектор которого не меняется по модулю и направлению. Примеры такого движения: велосипед, который катится с горки; камень брошенный под углом к горизонту.

Рассмотрим последний случай более подробно. В любой точке траектории на камень действует ускорение свободного падения g→, которое не меняется по величине и всегда направлено в одну сторону. 

Движение тела, брошенного под углом к горизонту, можно представить в виде суммы движений относительно вертикальной и горизонтальной осей.

Вдоль оси X движение равномерное и прямолинейное, а вдоль оси Y – равноускоренное и прямолинейное. Будем рассматривать проекции векторов скорости и ускорения на оси.

Формулы для равноускоренного движения

Формула для скорости при равноускоренном движении:

v=v0+at.

Здесь v0 – начальная скорость тела, a=const – ускорение.

Покажем на графике, что при равноускоренном движении зависимость v(t) имеет вид прямой линии.

Ускорение можно определить по углу наклона графика скорости. На рисунке выше модуль ускорения равен отношению сторон треугольника ABC.

a=v-v0t=BCAC

Чем больше угол β, тем больше наклон (крутизна) графика по отношению к оси времени. Соответственно, тем больше ускорение тела.

Для первого графика: v0=-2 мс; a=0,5 мс2.

Для второго графика: v0=3 мс; a=-13 мс2.

По данному графику можно также вычислить перемещение тела за время t. Как это сделать?

Выделим на графике малый отрезок времени ∆t. Будем считать, что он настолько мал, что движение за время ∆t можно считать равномерным движением со скоростью, равной скорости тела в середине промежутка ∆t. Тогда, перемещение ∆s за время ∆t будет равно ∆s=v∆t.

Разобьем все время t на бесконечно малые промежутки ∆t. Перемещение s за время t равно площади трапеции ODEF.

s=OD+EF

zaochnik.com

Формула ускорения в физике

Определение и формула ускорения

Определение

Ускорением (мгновенным ускорением) называют вектор, который определяет быстроту, с которой изменяется скорость перемещающейся материальной точки.

Обычно ускорение обозначают . В теоретической механике встречается обозначение ускорения: . Математическим определением мгновенного ускорения являются выражения:

где – скорость движения материальной точки

или

где – радиус – вектор, который определяет положение материальной точки в пространстве.

Вектор ускорения располагается в плоскости соприкосновения, в которой находится главная нормаль и касательная к траектории, при этом он имеет направление в сторону вогнутости траектории.

Единицы измерения ускорения

Основными единицами измерения ускорения в системе СИ является: [a]=м/с

2

в СГС: [a]=см/с2

Виды ускорения

Если построить соприкасающуюся плоскость, в любой точке траектории, то вектор разложим на две взаимно перпендикулярные составляющие:

где – вектор, направленный по главной нормали к центру кривизны траектории материальной точки – это нормальное ускорение; – вектор, направленный по касательной к траектории – это касательное ускорение. При этом выполняются равенства:

где – модуль вектора скорости, R – радиус кривизны траектории, an – проекция вектора на направление единичного вектора главной нормали , aт – проекция вектора на направление единичного вектора касательной . Величина an определяет быстроту изменения направления скорости, а величина aт – быстроту изменения модуля скорости.

Если , то такое движение называют равномерным. Приa_ движение является равнопеременным (при равнозамедленным, при равноускоренным).

Средним ускорением материальной точки на отрезке времени от до называется векторная величина, равная отношению:

При в пределе среднее ускорение совпадает с мгновенным ускорением:

Формула ускорения в разных системах координат

В декартовых координатах проекции ускорения (ax,ay,az) на оси (X,Y,Z)можно представить как:

Соответственно, имеем:

где – единичные орты по осям X,Y.Z. При этом модуль ускорения равен:

В цилиндрической системе координат имеем:

В сферической системе координат модуль ускорения можно найти как:

Примеры решения задач

Пример

Задание. Материальная точка движется по окружности (рис.1), которая имеет радиус R=2м, уравнение движения: , гдеtв секундах, а S в метрах. Каков модуль ускорения данной точки при t=3 c?

Решение. В качестве основы для решения задачи используем формулу:

Используя заданное уравнение движения, найдем модуль скорости материальной точки:

Продифференцировав уравнение для модуля скорости (1.2) по времени получим тангенциальную составляющую ускорения:

м/с2

Для вычисления нормальной составляющей скорости движения нашей материальной точки следует, используя выражение (1.2) найти:

м/с2

Используя выражение (1.1) вычислим искомое ускорение:

м/с2

Ответ. м/с2

Пример

Задание. Какова зависимость ускорения материальной точки от времени (a(t)), если частица перемещается по оси Xи ее скорость изменяется в соответствии с уравнением: , где – постоянная большая нуля? В начальный момент времени (при t=0 с) материальная точка находилась в начале координат (x=0 м). Нарисуйте график a(t).

Решение. Из условий задачи можно записать, что:

Используя формулу (2.1) найдем зависимость координаты xот времени (x(t) ):

где постоянную интегрирования найдем из начального условия задачи. Мы знаем, что x(0)=0, значит C=0. Имеем:

Используя формулу для нахождения ускорениядля нашего случая (движение по оси X):

получим искомое выражение для a(t):

Ответ. ускорение от времени не зависит, значит, график a(t) принимает вид (рис.2).

Читать дальше: Формула давления.

Вы поняли, как решать? Нет?

Помощь с решением

www.webmath.ru

Помогите! Формула ускорения через время и путь!?

Если известно, что движение равномерно ускоренное (или равномерно замедленное) начинается из состояния покоя (или заканчивается остановкой) , то для нахождения ускорения а применяют одну из следующих формул: а = v/t; а = v2/2s; а = 2S/t2 (v – скорость, s – путь, t – время) . Для вычисления ускорения можно воспользоваться также вторым законом Ньютона, по которому ускорение находят как частное от деления силы F, действующей на материальную точку, на ее массу m: а=F/m.

Не она? ? <img src=”//otvet.imgsmail.ru/download/782b9965d77f9342330b33b80a61b880_i-8489.jpg” >

S=(at*t)/2 =&gt; а=2S/(t*t)

v нач. +v кон. =2at 0+v кон. =2at s=2at*t/2 a=s/tt “а” своб. паден. на Земле-4,9 м/сек. сек. (а не 9,8…!)

ошибка в формуле Ньютона: S=att/2 не позволяет найти правильно ускорение. Ньютон стремился уравнять a=att/2 и F/m, но ошибка /2 не позволяла…. Искать “ускорение ради ускорения”-бессмысленно. Ускорение должно помочь найти S,t,F,m,V,n, КПД двс, S/tt=F/m. “ускорение”-это “энергия движения”. Если тело массой m кг. прошло путь S за время t, то F=S*m/tt. S,t,m можно измерить. F-только рассчитать . Если тело прошло путь S за время t- не имеет значения график движения. Затраченная энергия- (у машины-бензин) -будет одинакова. А если движение “равноускоренное”- то “ускорение” показывает прибавку скорости к скорости в метрах, равное ускорению F/m данного тела. При равномерном движении нет такой прибавки. Там “ускорение”-расход энергии в единицу времени. Значит: “энергия, * на время есть движение. Энергия без движения- есть материя. Природа-ВЕЧНА ! Пример использования формулы S/tt=F/m . “камень весом 50 кг. передвинули на 30 м. за две минуты. Вопрос: F=? Решение: 30/14400=F/50. Ответ: F=0,1 кг. м/сек. Машина (вес 2350 кг) проехала 285 м. за 35 секунд. Вопрос: какая требуется мощность мотора?. (в механике надо учитывать КПД. КПД двс=16%. У всех двс) Решение: 285/1225=F/2350. F=547 кг. м/сек. Это-ПРИ 100% КПД! При 16% КПД нужна мощность 3417 кг. м/сек. Это=45,5 л. с. Мотор может у этой машины быть и 200 сил, но в этой ситуации достаточно 45,5 л. сил…. Машина такого веса с мотором 200 л. с. имеет ускорение 1,02 м/сек. сек. и может набрать скорость до 100 км/ч за 13,6 сек. В этом заезде ускорение =0,2 м/сек. сек. При таком моторе (45,5 л. с.) машина до сотни будет разгонятся 70 секунд

touch.otvet.mail.ru


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *