Механическая физика – Основы механики для чайников. Введение

Определения по Механике | Объединение учителей Санкт-Петербурга

АВТОКОЛЕБАНИЯ - незатухающие колебания физической системы, которые поддерживаются источником энергии, находящимся в самой системе. Амплитуда и период А.К. определяются свойствами системы.

АКУСТИКА - 1) Область физики, изучающая процессы возникновения, распространения и регистрации звуковых волн. 2) Звуковая характеристика помещений.

АМПЛИТУДА КОЛЕБАНИЙ - наибольшее значение xm, которого достигает физическая величина х (смещение, сила тока, напряженность электрического поля и т.д.), совершающая гармонические колебания, т. е. изменяющаяся по закону xxmсоs(ω.t+ φ), где t - время, xmω, φ - постоянные (при гармонических колебаниях) величины. Другими словами А. определяет "размах" колебаний. В этом смысле термин А. может применяться к негармоническим колебаниям.

АМПЛИТУДНАЯ МОДУЛЯЦИЯ – процесс изменения амплитуды колебаний с частотой, значительно меньшей частоты самих колебаний. Применяется в радиотехнике.

АРЕОМЕТР - прибор для измерения плотности жидкости. Действие А. основано на законе Архимеда. Плотность определяется по глубине погружения А. Наиболее распространенными являются А. постоянного веса, у которых шкалы обычно градуируются в единицах плотности. В быту применяются для определения жирности молока (лактометры, лактоденсиметры), содержания спирта (спиртомеры), сахара (сахаромеры), концентрации электролита в аккумуляторах автомобилей. В этих случаях шкалы могут быть проградуированы в % по объему или массе.

АРХИМЕДА ЗАКОН - закон гидро- и аэростатики: на тело, погруженное в жидкость или газ, действует выталкивающая сила, направленная против действия силы тяжести, числено равная весу жидкости или газ, вытесненного телом, и приложенная в центре тяжести погруженной части тела. Открыт др. гр. ученым Архимедом в 212г. до н.э. Является основой теории плавания тел.

БЕГУЩИЕ ВОЛНЫ - волны, переносящие энергию вдоль направления их распространения. (Ср.стоячие волны).

БЕРНУЛЛИ УРАВНЕНИЕ

– одно из основных уравнений гидродинамики, выражающее закон сохранения энергии для установившегося течения идеальной жидкости, т.е. течения, при котором ее параметры (скорость, давление) не за висят от времени: сумма давления и плотностей кинетической и потенциальной энергий при стационарном течении идеальной жидкости остается постоянной для любого сечения потока:

БЛОК - простейшее приспособление в виде колеса с желобом по окружности, через которое натянуты нить, веревка, канат или цепь. Применяется с целью изменения направления действия силы (неподвижный) или получения выигрыша в силе (подвижный). Род рычага.

ВЕС - сила, с которой тело вследствие земного притяжения действует на опору или подвес. В. – сила, парная по 3-ему з-ну Ньютона силе упругости (реакции опоры или натяжению подвеса).

ВОЛНОВАЯ ПОВЕРХНОСТЬ - совокупность точек среды, в которых в данный момент времени фаза волны имеет одно и то же значение.

ВОЛНЫ - возмущения (изменения состояния среды или поля), распространяющиеся в пространстве с конечной скоростью. Распространение волн связано с переносом энергии без переноса вещества, при этом возможны явления

отражения, преломления, дисперсии, интерференции. дифракции, поляризации, поглощения и рассеяния волн. (См. упругие волны, электромагнитные волны).

ВСЕМИРНОГО ТЯГОТЕНИЯ ЗАКОН - закон тяготения Ньютона: все тела притягиваются друг к другу с силой прямо пропорциональной произведению масс этих тел и обратно пропорциональной квадрату расстояния между ними. , где  - гравитационная постоянная (значение и единицы в СИ).Закон сформулирован для материальных точек, однородных шаров и концентрических тел.

ВТОРАЯ КОСМИЧЕСКАЯ СКОРОСТЬ - минимальная скорость, необходимая для того, чтобы летательный аппарат запущенный с Земли, двигался по параболической траектории и стал искусственным спутником Солнца. В.к.с. равна 11,168 км/с. Ср. первая космическая скорость, третья космическая скорость.

ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ -колебания, возникающие в какой-либо системе под влиянием переменного внешнего воздействия. Характер их определяется как свойствами внешнего воздействия, так и свойствами самой системы. Если частота внешнего воздействия приближается к частоте собственных колебаний системы, то амплитуда В.К. резко возрастает - наступает

  резонанс. Ср.собственные колебания.

ВЫСОТА ЗВУКА -  качество (характеристика) звука, определяемое человеком по восприятию (субъективно) и связанное с частотой звука. С ростом частоты В.з. увеличивается.

ГАЛИЛЕЯ ПРЕОБРАЗОВАНИЯ - соотношение между координатами и временем какого-либо события, рассматриваемого в двух различныхинерциальных системах отсчета, движущихся одна относительно другой со скоростью значительно меньшей скорости света. Ср. Лоренца преобразования. Для случая движения вдоль одной прямой (одномерный случай) Г.п. приведены на рисунке. Галилея преобразования вместе с утверждением о независимости течения времени от движения отражают суть классических представлений о пространстве-времени. Согласно этим представлениям расстояния между телами одинаковы во всех системах отсчета и течение времени не зависит от систем отсчета.

ГАЛИЛЕЯ ПРИНЦИП ОТНОСИТЕЛЬНОСТИ, механический принцип относительности - принцип классической механики: в любых инерциальных системах отсчета все механические явления протекают одинаково при одинаковых начальных условиях. Т.о. все инерциальные системы отсчета равноправны. Ср.

относительности принцип.

ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ - процесс периодических изменений во времени физической величины, для математического описания которого используются гармонические функции синус или косинус:  или  . По гармоническому закону могут изменяться смещение тела от положения равновесия, величина электрического заряда, напряженность поля, сила тока и т.д. Любое сложное колебание можно представить как сумму гармонических колебаний.

ГИДРОСТАТИКА - раздел гидромеханики, изучающий условия и закономерности равновесия жидкостей, а также воздействия покоящихся жидкостей на погруженные в них тела и на стенки сосуда.

ГИПЕРЗВУК - упругие волны с частотой, превышающей 109 Гц. Верхний предел частоты Г. в кристаллах и жидкостях (1012-1013 Гц.), в газах (109 Гц.) соответствует частотам, при которых длина волны Г. соизмерима с межмолекулярными расстояниями, а в газах - со средней длиной свободного пробега молекул. См. также

звук, инфразвук, ультразвук

ГРАВИТАЦИОННОЕ ВЗАИМОДЕЙСТВИЕ - один из видов фундаментальных взаимодействий. Наиболее слабое среди других видов взаимодействия, отличается от них своей универсальностью: г.в. присуще всем материальным объектам - от элементарных частиц до звезд галактики. Осуществляется посредством гравитационного поля. Играет очень важную роль в явлениях космического масштаба. Ср.сильное, слабое, электромагнитное взаимодействие.

ГРОМКОСТЬ ЗВУКА – качество (характеристика) звука, определяемая человеком по восприятию (субъективно) и связанное с амплитудой звуковых колебаний и частотой звука.

ГУКА ЗАКОН – закон теории упругости. В простейшем виде для растяжения и сжатия установлен в 1660 г. Р. Гуком. Согласно Г.з. величина силы упругости, возникающей при деформации, прямо пропорциональна величине деформации:  , где k– коэффициент упругости (жесткость). Направление силы упругости противоположно направлению смещения частиц тела при деформации. Справедлив для малых деформаций. Количественная граница применимости определяется экспериментально. З.Г. может быть сформулирован иначе: величина возникающих в деформированном теле механического напряжения прямо пропорциональна величине относительной деформации:  , где

Eмодуль Юнга.

ДАВЛЕНИЕ - скалярная величина, равная отношению нормальной силы, равномерно действующей на участок некоторой поверхности к площади этой поверхности. Единица Д. в СИ - паскаль.

ДАВЛЕНИЕ ГИДРОСТАТИЧЕСКОЕ - суммарное давление в жидкости, которое складывается из давления p0, производимого внешними силами на поверхность жидкости, и давления ρgh, обусловленного весом столба жидкости: p=p0+ρgh.

ДАВЛЕНИЕ ЗВУКА - среднее по времени избыточное давление, которое испытывает препятствие, помещенное в поле звуковой волны. Скалярная величина, равная отношению импульса, передаваемого звуковой волной поверхности препятствия, к площади этой поверхности и времени, в течение которого происходила передача импульса. Ср. звуковое давление.

ДВИГАТЕЛЬ - машина, преобразующая различные виды энергии в механическую работу.

ДВИЖЕНИЕ МЕХАНИЧЕСКОЕ – процесс изменения положения тела в пространстве относительно других тел с течением времени.

ДВИЖЕНИЕ ПО ИНЕРЦИИ – механическое движение, происходящее при компенсации или без внешних воздействий. В быту, в отличие от научных представлений, под Д.И. понимают Д. под действием сил сопротивления.

ДЕФОРМАЦИЯ - изменение формы или размеров тела (или части тела) вследствие механического действия внешних тел, при нагревании или охлаждении, изменении влажности и др. взаимодействиях, вызывающих изменение относительного расположения частиц тела. См. также Гука закон.

ДЕФОРМАЦИЯ ПЛАСТИЧЕСКАЯ - вид Д., признаком которого является сохранение изменения формы и размеров деформированного тела после прекращения внешнего воздействия.

ДЕФОРМАЦИЯ УПРУГАЯ – вид Д., признаком которого является восстановление формы и размеров деформированного тела после прекращения внешнего воздействия.

ДИНАМИКА - раздел механики, изучающий закономерности механического движения макроскопических тел на основе анализа их взаимодействий.

ДИНАМОМЕТР - прибор для измерения силы. Чаще всего основан на сравнении измеряемой силы с силой упругости пружины.

ДИСПЕРСИЯ ВОЛН - зависимость фазовой скорости гармонических (синусоидальных) волн в веществе от их частоты.

ДИФРАКЦИЯ ВОЛН – явление огибания волнами встречных препятствий. Под Д.в. понимают как нарушение прямолинейности распространения волн, так и сопутствующие ему интерференционные явления (см. интерференция волн).

ДЛИНА ВОЛНЫ – физическая величина, характеризующая синусоидальную (гармоническую) волну, равная расстоянию между двумя ближайшими точками среды, разность фаз волны в которых равна 2π.  Д.в. l связана с частотой колебаний ν и фазовой скоростью  ω  соотношением λ=TV.

ЖЕСТКОСТЬ – 1) свойство (способность) тела или конструкции сопротивляться деформированию. 2) физическая феличина, позволяющая описать свойство Ж. В простейшем случае деформаций растяжения (сжатия) Ж. – величина, равная отношению модуля силы упругости, возникающей при деформации к величине абсолютной деформации: . Единица в СИ - .

ЗАТУХАНИЕ КОЛЕБАНИЙ - постепенное ослабевание собственных колебаний, обусловленное потерями энергии колебательной системой. З.к. приводит к уменьшению амплитуды колебаний.

ЗВУК (звуковые волны) - упругие волны, распространяющиеся в твердых, жидких и газообразных средах. В зависимости от частоты колебаний З. условно подразделяется на инфразвук (частотой до 16 Гц), слышимый звук (16 Гц - 20 кГц), ультразвук (20 кГц - 1 ГГц) и гиперзвук (более 1 ГГц).

ЗВУКОВОЕ ДАВЛЕНИЕ - переменное давление, избыточное над равновесным, возникающее при прохождении звуковой волны в жидкой или газообразной среде.

ИЗЛУЧЕНИЕ - 1) И. волн и частиц - процесс испускания звуковых волн источниками звука, радиоволн - антеннами, света и рентгеновских лучей - атомами и молекулами, α-, β-частиц  и γ-лучей атомными ядрами. 2) Сами эти волны и частицы как движущиеся объекты. (См. Альфа-лучи, Бета-лучи и т.д.)

ИМПУЛЬС СИЛЫ - векторная физическая величина, применяемая для описания действия на тело силы за некоторый промежуток времени и равная произведению вектора силы на этот промежуток времени. Единица И.с. в СИ - ньютон-секунда. При постоянной силе И.с. равен изменению импульса тела, на которое действовала данная сила в течение данного промежутка времени.

ИМПУЛЬС ТЕЛА, количество движения - векторная физическая величина, равная произведению массы тела и его скорости. И. механической системы равен векторной сумме И. всех частей системы. Для замкнутой системы выполняется импульса сохранения закон. Единица И. в СИ - килограмм-метр в секунду.

ИМПУЛЬСА СОХРАНЕНИЯ ЗАКОН - закон механики: импульс любой замкнутой системы при всех процессах, происходящих в системе, остается постоянным (сохраняется) и может только перераспределяться между частями системы в результате их взаимодействия.

ИНЕРТНОСТЬ - свойство различных материальных объектов приобретать разные ускорения при одинаковых внешних воздействиях со стороны других тел. Присуща разным телам в разной степени. Величиной, позволяющей описать свойство И. тела в поступательном движении, является его масса, а при вращательном движении – момент инерции. Ср.инерция.

ИНЕРЦИАЛЬНАЯ СИСТЕМА ОТСЧЕТА - система отсчета, в которой тело сохраняет состояние покоя или равномерного прямолинейного движения при отсутствии взаимодействия с другими телами или компенсации внешних воздействий (см. Ньютона законы). Система отсчета, покоящаяся или движущаяся прямолинейно и равномерно относительно какой-либо И.с.о., сама является инерциальной. В И.с.о. выполняются Галилея принцип относительности и Эйнштейна принцип относительности.

ИНЕРЦИИ ЗАКОН - первый закон Ньютона (см. Ньютона законы).

ИНЕРЦИЯ - явление сохранения скорости прямолинейного равномерного движения или состояния покоя при отсутствии или компенсации внешних воздействий. Ср.инертность.

ИНТЕНСИВНОСТЬ ВОЛНЫ, плотность потока излучения - физическая величина, равная при равномерном распределении энергии излучения отношению мощности волны, к площади волнового фронта. Единица в СИ - .

ИНТЕНСИВНОСТЬ ЗВУКА, сила звука – физическая величина, равная отношению энергии, переносимой звуковой волной через поверхность, расположенную перпендикулярно к направлению распространения волны, к площади поверхности и промежутку времени, в течение которого происходил процесс. Единица И.з. в СИ - .

ИНТЕРФЕРЕНЦИЯ ВОЛН - явление наложения двух или нескольких волн, при котором в пространстве происходит перераспределение энергии результирующей волны. Если волны когерентны, то в пространстве получается устойчивое во времени распределение амплитуд с чередующимися максимумами и минимумами (интерференционная картина). Имеет место для всех волн независимо от их природы. Ср.дифракция волн.

ИНФРАЗВУК- упругие волны с частотой менее 16 Гц, которые не воспринимаются ухом человека. Источники И.: газовые разряды в атмосфере, ветер, колебания земной коры и поверхности моря. См. звук, ультразвук, гиперзвук.

КЕПЛЕРА ЗАКОНЫ - законы движения планет Солнечной системы. 1-й закон: каждая планета движется по эллиптической орбите, в одном из фокусов которой находится Солнце. 2-й закон: радиус-вектор, проведенный из Солнца к планете, за равные промежутки времени "ометает" равные площади. 3-й закон: квадраты периодов обращения планет вокруг Солнца относятся как кубы больших полуосей их эллиптических орбит.

КИНЕМАТИКА - раздел механики, изучающий способы описания движений и связь между величинами, описывающими эти движения без учета их массы и действующих на них сил. Ср. динамика, статика.

КИНЕТИЧЕСКАЯ ЭНЕРГИЯ – вид механической энергии, энергия движущегося тела. Скалярная величина, равная половине произведения массы тела на квадрат скорости его поступательного движения. Показывает какую работу необходимо совершить, чтобы разогнать тело данной массы из состояния покоя до данной скорости. К.э. механической системы равна сумме кинетических энергий всех частей системы. Единица в СИ - джоуль. Ср. потенциальная энергия.

КЛАССИЧЕСКАЯ МЕХАНИКА - физическая теория, устанавливающая законы движения макроскопических тел со скоростями, значительно меньшими по сравнению со скоростью света. В основе К.м. лежат Ньютона законы.

КОГЕРЕНТНОСТЬ - согласованное протекание во времени нескольких колебательных или волновых процессов. Когерентными наз. колебания с одинаковой частотой (длиной волны) и постоянной разностью фаз. К.- необходимое условие возникновения интерференции (см.интерференция волн, интерференция света).

КОЛЕБАНИЯ - движения (изменения состояния), характеризующиеся той или иной степенью повторяемости во времени. Различают К.: механические (К. маятников, струн, пластин, замкнутых объемов воздуха и т.д.), электромагнитные (К. электрического тока и напряжения в колебательном контуре или волноводе, переменный ток и т.д.) и электромеханические (К. пьезоэлектрических и магнитострикционных излучателей и т.д.). Простейшие периодические колебания - гармонические колебания.

КОЛЕБАТЕЛЬНАЯ СИСТЕМА – система тел, способная совершать свободные колебания. Признаки К.с. – наличие положения устойчивого равновесия, малое трение (электрическое сопротивление).

КОЛИЧЕСТВО ДВИЖЕНИЯ  - то ж

www.eduspb.com

Механическое движение | Физика для всех

Механическое движение – это изменение положения тела в пространстве относительно других тел.

Например, автомобиль движется по дороге. В автомобиле находятся люди. Люди движутся вместе с автомобилем по дороге. То есть люди перемещаются в пространстве относительно дороги. Но относительно самого автомобиля люди не движутся. В этом проявляется относительность механического движения. Далее кратко рассмотрим основные виды механического движения.

Поступательное движение – это движение тела, при котором все его точки движутся одинаково.

Например, всё тот же автомобиль совершает по дороге поступательное движение. Точнее, поступательное движение совершает только кузов автомобиля, в то время как его колёса совершают вращательное движение.

Вращательное движение – это движение тела вокруг некоторой оси. При таком движении все точки тела совершают движение по окружностям, центром которых является эта ось.

Упоминавшиеся нами колёса совершают вращательное движение вокруг своих осей, и в то же время колёса совершают поступательное движение вместе с кузовом автомобиля. То есть относительно оси колесо совершает вращательное движение, а относительно дороги – поступательное.

Колебательное движение – это периодическое движение, которое совершается поочерёдно в двух противоположных направлениях.

Например, колебательное движение совершает маятник в часах.

Поступательное и вращательное движения – самые простые виды механического движения.

Относительность механического движения

Все тела во Вселенной движутся, поэтому не существует тел, которые находятся в абсолютном покое. По той же причине определить движется тело или нет, можно только относительно какого-либо другого тела.

Например, автомобиль движется по дороге. Дорога находится на планете Земля. Дорога неподвижна. Поэтому можно измерить скорость автомобиля относительно неподвижной дороги. Но дорога неподвижна относительно Земли. Однако сама Земля вращается вокруг Солнца. Следовательно, дорога вместе с автомобилем также вращается вокруг Солнца. Следовательно, автомобиль совершает не только поступательное движение, но и вращательное (относительно Солнца). А вот относительно Земли автомобиль совершает только поступательное движение. В этом проявляется относительность механического движения.

Относительность механического движения – это зависимость траектории движения тела, пройденного пути, перемещения и скорости от выбора системы отсчёта.

Материальная точка

Во многих случаях размером тела можно пренебречь, так как размеры этого тела малы по сравнению с расстоянием, которое походит это тело, или по сравнению с расстоянием между этим телом и другими телами. Такое тело для упрощения расчетов условно можно считать материальной точкой, имеющей массу этого тела.

Материальная точка – это тело, размерами которого в данных условиях можно пренебречь.

Многократно упоминавшийся нами автомобиль можно принять за материальную точку относительно Земли. Но если человек перемещается внутри этого автомобиля, то пренебрегать размерами автомобиля уже нельзя.

Как правило, решая задачи по физике, рассматривают движение тела как движение материальной точки, и оперируют такими понятиями, как скорость материальной точки, ускорение материальной точки, импульс материальной точки, инерция материальной точки и т.п.

Система отсчёта

Материальная точка движется относительно других тел. Тело, по отношению к которому рассматривается данное механическое движение, называется телом отсчёта. Тело отсчёта выбирают произвольно в зависимости от решаемых задач.

С телом отсчёта связывается система координат, которая представляет из себя точку отсчёта (начало координат). Система координат имеет 1, 2 или 3 оси в зависимости от условий движения. Положение точки на линии (1 ось), плоскости (2 оси) или в пространстве (3 оси) определяют соответственно одной, двумя или тремя координатами. Для определения положения тела в пространстве в любой момент времени также необходимо задать начало отсчёта времени.

Система отсчёта – это система координат, тело отсчета, с которым связана система координат, и прибор для измерения времени. Относительно системы отсчёта и рассматривается движение тела. У одного и того же тела относительно разных тел отсчёта в разных системах координат могут быть совершенно различные координаты.

Траектория движения также зависит от выбора системы отсчёта.

Виды систем отсчёта могут быть различными, например, неподвижная система отсчёта, подвижная система отсчёта, инерциальная система отсчёта, неинерциальная система отсчёта.

av-mag.ru

Механика - Механика - Темы по физике - Каталог лекций

Определение

Механикой называется часть физики, изучающая движение и взаимодействие материальных тел. При этом механическое движение рассматривается как изменение с течением времени взаимного положения тел или их частей в пространстве.

Основоположниками классической механики являются Г. Галилей (1564–1642) и И. Ньютон (1643–1727). Методами классической механики изучается движение любых материальных тел (кроме микрочастиц) со скоростями, малыми по сравнению со скоростью света в вакууме. Движение микрочастиц рассматривается в квантовой механике, а движение тел со скоростями, близкими к скорости света – в релятивистской механике (специальной теории относительности).
Свойства пространства и времени, принятые в классической физике
Пространство Время
1. Трёхмерное
2. Евклидовое
3. Однородное
4. Изотропное
5. Континуальное
1. Одномерное
2. Евклидовое
3. Однородное
4. Необратимое
5. Континуальное
Дадим определения вышеуказанным определениям.
Одномерное пространство
- параметрическая характеристика, в которой положение точки описывается одним параметром.
Евклидово пространство и время означает, что сами по себе они не искривлены и описываются в рамках евклидовой геометрии.
Однородность пространства означает, что его свойства не зависят от расстояния до наблюдателя. Однородность времени означает, что оно не растягивается и не сжимается, а течет равномерно. Изотропность пространства означает, что его свойства не зависят от направления. Поскольку время одномерно, то об изотропности его говорить не приходится. Время в классической механике рассматривается как «стрела времени», направленная из прошлого в будущее. Оно необратимо: нельзя вернуться в прошлое и что-то там «подправить».
Пространство, и время континуальны (от лат. continuum – непрерывное, сплошное), т.е. их можно дробить на все более мелкие части сколь угодно долго. Иначе говоря, в пространстве и времени нет «прорех», внутри которых они бы отсутствовали. Механику делят на Кинематику и Динамику

Кинематика изучает движение тел как простое перемещение в пространстве, вводя в рассмотрение так называемые кинематические характеристики движения: перемещение, скорость и ускорение.

При этом скорость материальной точки рассматривается как быстрота ее перемещения в пространстве или, с математической точки зрения, как векторная величина, равная производной по времени ее радиус вектора:
Ускорение материальной точки рассматривается как быстрота изменения ее скорости или, с математической точки зрения, как векторная величина, равная производной по времени ее скорости или второй производной по времени ее радиус-вектора:

Динамика

Динамика изучает движение тел в связи с действующими на них силами, оперируя так называемыми динамическими характеристиками движения: массой, импульсом, силой и др.

При этом масса тела рассматривается как мера его инерции, т.е. сопротивляемости по отношению к действующей на данное тело силе, стремящейся изменить его состояние (привести в движение или, наоборот, остановить, или изменить скорость движения). Масса может рассматриваться также как мера гравитационных свойств тела, т.е. его способности взаимодействовать с другими телами, также обладающими массой и находящимися на некотором расстоянии от данного тела. Импульс тела рассматривается как количественная мера его движения, определяемая как произведение массы тела на его скорость: Сила рассматривается как мера механического действия на данное материальное тело со стороны других тел.

[Если Нет рекламы, то отключи AdBlock]

mgh.do.am

Механическая работа — Физика — легко!

Механическая работа – это скалярная физическая величина, которая характеризует изменение положения тела под действием силы и равна произведению модуля силы на модуль перемещения (путь).

A = Fs

За единицу измерения работы в СИ принят 1 джоуль.

[А] = 1Н×1м = 1 Дж

Анализ формулы механической работы:

1. Работа силы положительная
А > 0, если направление силы и направление перемещения совпадают;

Пример: кот падает с крыши. Направление движение кота совпадает с направлением действия силы тяжести. Значит, работа силы тяжести положительная.

2. Работа силы отрицательна
А < 0, если направление силы и направление перемещения направлены в противоположные стороны;

Пример: кота подбросили вверх. Направление движение кота противоположно направлению действия силы тяжести. Значит, работа силы тяжести отрицательная.

3. Работа силы равна нулю
А = 0, если
1. под действием силы тело не перемещается, т.е когда s = 0
2. величина силы равна нулю, т.е. F = 0
3. угол между направлениями перемещения и силой равен 90°.

Пример: кот просто идёт по дорожке. Направление движения кота перпендикулярно направлению действия силы тяжести. Значит, работа силы тяжести равна нулю.

Геометрический смысл механической работы

Если построить график зависимости значения силы от перемещения (пути), пройдённого телом, то этот график будет представлять собой отрезок прямой, параллельной оси перемещения (пути).

Из рисунка видно, что заштрихованная область под графиком представляет собой прямоугольник со сторонами F и s. Площадь данного прямоугольника равна F • s.
Геометрический смысл механической работы заключается в том, что работа силы численно равна площади фигуры под графиком зависимости силы от перемещения тела.

 

 

www.easyphysics.in.ua

Физика. Механика

Южный филиал

«Крымский агротехнологический университет»

Национального аграрного университета

Физика. Механика

Методические указания и задания для самостоятельной работы очного и заочного отделений инженерных специальностей

(модуль I, часть 2)

Симферополь, 2008

Методические указания составили:

- доцент, к.т.н. Ю.Ф. Свириденко;

- старший преподаватель В.П. Кунцов.

Рецензенты:

- доцент, к.т.н. Завалий А.А.;

- доцент, к.т.н. Иваненко В.В.

Методические указания рассмотрены и одобрены на заседании кафедры физики и математики

« 24 » марта 2008г., протокол № 7

Методические указания рассмотрены и утверждены на заседании методического совета механического факультета

« 31 » марта 2008г., протокол № 7

Ответственный за выпуск: Ю.Ф. Свириденко

Содержание

1.Тематический план.

2.Литература

3.Правила выполнения и оформления контрольных работ

4.Учебный материал по разделу «Механика»

5.Примеры решения задач

6.Контрольная работа

7.ТАБЛИЦЫ ВАРИАНТОВ

1. ТЕМАТИЧЕСКИЙ ПЛАН.

Содержание программы Часть 1.

Лекции

механика сила движение импульс

2. Литература

1. Трофимова Т.И., Курс физики. - М.:Высш.шк.,1990.

2. Детлав А.А.,Яворский Б.М.Курс физики.,1989.

3. Чолпан П.П. Основы фізики.-К.:Вища шк.,1995.

4. Федишин Я.І.Лабораторний практикум з фізики.-Львів:Світ,2001.

5. Грабовский Р.И. Курс физики для сельскохозяйственных институтов. М., 1966 и последующие издания.

6. .Чертов А.Г. и др. Задачник по физике. М., 1973.

7. Бурдун Г.Д. Справочник по Международной системе единиц. М., 1972

8. Чертов А.Г. Единицы физических величин. М., 1977.

3. Правила выполнения и оформления контрольных работ

1. Каждая работа, присланная на рецензию, должна быть выполнена в отдельной ученической тетради, на обложке которой нужно указать фамилию, инициалы, полный шифр, номер контрольной работы, дату ее отправки, в институт и адрес студента.

2. Задачи контрольной работы должны иметь те номера, под которыми они стоят в методических указаниях. Условия задач необходимо переписывать полностью. Каждую задачу начинать с новой страницы. Для замечаний рецензента следует оставлять поля шириной 4-5 см. Контрольные работы выполняются чернилами синего или фиолетового цвета.

3. Решение задачи должно быть кратко обосновано с использованием законов и положений физики. При необходимости решение следует пояснить чертежом, выполненным карандашом с помощью циркуля и линейки. Обозначения на чертеже и в решении должны соответствовать и поясняться. Не следует обозначать одну и ту же величину разными буквами, а также обозначать различные величины одними и. теми же символами.

4. На каждую контрольную работу требуется 20-30 часов интенсивного труда. Если, несмотря на собственные усилия и полученные консультации, отдельные задачи не решаются, оформите работу, приведя в соответствующих местах ваши попытки решения, изложив коротко ваши соображения и затруднения. Пусть такая работа не будет зачтена, но критические замечания рецензента, его пояснения, ссылки на литературу или письменные консультации по решению конкретных задач помогут вам найти правильное решение.

Во время лабораторно-экзаменационной сессии вам предложат пояснить ход решения задач, входящих в контрольные работы, физический смысл встречающихся в решениях величин, применяемые при вычислениях единицы и т.п. Неудовлетворительные ответы на вопросы по контрольным работам могут повлиять на исход зачета или экзамена.

5. Как правило, задачи решаются в общем виде, т.е. в буквенных выражениях, без вычисления промежуточных величин. Числовые значения подставляются только в окончательную (расчетную) формулу. Если расчетная формула не выражает общеизвестный физический закон, то ее следует вывести. После получения расчетной формулы необходимо: а) пояснить величины, входящие в формулу; б) проверить расчетную формулу, для чего подставить в нее обозначения единиц, входящих в формулу величин, и убедиться, что единицы правой и левой частей формулы совпадают; в) выразить все величины в СИ и выписать их числовые значения в виде столбика; г) подставить в расчетную формулу числовые значения величин и произвести вычисления.

6. Не следует направлять на рецензию обе работы вместе. Вторая работа посылается только после получения рецензии на первую. Одновременная посылка двух контрольных работ расценивается как признак несамостоятельного их выполнения.

7. Получив проверенную работу (как зачтенную, так и незачтенную), студент обязан тщательно изучить все замечания рецензента, уяснить свои ошибки и внести исправления. Повторно оформленная работа высылается на рецензию обязательно вместе с тетрадью, в которой была выполнена незачтенная работа и рецензия на нее.

Замечания и рекомендации, сделанные преподавателями кафедры, следует рассматривать как руководство для подготовки к беседе по решениям задач. Все тетради с контрольными работами нужно сохранять, так как на экзамен студент допускается только при их предъявлении.

8. В конце работы необходимо указать год и место издания методических указаний, перечислить использованную литературу, обязательно указывая авторов учебников и год их издания. Это позволит рецензенту при необходимости дать ссылку на определенную страницу того пособия, которое имеется у вас.

4. Учебный материал по разделу «Механика»

Основные законы и формулы

mirznanii.com

Механика. Конспекты по физике для 10-11 класса. Знаете ли вы? Гравитация :: Класс!ная физика

Для тех, кто хочет хорошо знать физику!
Тесты - задачи по кинематике для 10-11 класса


Здесь представлены конспекты по теме "Механика" для 10-11 классов.
!!! Конспекты с одинаковыми названиями различаются по степени сложности.

1. Гидростатика  ( повторение 7-8 класса)

2. Гидростатика и гидродинамика

3. Законы Ньютона - Механика.

4. Законы сохранения в механике - Механика.

5. Законы сохранения в механике - Механика.

6. Кинематика материальной точки - Механика.

7. Кинематика материальной точки - Механика.

8. Механические колебания 

9. Механические колебания

10. Основные понятия кинематики (повторение 8-9 класса)

11. Основные понятия кинематики

12. Работа и энергия

13. Работа и энергия

14. Силы в механике

15. Силы в механике

16. Статика

 

Механика, законы, конспекты, конспекты по физике, законы сохранения, работа, энергия, силы.

 

ГРАВИТАЦИЯ. ЗНАЕТЕ ЛИ ВЫ?


Знаете ли Вы, что Кеплер задолго до Ньютона склонялся к мысли о «тяжести», действующей между небесными телами, и именно ею объяснил приливы, приписывая их притяжению вод океана Луной.

... до сих пор существуют сомнения в реальности опытов Галилея по бросанию тел с вершины Пизанской падающей башни. Однако известно, что еще при его жизни эту башню использовал один из сторонников Аристотеля для демонстрации различия в падении тел. Как бы то ни было, Галилею удалось установить независимость ускорения свободного падения от природы падающих тел.

... по Аристотелю, сила тяготения по мере приближения к центру Земли сохраняет численное значение, но при его прохождении скачком изменяет направление на противоположное. Именно так описывал Данте свое путешествие через самое глубокое место ада (центр Земли). По теории же Ньютона, сила притяжения должна там обратиться в ноль, поскольку им было показано, что помещенное в тонкую сферическую оболочку тело не испытывает на себе действия сил.

... почти 200 лет назад, в 1801 году, немецкий астроном И.Зольднер рассчитал, опираясь на теорию Ньютона, как должны отклоняться световые лучи в поле тяготения Солнца. Более чем через 100 лет английский астроном О.Лодж ввел термин «гравитационная линза», предсказав, что протяженные космические тела, например галактики, отклоняя лучи от далеких объектов, могут создавать несколько их изображений. В 1979 году такая «линза» была впервые обнаружена.

... на поверхности внутренних спутников Юпитера кратеров намного меньше, чем на поверхности внешних. Объясняется это тем, что из-за приливного влияния и магнитного поля гигантской планеты у ближайших спутников выше тектоническая активность, поэтому их поверхность активно «перерабатывается» и старые кратеры исчезают.

... несмотря на то, что на Землю ежесуточно выпадает примерно десять тысяч тонн космического вещества в виде метеоритов и пыли, такой прирост массы за все время эволюции нашей планеты практически не отразился на периоде ее оборота вокруг своей оси.

... под действием приливного «трения» Земля замедляет свое суточное вращение и через миллиарды лет будет смотреть на Луну все время одной стороной, как смотрит Плутон на свой спутник Харон. Луна к тому времени уйдет, по расчетам, на 553 тысячи километров от Земли, а новый месяц станет равным 47,2 суток.

... по теории относительности, переменное движение тел должно приводить к излучению гравитационных волн. Однако из-за слабости гравитационного взаимодействия зарегистрировать эти волны даже от мощных космических источников пока еще не удалось. Кстати, действие их приемников основано на приливном эффекте.

... к черным дырам — объектам, удерживающим своим чудовищным гравитационным полем даже свет, — теория тяготения Ньютона не применима, хотя сама возможность их существования вытекает из этой теории.

... при свободном падении, ногами вниз, на черную дыру гипотетический наблюдатель растягивался бы в длинную тонкую нить, так как его ноги двигались бы несравненно быстрее, чем голова, и в конце концов он был бы разорван приливными силами невероятной мощи.

... разрушающее действие приливных сил было «продемонстрировано» Юпитером, развалившим в июле 1992 года проходившую в опасной для себя близости к нему комету.

... в 1932 году будущий академик Лев Ландау предсказал, что при смерти (гибели) массивной звезды ее центральная часть сжимается в одно гигантское атомное ядро — нейтронную звезду, удерживаемую силами гравитации. Плотность такого образования должна достигать 100 миллионов тонн на кубический сантиметр! 35 лет спустя нейтронные звезды были открыты английскими радиоастрономами.

... долгие годы астрономы безуспешно искали так называемую скрытую массу Вселенной, предотвращающую своим гравитационным полем разлет галактик из их скоплений и тормозящую расширение Вселенной. Однако, по последним данным, никакая сила тяготения не заставит повернуть назад стремительно разбегающиеся галактики. Вселенная ускоренно расширяется, и этот процесс продлится вечно.

Источник: журнал "Квант"


www.class-fizika.narod.ru

Механическая мощность - Класс!ная физика

Механическая мощность

Кто быстрее человек или подъемный кран поднимет весь груз на высоту ? Мощность какого подъемного механизма больше?

Мощность характеризует быстроту совершения работы.

Мощность ( N) – физическая величина, равная отношению работы A к промежутку времени t, в течение которого совершена эта работа.

Мощность показывает, какая работа совершается за единицу времени.

В Международной системе единиц (СИ) единица мощности называется Ватт (Вт) в честь английскогоизобретателя Джеймса Ватта ( Уатта ), построившего первую паровую машину.

[ N ] = Вт = Дж/c

1 Вт = 1 Дж/с

1 Ватт равен мощности силы, совершающей работу в 1 Дж за 1 секунду или,
когда груз массой 100г поднимают на высоту 1м за 1 секунду.

Сам Джеймс Уатт ( 1736 - 1819 ) пользовался другой единицей мощности - лошадиной силой ( 1 л.с. ), которую он ввел с целью возможности сравнения работоспособности паровой машины и лошади.

1 л.с. = 735 Вт

Однако, в реальной жизни средняя лошадь обладает мощностью около 1/2 л.с., хотя, конечно, лошади бывают разные.

"Живые двигатели" кратковременно могут повышать свою мощность в несколько раз.
При беге и в прыжках лошадь может доводить свою мощность до десятикратной и более величины.

Делая прыжок на высоту в 1м, лошадь весом 500кг развивает мощность равную 5 000 Вт = 6,8 л.с.

Считается, что в среднем мощность человека при спокойной ходьбе равна приблизительно 0,1л.с. т.е 70 - 90Вт.

Как и лошадь, при беге и в прыжках человек может развивать мощность во много раз большую.



ЗАГЛЯНИ СЮДА .......... смотреть

Оказывается, что самым мощным источником механической энергии является огнестрельное оружие!

С помощью пушки можно бросить ядро массой 900кг со скоростью 500м/с, развивая за 0,01 секунды около 110 000 000 Дж работы. Эта работа равнозначна работе по подъему 75 т груза на вершину пирамиды Хеопса ( высота 150м ).

Мощность выстрела пушки будет составлять 11 000 000 000Вт = 15 000 000 л.с.

Сила напряжения мышц человека приблизительно равна силе тяжести, действующей на него. Когда 2 одинаковых по весу человека поднимаются по лестнице на одну высоту, но с разной скоростью, то кто из них развивает большую мощность?

НЕ ЗАБУДЬ, ЧТО

- эта формула справедлива для равномерного движения с постоянной скоростью и в случае переменного движения для средней скорости.

Отсюда следует, что

Из вышеприведенных формул видно, что при постоянной мощности двигателя скорость движения обратно пропорциональна силе тяги и наоборот.

На этом основан принцип действия коробки скоростей (коробки перемены передач) различных транспортных средств.

А КАК У ТЕБЯ С "СООБРАЗИЛКОЙ" ?

Сейчас проверим!

1. Одинаковую ли мощность развивают двигатели вагона трамвая, когда он движется с одинаковой скоростью без пассажиров и с пассажирами?

Ответ: Pri nalitshii passashiriv sila tjashesti (ves) vagona bolshe, uvelitshivaetsja sila trenia, ravnaja v dannom slutshae sile tjagi,vosrastaet motshnost, uvelitshivaetsja rashod electroenergii.

2. Почему корабль с грузом движется медленнее, чем без груза? Ведь мощность двигателя в обоих случаях одинакова.

Ответ: S uvelitsheniem nagruski korabl bolshe pogrushaetsja v wodu. eto uvelitshivaet silu soprotivlenija wodi dvisheniu korablja, tshto privodit k potere skorosti.

3. Трактор имеет три скорости:3,08; 4,18 и 5,95 км/ч . На какой скорости он будет развивать при той же мощности большую силу тяги на крюке?

Ответ:

Если сообразил сам, то ты - МОЛОДЕЦ !
А если подглядел в ответы ? Может быть устал? Ничего, скоро каникулы!



class-fizika.ru


Отправить ответ

avatar
  Подписаться  
Уведомление о