Схема электрической цепи: Принципиальные схемы электрических цепей – Вольтик.ру

Содержание

Принципиальные схемы электрических цепей - Вольтик.ру

При разработке электрических/электронных устройств без электрических схем не перейти к созданию этих устройств (кроме самых простых).

 Схема электрической цепи – графическое представление всех её элементов, их параметров и соединений между ними. Условные обозначения на схемах стандартизированы ЕСКД (Единая Система Конструкторской Документации).

 Схемы электрических цепей по своему назначению делятся на несколько типов. Чаще всего используются принципиальные и монтажные схемы. Принципиальные схемы дают наиболее полное представление о работе и составе устройства, а монтажные схемы используются при проведении монтажных работ. Принципиальная схема, в отличие от монтажной схемы не показывает физическое расположение элементов относительно друг друга. На рисунке внизу можно увидеть отдельные элементы, пример простой принципиальной электрической схемы и направление тока в них.

На электрически заряженные частицы в цепи воздействуют не только силы электрической природы, но и при определённых условиях силы, обусловленные воздействием сторонних процессов, таких как, например, химические реакции, тепловые процессы и прочее.

В результате этого в цепях образуется ЭДС (электродвижущая сила). То есть, ЭДС характеризует работу сил неэлектрического происхождения. В международной системе единиц ЭДС измеряется в вольтах, так же как и напряжение.

 Ниже приведены условные обозначения самых распространённых радиоэлементов на принципиальных схемах.

Рисовать принципиальные схемы можно как от руки (удобно в небольших проектах), так и с помощью специализированного программного обеспечения, например, Proteus VSM. Proteus позволяет собрать принципиальную схему и эмулировать её работу, если схема содержит микроконтроллер  – отладить его прошивку. Его бесплатная версия не позволяет сохранять файлы.

Также можно рекомендовать полностью бесплатную программу Fritzing, помимо создания принципиальных схем имеющую возможность создавать монтажные схемы. Однако, эмулировать работу цепи она не умеет. Fritzing предназначена в первую очередь для создания схем с использованием Arduino.

Схемы электрических цепей, параметры и элементы электрических цепей, ЭДС

Схемы электрической цепи, понятие параметров и элементов электрических цепей:

Для начала вспомним определения:

Параметрами электрической цепи называется величина, связывающая ток и напряжение на конкретном участке цепи (r – сопротивлением, рис. 1 а; L – индуктивностью, рис. 1 б; C  – ёмкостью, рис. 1 в. ).

Элементами электрической цепи называют отдельные устройства входящие в электрическую цепь и выполняющие в ней определённую функцию. Пример отдельных элементов и простой схемы электрической цепи:

Рис.1

                                             Схемы электрических цепей:

        При конструировании, монтаже и работе электрических установок (электрооборудования) нельзя обойтись без электрических схем. Электрические схемы по своему назначению различаются на несколько типов: структурные, функциональные, принципиальные, монтажные, однолинейные, и др.

        Принципиальная схема даёт полное представление о работе электроустановки, полный состав элементов и связи между ними.

         Схема электрической цепи – это графическое представление изображения электрической цепи, которая содержит условные обозначения элементов и соединение этих элементов. Условные обозначение в электрических схемах установлены стандартами системы ЕСКД. Различают последовательное и параллельное соединение элементов в схемах и электрических цепях. Сложные электрические схемы образуются в результате включения групп элементов соединенных между собой последовательно или параллельно (см. на рис. 2).

 Рис.2

                                Электродвижущая сила (ЭДС):

       Физические процессы получения электрической энергии различаются в зависимости от вида преобразуемой энергии, где главное различие состоит в природе сил, которые разделяют положительный и отрицательный заряды в веществе. На электрически заряженные частицы кроме сил электрического поля при определенных условиях действуют сторонние силы, обусловленные неэлектромагнитными процессами (тепловые процессы, химические реакции и т.д.)

             В результате действия сторонних сил в источнике электрической энергии происходит разделение электрических зарядов и образуется электродвижущая сила (ЭДС).

                Величина, характеризующая способность стороннего поля и индуцированного электрического поля вызывает электрический ток, называется электродвижущей силой.

     Для примера рассмотрим преобразование тепловой энергии в электрическую:

            В замкнутой цепи из двух разных металлов при одинаковой температуре (контактов 1 и 2) электрический ток не возникает, так как контактные разности потенциалов в обоих контактах  одинаковы, но направлены в противоположные стороны по цепи (см. рис. 3):

        Рис.3

 

Электрическая цепь, схема простой электрической цепи постоянного тока.

На картинке нарисована простейшая электрическая цепь постоянного тока. Она состоит из таких элементов как источник питания в виде батарейки, выключатель питания, переменное сопротивление и лампочка (представляющая собой электрическую нагрузку). Неотъемлемыми частями любой электрической схемы являются сам источник питания (постоянного тока или же переменного, без которого любая электросхема всего лишь груда металла), непосредственно нагрузка (ради которой всё и замышлялось, это электродвигатели, лампочки, нагревательные элементы и т.д.), ну и коммутирующие устройства в виде различных выключателей и переключателей (надо же схемой управлять, хотя бы на уровне включить и выключить).

В нашем случае электрическая схема цепи именно постоянного тока. В чём её специфика и отличия от электроцепи переменного тока? Из самого названия должно быть ясно, что в постоянном токе есть какое-то постоянство! Оно заключается в том, что носители электрического тока (электроны, электрические отрицательно заряженные частицы) движуться строго в одном направлении от минуса к плюсу. Да, стоит ещё внести уточнение. В реальности электричество движется от минуса к плюсу (в твёрдых телах, движение электронов), и от плюса к минусу (в жидких и газообразных веществах, движение ионов).

Электрическая цепь постоянного тока питается от источника с постоянным током, у которого есть положительный вывод (он же плюс) и отрицательный вывод (он же минус). Внутри источника постоянного тока не может, при нормальных условиях, меняться полюса, исключено самим принципом его работы и устройством. В электротехнике и особенно в электронике существует множество функциональных элементов работающие именно на постоянном токе. При подаче на них переменного тока (если не предусмотрено самой схемой) элементы либо просто не работают, либо просто выходят из строя. Это происходит потому, что переменный ток периодически меняет свою полярность с плюса на минус и обратно (в обычной городской сети это происходит 50 раз за секунду).

Как уже было подмечено вначале, самая простая электрическая цепь (будь то переменная или постоянная) состоит из источника питания, нагрузки и устройства коммутации (переключатели). В такой схеме электрической цепи энергия вырабатывается источником, и подаётся на нагрузку, выполняющую конкретную полезную работу. Естественно, без выключателей проблематично будет управлять работой электросхемы. Любая электрическая схема подразумевает функцию включения и выключения. Нарисованный на схеме (наш рисунок схемы простой электрической цепи постоянного тока) дополнительное переменное сопротивление показывает, что имеется некий элемент, способный изменять свое электрическое сопротивление, тем самым влияя на величину тока в электрической цепи.

На рисунке схемы электрической цепи постоянного тока можно заметить, что движение тока направлено от плюса к минусу (обозначено стрелками), а выше было сказано, что в реальности ток движется от минуса к плюсу (в твёрдых телах). Что это за несоответствие? Просто было наукой принято, что в схема должно обозначаться именно такое движение электрического тока. Но это особо не на что не влияет. Просто зная условные обозначения на электрических схемах и физический принцип действия электрического тока мы работаем со схемой, сочиняя её, либо используя при ремонте или сборке.

В электронике на схемах можно заметить стрелки, находящиеся на самих функциональных элементах. Они показывают направление движения тока, как было принято в условном обозначении.

В более сложных электрических цепях в схемах добавляются дополнительные устройства и элементы, которые расширяют общий функционал. Каждая деталь, элемент при подаче на него напряжения или прохождении электрического тока имеет свою специфическую особенность. Хотя в целом, что можно сделать с электроэнергией источника питания? Изменить всего лишь исходные характеристики, а именно, увеличить или понизить напряжение, ток, частоту (если это переменный или импульсный ток). Включить или выключить схему электрической цепи.

Видео по этой теме:

P.S. Любую электрическую схему цепи можно представить как основные функциональные части, а именно, часть источника питания, часть управления и коммутации, часть непосредственной нагрузки (ради которой всё и организовывалось).

Просто мысленно разбиваем схему на эти части и составляем основные функциональные блоки, модули, элементы. Далее уже всё начинает становиться на свои места. Даже достаточно сложная схема (с первого взгляда) после этого начинает становиться простой и понятной с точки зрения своей работы.

схема, ее элементы и их обозначения элементов

Во время изучения теории электрических цепей прежде всего необходимо начать с ознакомления с основными понятиями. Электрическая цепь представляет собой устройство, по которому течёт ток. Имея представление об основных терминах, необходимо рассмотреть, из чего состоит ЭЦ, а также как она устроена.

Что называется электрической цепью

ЭЦ – это комплекс элементов, при помощи которых создаётся, передаётся и потребляется электрическая энергия. Данные элементы, или участки, содержат источники электрической энергии, а также промежуточные устройства и проводники между ними, обеспечивающие неразрывность соединений.

Как по другому называется электрическая цепь

Источниками электрической энергии являются устройства, вырабатывающие ток путём физических, химических или световых преобразований.

Важно! Приемниками электроэнергии являются устройства, работа которых напрямую зависит от активности источника.

Промежуточные элементы с функциональными устройствами служат для передачи электрической энергии от источников к приемникам. В зависимости от назначения, они непосредственно передают энергию с конкретными параметрами источника.

Виды электрический цепи

Существует 3 основных вида соединения потребителей энергии:

  • Последовательное соединение

Общий показатель сопротивления замкнутой ЭЦ неизменно повышается при увеличении количества потребителей. Исходя из этого правила можно сделать вывод, что показатель полного сопротивления будет являться суммой индивидуальных значений каждого включённого в цепь прибора. Любой прибор, включенный в сеть, получает лишь долю напряжения, так как суммарный показатель энергетической цепи распадается на количество потребителей.

Соединение элементов ЭЦ – основные виды
  • Параллельное соединение

Подобная схема даёт полное представление о принципе работы электрической цепи.

Если этот процесс происходит непосредственно у места разветвления, то ток проходит дальше по двум нагруженным участкам, что порождает определённое сопротивление. В результате этого его значение приравнивается сумме токов, расходящихся от данной точки. Что касается сопротивления, то оно значительно снижается по мере возрастания общей проходимости ЭЦ. Параллельное соединение позволяет всем устройствам функционировать независимо друг от друга.

Важно! Если один из элементов цепи выйдет из строя или произойдет замыкание, то остальные потребители продолжат свою работу со сбоями, но полного разрыва цепи не произойдёт.

  • Комбинированное соединение

Включить электроприборы можно обоими способами – параллельным и последовательным, и такой тип соединения будет называться комбинированным. К примеру, можно рассмотреть защитную аппаратуру. Для ее подключения можно применить последовательный вариант, но этот способ может вызвать непредвиденный разрыв цепи.

Обратите внимание! Комбинированное соединение позволяет распределить нагрузку на линиях с целью предотвращения перегрузки.

Нелинейные и линейные

Нелинейные элементы придают ЭЦ свойства, которые не могут быть достигнуты в линейных цепях (стабилизация напряжения, усиление постоянного тока). Их, как правило, делят на неуправляемые и управляемые. К первому варианту можно отнести двухполюсные устройства. Их основное предназначение – полноценная работа без воздействия управляющего фактора (полупроводниковые терморезисторы или диоды). Ко вторму варианту относятся многополюсники, используемые при воздействии на них управляющего фактора (транзисторы и тиристоры).

Свойства нелинейных элементов выражаются в вольтамперных характеристиках. Они отображают зависимость тока от напряжения, для чего составляется конкретная эмпирическая формула, удобная для расчетов.

Метод пересечения показателей

Неуправляемые нелинейные элементы имеют одну вольтамперную характеристику. Их основным паратмером является управляющий фактор.

Цепи, включающие в себя только одиночные элементы, называют линейными. Основное свойство таких цепей — применимость принципа наложения. Это характеризуется тем, что результирующая реакция линейной цепи на несколько приложенных одновременно потребителей, равна сумме реакций на каждом участке.

Обратите внимание! У линейных элементов наблюдается постоянное сопротивление, в связи с чем график их вольтамперной характеристики представляет собой прямую линию, проходящую через начало координат.

Разветвленные и неразветвленные

ЭЦ может быть представлена в виде единого прямого элемента или иметь разветвления. На каждом участке неразветвленной цепи проходит ток с одинаковыми характеристиками. Простейшая разветвленная цепь состоит из трёх ветвей и двух узлов, в каждой из которых течет свой электрический ток. Любой участок можно идентифицировать, как отдельную составляющую цепи, образованную отдельными элементами, соединёнными последовательно в единое целое.

Узел – это точка, состоящая не менее, чем из трех ветвей. Узел, состоящий из двух ветвей, каждая из которых представляет собой продолжение другой, называют вырожденным узлом.

Неразветвленная и разветвленная

Внутренние и внешние

Для создания упорядоченного движения электронов, необходимо определить разность потенциалов между какими-либо отдельно взятыми участками цепи. Это обеспечивается при подключении напряжения в виде источника питания, называемым внутренней электрической цепью. Остальные компоненты цепи образуют внешнюю цепь. Для задания движения зарядов в источнике питания против направления поля, требуется приложить сторонние силы, в частности:

  • Выход вторичной обмотки трансформатора.
  • Батарея (гальванический источник).
  • Обмотка генератора.

Внешние силы, создающие движение электронов, называются электродвижущими, и они характеризуются работой, затраченной источником на перемещение единицы заряда.

Внешняя и внутренняя часть цепи

Активные и пассивные

Элементы в составе электрических цепей существуют в формате активности и пассивности. В качестве активных считаются источники электроэнергии.

Базовым параметром активных участков цепи выступает их способность отдавать энергию. Источники тока вместе с ЭДС называют идеальными для электрической энергии, что обусловлено отсутствием потери энергии, поскольку их проводимость и сопротивление считаются бесконечными:

I2 х 0 = 0

Активные элементы ЭЦ

Элементами, называемыми пассивными, считают разновидности потребителей и накопителей электроэнергии. На практике специалисты применяют многополюсный прибор, функционирующий на базе двухполюсных элементов.

Все активные элементы можно определить как в независимом, так и в зависимом порядке. Первый вариант является определением источника тока и напряжения. Вторая категория рассматривается при условии зависимости указанных величин от параметров напряжения и тока. Типичными представителями выступают электролампы и транзисторы. Их функционирование происходит в режиме линейности.

Пассивные элементы ЭЦ

Главные пассивные участки электроцепи представляют резисторы, индуктивные катушки и конденсаторы, с помощью которых осуществляется регулирование параметров силы тока и величины напряжения на отдельно взятых элементах. Резистивный показатель сопротивления относят к особым свойствам элементам. Его базовым критерием служит необратимое энергетическое рассеивание. Значение электротехники определяется по следующей формуле:

u = iR

i = Gu

При этом R представляет собой сопротивление (измеряется в Омах), а выступает проводимостью (единица измерения – сименсы). Данные величины можно вычислить по формуле:

R = 1:G

Индуктивность – это коэффициент пропорциональности. Конденсатор имеет свойство накопления энергии электрического поля. Линейная ёмкость определяет прямопропорциональную зависимость на основе заряда и напряжения. В таком случае, формула выглядит следующим образом:

q = Cu

Из каких элементов состоит электрическая цепь

Новички нередко задаются вопросом, из каких важных элементов состоит электрическая цепь. Такими составляющими являются:

  • Источник тока,
  • Нагрузка,
  • Проводник.

В состав могут в том числе входить такие элементы, как устройства коммутации, а также приборы защиты.

Условные обозначения электроустройств

Для возникновения тока, необходимо соединить две точки, одна из которых имеет избыток электронов по сравнению с другой. Другими словами, необходимо создать разность потенциалов между этими двумя точками. Как раз для получения разности потенциалов в цепи применяется источник тока.

Важно! Нагрузкой считается любой потребитель электрической энергии. Этот фактор оказывает сопротивление электрическому току и от величины сопротивления нагрузки зависит величина тока. Ток от источника энергии к нагрузке течёт по проводникам. В качестве кабеля можно использовать материалы с наименьшим сопротивлением (медь, серебро, золото).

Схема электрической цепи

Электрическая цепь, её графическое изображение, условные обозначения составляющих её элементов, а также символы представляют собой классическую схему расчетной модели. Подобный тип по-другому принимают, как эквивалентную схему замещения. По возможности, изображённая электротехника на схеме электрических цепей показывает весь процесс. Каждый реальный элемент цепи при проведении расчета заменяется элементами схемы.

Схема ЭЦ

В заключении следует отметить, что каждый элемент цепи, в зависимости от характера подключения и электротехнических свойств, может быть идентифицирован как источник энергии, либо как потребитель. Каждому участку на схеме ЭЦ соответствует проводник, либо конкретный прибор (трансформатор, выпрямитель, инвертор и другое электрооборудование). Только после правильного прочтения электрической схемы специалист может обеспечить её работоспособность.

Монтажная схема электрической цепи -

§ 31. Принципиальные и монтажные электрические схемы

Простейшая демонстрационная электрическая цепь может содержать всего три элемента: источник, нагрузку и соединительные провода. Однако реальные работающие цепи намного сложнее. Помимо основных элементов они содержат различные выключатели, рубильники, пускатели, контакторы, предохранители, реле в автоматах, электроизмерительные приборы, розетки, вилки и др. При сборке электротехнических цепей электромонтажник руководствуется принципиальной электрической схемой.

Принципиальная электрическая схема представляет собой графическое изображение электрической цепи, на котором её элементы изображаются в виде условных знаков (табл. 10).

Таблица 10.
Условные обозначения элементов электрической цепи


На рисунке 54, а представлена простейшая принципиальная электрическая схема цепи, содержащая источник электрической энергии в виде батареи гальванических элементов, нагрузку в виде лампы накаливания и выключатель.

Рис. 54. Электрические схемы соединения элементов: а — принципиальная, б — монтажная

Принципиальная электрическая схема устройства является графическим документом. Условные обозначения и правила выполнения электрических схем определяются государственным стандартом, который обязаны соблюдать все инженеры и техники.

При вычерчивании электрических схем необходимо соблюдать размеры и пропорции условных графических обозначений (рис. 55).

Рис. 55. Размеры и пропорции условных электротехнических обозначений

Линии связей между элементами схемы проводят параллельно или взаимно перпендикулярно, соблюдая условие замкнутости цепи, наклонные линии не применяются.

Принципиальная схема показывает соединение только основных элементов цепи, без комплектующей арматуры (электророзетки, вилки, ламповые патроны). Поэтому электромонтажнику необходимо иметь ещё одну схему — монтажную.

Монтажная электрическая схема отображает точное расположение элементов относительно друг друга, комплектующую арматуру и места подключения проводов. Пример монтажной схемы приведён на рисунке 54, б. По этой схеме электромонтажник видит, что все элементы электрической цепи крепятся на монтажной плате. Источником служит батарея от карманного фонарика. Монтажные провода, идущие к батарее, припаиваются непосредственно к её электродам. Малогабаритная лампочка вворачивается в ламповый патрон, закреплённый на плате. Монтажные провода крепятся к клеммам лампового патрона с помощью пайки, как и провода к выключателю. Контакты выключателя закреплены также на монтажной плате.

Новые слова и понятия

Принципиальная и монтажная схемы, комплектующая арматура, элементы электрической цепи.

Порядок разработки монтажной схемы, её назначение и сфера применения

В конструкторской документации к любому электротехническому оборудованию в обязательном порядке включается монтажная схема. Давайте рассмотрим, насколько важен этот чертеж, что он позволяет понять персоналу, обслуживающему или эксплуатирующему оборудование, то есть его прямое назначение. Ознакомимся с примерами и принципом построения.

Назначение

Начнем с базисной основы. Для обслуживания, ремонта, монтажа или наладки оборудования необходимо понимать как алгоритм его работы, так и принцип действия. С этой целью в сопроводительную документацию изделий включаются схемы, представляющие собой чертежи, на которых отображаются условные обозначения компонентов и составных узлов устройства, а также существующие между ними связи.

Построение схем выполняется по нормам ЕСКД, которые регулирует соответствующий ГОСТ. Данные чертежи востребованы на этапе проектирования, производства, а также в процессе эксплуатации оборудования. В зависимости от назначения электрические схемы принято классифицировать по типам. Они бывают:

  1. Структурными. Используются для определения основных функциональных узлов устройства, отображения существующих взаимосвязей между ними и общего назначения.
  2. Функциональными. Содержат описание протекающих в участках цепи процессов. На этапе разработки позволяют составить аналитическую модель устройства, дающую представление о его функциональном назначении того или иного узла. В процессе эксплуатации на основании такой схемы обосновывается поведение оборудования, что существенно облегчает диагностику, отладку и ремонт. Пример функциональной схемы управления скоростью вращения двигателя асинхронного типа
  3. Принципиальными. Отображают элементную базу и связь всех компонентов между собой. Именно принципиальные схемы являются базисной основой для процесса разработки электрооборудования. Пример такой схемы показан ниже. Схема управления реверсом двигателя асинхронного типа
  4. Монтажными. Указывают геометрическое положение всех компонентов узла, а также отображают соединения между ними, выполненные связующими элементами. На основе схем данного типа производится сборка электрооборудования или его составных узлов. Рисунок ниже демонстрирует пример монтажной схемы запуска двигателя под управлением реверсивного магнитного пускателя, позволяющей наглядно представить подключение кнопочного поста. Управление реверсом (красным выделен кнопочный пост и магнитные пускатели)
  5. Схемами подключений, отображающих подключение внешних устройств.
  6. Схемами расположений, в отличие от монтажных показывают только положение элементов узла без отображения связей.
  7. Общими, этот тип схем позволяет получить наглядное представление об узлах и связях между всеми элементами, что облегчает понимание устройства сложного объекта.

Подведем итог, без перечисленных выше схем, не только невозможно создать качественное и надежное оборудование, но и затруднительно организовать его квалифицированное обслуживание.

Порядок разработки монтажной электрической схемы

Практикуется несколько способов разработки схем данного типа, выбор того или иного из них зависит как от типа монтажа элементов, так и функционального назначения оборудования. Например, для описания коммутации вторичной цепи используется адресная маркировка. Поскольку данный способ наиболее распространен, распишем порядок его разработки.

В первую очередь на чертеж наносится контур устройства, в который вписаны используемые в оборудовании элементы, например, клемники или рейки с зажимами. Масштаб при этом можно не соблюдать. Сверху чертежа (над контуром) указывается вид, в приведенном ниже примере это надпись «Задняя стенка ящика».

Каждый задействованный в схеме элемент получает уникальный адрес. Для его отображения чертят окружность (диаметр которой от 10 до 12мм.), разделенную горизонтально напополам. В верхнюю часть разделенной окружности заносится номер компонента, а в нижнюю условное обозначение, в соответствии с элементной схемой. Например, для клеммной колодки, состоящей из 10 зажимов, в монтажной схеме каждому из них допускается присвоить уникальный адрес.

Заметим, что элементам, коммутирующим силовые цепи, присваивается только условное обозначение, то есть без номера компонента.

Разработка схемы начинается с составления заготовки, согласно описанным выше правилам. Когда она готова, приступают к обозначению соединений, при этом используются адреса, а не линии. Такой принцип маркировки позволяет легко определять направления проводов, что существенно упрощает процесс монтажа.

Монтажно-коммуникационная схема ящика управления

Для более детального объяснения принципа построения монтажных схем рассмотрим несколько примеров.

Пример: монтажная схема электропроводки 1 комнатной квартиры.

На рисунке ниже приведена типовая схема электрической проводки. Глядя на графическое изображение, становится понятно, что она включает в себя две ветви. Первая обеспечивает поступление электричества в зал и прихожую, вторая предназначена для санузла, кухни и ванной комнаты. При этом обе линии одновременно запитывают как освещение, так и розетки для подключения электроприборов.

Пример монтажной схемы проводки

Безусловно, такой принцип подключения иррационален, поскольку в случае КЗ обесточится полностью помещение. Помимо этого, если планируется установка таких мощных потребителей электроэнергии, как кондиционер, бойлер или электропечь, для каждого из них желательно проводить отдельную линию питания.

Данная схема приведена в качестве примера, чтобы наглядно показать, как имея перед собой графическое изображение проекта, определить его слабые стороны.

Пример монтажной схемы теплого водяного пола в квартире.

Схема соединений может применяться не только для электрооборудования, как видно из рисунка ниже, она отлично отображает структуру теплого пола, подключенного к контуру центральной отопительной системы.

Монтажно-технологическая схема теплого пола

Условные обозначения:

  • 1 – вентиль шарового типа, установленный на подающую линию;
  • 2 – вентиль шарового типа, на выходе;
  • 3 — очищающий фильтр;
  • 4 – клапан на обратную линию;
  • 5 – трехходовая смесительная запорная арматура;
  • 6 – клапан для перезапуска;
  • 7 – насос, обеспечивающий циркуляцию рабочей жидкости;
  • 8 – кран, перекрывающий обратный коллектор;
  • 9 – запорная арматура, перекрывающая вход в подающий коллектор;
  • 10 – корпус обратного коллектора;
  • 11 – подающий коллектор;
  • 12 – запорная арматура шарового типа, перекрывающая обратку;
  • 13 – вентили для перекрытия подачи;
  • 14 – кран для стравливания воздуха;
  • 15 – дренажная запорная арматура;
  • 16 – батарея центрального отопления.

Данная схема приведена в качестве примера, не следует воспринимать такую организацию как эталонную. Если вы хотите сделать водяной теплый пол по такому принципу, то в первую очередь необходимо согласовать свой проект с компанией, предоставляющей услуги центрального отопления.

И в завершении приведем пример грамотно составленной монтажной схемы системы отопления на базе конвектора с термостатом.

Схема соединений отопительной системы с использованием конвекторов

Как правильно читать монтажные схемы.

Для понимания схем необходимо знать условные графические изображения компонентов, их буквенно-цифровые обозначения. Понимание принципа действия и алгоритма работы элементов будет существенно способствовать процессу сборки и отладке. В качестве обоснования таких требований приведем для примера монтажную схему базовой платы коротковолнового трансивера.

Монтажная схема КВ трансивера «Дружба М»

Как видно из рисунка, к схеме прилагается пояснение, в котором содержится необходимая для монтажа информация. Но ее будет явно недостаточно при отсутствии базовых знаний, в результате можно ошибиться с полярностью электролитических конденсаторов или диодов, и собранное устройство не будет функционировать.

Ради справедливости необходимо заметить, что подобную оплошность может допустить и специалист, именно поэтому на монтажных платах, изготовленных промышленным способом, принято наносить расположения элементов и указывать их полярность (см. рис. 9). Это существенно снижает вероятность ошибок при сборке.

Фотография фрагмента монтажной платы, на которою нанесены места «посадки» элементов

Принципиальные и монтажные электрические схемы

Урок 30. Технология 8 класс ФГОС

Конспект урока «Принципиальные и монтажные электрические схемы»

Современное электрическое оборудование в своей работе использует многочисленные технологические процессы, протекающие по различным алгоритмам.

Электромонтёру, напомним, что это специалист, который занимается эксплуатацией, монтажом, наладкой и ремонтом электрооборудования, нужно иметь правильную информацию обо всех особенностях электрооборудования. Для этого создают специальные электрические схемы.

Электросхема представляет собой документ, в котором по определённым правилам обозначаются связи между составными частями устройств, которые работают за счёт протекания электроэнергии.

Проще говоря, электрическая схема – это чертёж или графическое изображение электрооборудования и цепей связи.

Самая простая электрическая цепь может содержать всего лишь три элемента: источник, нагрузку и соединительные провода.

Но в реальности электрические цепи намного сложнее. Они, помимо основных элементов, содержат различные выключатели, рубильники, пускатели, контакторы, предохранители, реле в автоматах, электроизмерительные приборы, розетки, вилки и другое.

Всё это и указывается в электрической схеме и даёт понимание электромонтёрам о том, как работает установка и из каких элементов она состоит.

Основное назначение электросхемы – помощь в подключении установок, а также в поиске неисправности в цепи.

Электрические схемы создаются для электриков всех специальностей. Но каждая отдельная схема имеет свои особенности оформления. Чаще всего электрические схемы делят на принципиальные и монтажные.

Оба типа этих схем очень взаимосвязаны. Они дополняют информацию друг у друга, выполняются по единым стандартам, понятным всем пользователям, но имеют отличия в своём назначении.

Итак, принципиальная электрическая схема представляет собой графическое изображение электрической цепи, на котором все её элементы изображают в виде условных знаков.

На экране вы видите таблицу с условными обозначениями элементов электрической цепи.

Принципиальные электрические схемы создают в первую очередь для того, чтобы показать принцип работы и взаимодействие составляющих элементов в порядке очерёдности их срабатывания.

На экране вы видите простейшую принципиальную электрическую схему цепи.

Обратите внимание, она состоит из источника электрической энергии в виде батареи гальванических элементов, нагрузки в виде лампы накаливания и выключателя.

Что касается монтажных электрических схем, то они представляют собой чертежи или эскизы частей электрооборудования, по которым выполняется сборка, монтаж электроустановки. В монтажных схемах учитываются расположение, компоновка составных частей и отображаются все электрические связи между ними.

На экране вы видите пример монтажной электрической схемы.

По этой схеме электромонтёр увидит, что все элементы электрической цепи крепятся на монтажной плате. Источником электроэнергии служит батарея от карманного фонарика. Монтажные провода, которые идут к батарее, припаиваются непосредственно к её электродам. А малогабаритная лампочка вворачивается в ламповый патрон, который закреплён на плате. В свою очередь монтажные провода крепятся к клеммам лампового патрона с помощью пайки, как и провода к выключателю. А контакты выключателя также закреплены на монтажной плате.

По указанным примерам схем можно сделать вывод, что основным отличием принципиальной и монтажной электрических схем является то, что принципиальная схема показывает соединение только основных элементов цепи, без комплектующей арматуры (например, электророзеток, вилок, ламповых патронов), а вот монтажная электрическая схема показывает точное (реальное) расположение элементов относительно друг друга, комплектующую арматуру и места подключения проводов.

Получается, что все монтажные схемы создаются на основе принципиальных и содержат всю необходимую информацию по производству монтажа электроустановки, включая выполнение электрических соединений. Без их использования создать качественно, надёжно и понятно для всех специалистов электрические подключения современного оборудования невозможно.

Для того чтобы правильно вычертить электрическую схему нужно обязательно соблюдать размеры и пропорции условных графических обозначений.

Линии связей между элементами схемы обязательно нужно проводить параллельно или взаимно перпендикулярно, соблюдая условие замкнутости цепи, наклонные линии не применять.

На этом уроке мы говорили об электрических схемах. Узнали, что электросхема – это чертёж или графическое изображение электрооборудования и цепей связи. Основное назначение электрической схемы – помощь в подключении установок, а также в поиске неисправности в цепи. Электрические схемы чаще всего делят на принципиальные и монтажные. Принципиальные электрические схемы создают для того, чтобы показать принцип работы и взаимодействие составляющих элементов в порядке очерёдности их срабатывания. В монтажных схемах учитываются расположение, компоновка составных частей и отображаются все электрические связи между ними.

Что такое электрическая схема

В данной статье мы постараемся выяснить, что же такое электрическая схема, и каково ее назначение.

В общепринятом выражении схемой можно назвать документ, включающий в себя составные части какого-либо устройства (изделия), а с помощью условных обозначений на схемах наглядно показываются связи между этими составными частями.

Электрическая схема – это своего рода тот же документ, где обозначены электрические связи между составными частями электроустройства. Т.е. главное назначение электрической схемы – это понятие принципа работы того или иного электроустройства или электроцепи.

Наличие электросхемы дает возможность:

  • выполнять монтаж (сборку) установки (цепи) в соответствии с схемой;
  • осуществлять сверку со схемой при монтаже (для исключения ошибок) и пусконаладочных работах;
  • выполнять диагностику и устранять неисправности при ремонтных работах.

Электрические схемы можно разделить на несколько типов. В зависимости от типа схемы, технические сведения об устройстве и принципе его работы могут быть полными или общими.

Типы электросхем

  • структурные;
  • функциональные;
  • принципиальные;
  • монтажные.

Существуют строгие нормативы, регламентирующие выполнение (черчения) электрических схем. На сегодняшний день таким документом является ГОСТ 2.702-2011, он обязателен для всех типов электросхем.

Структурная электрическая схема

Данная электросхема дает представление о принципе действия устройства (электроустановки) и об основных его функциональных узлах (частях) лишь в общих чертах.
Работа над проектом, чаще всего, начинается именно с этой схемы. Изображение функциональных узлов (частей) выполняется в виде прямоугольников или условных графических изображений. Их реальное расположение при этом не принимается во внимание. Связи между узлами изображаются линиями, а направление протекания электрических процессов – стрелками на этих линиях. Так же на схеме указывают технические параметры функциональных частей в виде поясняющих надписей. структурная электрическая схема

Функциональная электрическая схема

Электросхема очень похожа на структурную схему. Основное отличие заключается в том, что функциональная схема более детально показывает принцип работы устройства (изделия, установки).
На данной электрической схеме досконально показываются происходящие процессы между функциональными узлами (частями).

Используйте на своих сайтах и блогах или на YouTube кликер для adsense

Принципиальная электрическая схема

Это самая распространенная электрическая схема из всех типов схем, она дает наиболее полное представление о работе всех электроцепей установки. На ней показываются все электрические и магнитные связи между функциональными частями и компонентами электроустановки. Принципиальная электросхема может быть как общей, так и однолинейной. Однолинейная схема проста по восприятию и очень широко применяется в электроэнергетике.

принципиальная электрическая схема

Монтажная электрическая схема

Данная электросхема показывает реальное расположение узлов и агрегатов электрической установки, а также связи между ними (электрические кабели и провода). В монтажной схеме применяется буквенно-цифровое обозначение всех элементов электрической цепи (электрические аппараты, соединения и т. д.) и нумерация проводов и кабелей. После монтажа электроустановки (электроцепи) эта нумерация сохраняется и наносится на провода посредством бирок или цифровых маркеров. Схема используется для непосредственного производства работ или для изготовления изделия.

Монтажная схема иногда носит другое название – схема соединений или схема подключения.

монтажная электрическая схема

Другие типы электрических схем

Стоит отметить, что существует еще несколько типов электросхем. Поговорим о них вкратце.

Топологическая схема (схема расположения) – показывается расположение составных частей (элементов) электроустройства. Также на схеме может указываться расположение устройства или объекта на местности (например, подстанции). Для лучшего восприятия топологическая схема часто выполняется в виде трехмерной модели. Расположение составных частей на схеме соответствует действительному расположению частей объекта в конструкции или на местности.

Мнемоническая схема – такой тип схемы выполняется в виде плаката, на котором показывается реальное состояние коммутационных аппаратов (их действующее положение) на управляемом ими объекте. Основное применение таких схем – диспетчерские пункты на объектах электроэнергетики. Значение мнемонических схем постепенно снижается благодаря повсеместному внедрению компьютеризированных систем управления контролем и сигнализацией.

Кабельные планы – это схема (чертеж) расположения электрических кабелей и проводов с указанием их маркировки.

Сама по себе электрическая схемы мало что дает, если человек не умеет ее правильно читать. О том как правильно читать электрические схемы можно узнать здесь. Особенно это относится к электрическим принципиальным схемам – такие схемы бывают весьма сложными и громоздкими и на их изучение может понадобиться много времени.

Чтобы читать принципиальную схему необходимо знать и понимать принцип действия отдельных приборов, элементов, аппаратов и узлов. Разобравшись в том, как связаны между собой все эти части схемы, можно понять как, собственно, функционирует схема. Другими словами, зная основы построения схем и разбираясь в протекающих там электрических процессах, можно научиться понимать, как работает электроустановка и другое электрооборудование, не пользуясь при этом специальным описанием (мануалом).

Схема электрической цепи - это... Что такое Схема электрической цепи?

  • Схема электрической цепи — графическое изображение электрической цепи, содержащее условные обозначения ее элементов и показывающее соединения этих элементов... Источник: ЭЛЕКТРОТЕХНИКА . ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ ОСНОВНЫХ ПОНЯТИЙ. ГОСТ Р 52002 2003 (утв. Постановлением… …   Официальная терминология

  • схема (электрической цепи) — 192 схема (электрической цепи) Графическое изображение электрической цепи, содержащее условные обозначения ее элементов и показывающее соединения этих элементов Источник: ГОСТ Р 52002 2003: Электротехника. Термины и определения основных понятий …   Словарь-справочник терминов нормативно-технической документации

  • схема электрической цепи — Графическое изображение электрической цепи, показывающее последовательность соединений ее участков и отображающее свойства рассматриваемой электрической цепи …   Политехнический терминологический толковый словарь

  • Схема электрической цепи — – графическое изображение электрической цепи, содержащее условные обозначения ее элементов, показывающее соединения этих элементов. ГОСТ 19880 74 …   Коммерческая электроэнергетика. Словарь-справочник

  • Схема (электрической цепи) — 1. Графическое изображение электрической цепи, содержащее условные обозначения ее элементов и показывающее соединения этих элементов Употребляется в документе: ГОСТ Р 52002 2003 Электротехника. Термины и определения основных понятий …   Телекоммуникационный словарь

  • планарная схема (электрической цепи) — 213 планарная схема (электрической цепи) Схема электрической цепи, которая на плоскости может быть изображена с непересекающимися ветвями Источник: ГОСТ Р 52002 2003: Электротехника. Термины и определения основных понятий оригинал документа …   Словарь-справочник терминов нормативно-технической документации

  • эквивалентная схема (электрической цепи) — 194 эквивалентная схема (электрической цепи) Схема замещения электрической цепи, в которой величины, подлежащие рассмотрению, имеют те же значения, что и в исходной схеме замещения Источник: ГОСТ Р 52002 2003: Электротехника. Термины и… …   Словарь-справочник терминов нормативно-технической документации

  • Планарная схема (электрической цепи) — 1. Схема электрической цепи, которая на плоскости может быть изображена с непересекающимися ветвями Употребляется в документе: ГОСТ Р 52002 2003 Электротехника. Термины и определения основных понятий …   Телекоммуникационный словарь

  • Эквивалентная схема (электрической цепи) — 1. Схема замещения электрической цепи, в которой величины, подлежащие рассмотрению, имеют те же значения, что и в исходной схеме замещения Употребляется в документе: ГОСТ Р 52002 2003 Электротехника. Термины и определения основных понятий …   Телекоммуникационный словарь

  • схема замещения (электрической цепи) — 193 схема замещения (электрической цепи) Схема электрической цепи, отображающая свойства цепи при определенных условиях Источник: ГОСТ Р 52002 2003: Электротехника. Термины и определения основных понятий оригинал документа …   Словарь-справочник терминов нормативно-технической документации

  • Начертите Принципиальную Схему Электрической Цепи

    В судовой документации на каждый электропривод имеются принципиальная схема со спецификацией и пояснительной запиской и схемы электрических соединений монтажные. При совмещенном способе электрические элементы устройства размещают на схеме с учетом их конструкционных связей например, втягивающие катушки контактора рядом с графическим изображением его контактов.


    Параграф 33, задачи доделать.

    Контроллерная система позволяет иметь все виды управления электродвигателями: пуск, регулирование частоты вращения, реверс, торможение, остановку и, кроме того, защиту двигателей от перегрузки и понижения или исчезновения напряжения в питающей сети. В зависимости от условий эксплуатации используют ручную, дистанционную и автоматическую системы управления двигателем.
    8 кл — 112. Изображение схем электрических цепей

    Такой вот маркетинговый ход! Например, на схеме имеется два контактора с двумя и тремя контактами.

    Закон Ома для участка цепи Расчет силы тока, напряжения, сопротивления в электрической цепи по закону Ома для участка цепи.

    Параграф 33, задачи доделать.

    Электрические связи на схемах показывают провода и кабели электротехнической установки.

    Сейчас такие схемы практически не поставляются с электронными приборами, потому как продавец надеется, что пользователю проще будет выкинуть прибор, чем его ремонтировать. Домашнее задание.

    Что такое принципиальная электрическая схема [РадиолюбительTV 20]

    Другие вопросы из категории

    Нарисуйте схему соединения батареи элементов, двух лампочек и двух ключей, в которой каждая из лампочек включается и выключается независимо друг от друга. Для устранения этого явления в цепях управления предусматривают специальные блокировки. Однако двигатель остается включенным, так как питание катушки контактора сохраняется через вспомогательный контакт К1.

    И обязательно изучим принцип работы этого устройства с таким страшным названием по его принципиальной схеме. Отличие состоит в том, что для управления электродвигателем постоянного тока рис.

    Следите за исправностью всех креплений в приборах и приспособлениях.

    Перечислите её составные части. Начертите схему установки, состоящей из аккумулятора и двух звонков, у каждого из них своя кнопка.

    Что же такое электрическая принципиальная схема и зачем она нужна?

    Пример подобной схемы электрической цепи приведен на следующем рисунке: Дополнительные материалы по теме: Схема электрической цепи. Где на практике можно использовать такую схему?

    Нарисуйте схему соединения батарейки, лампочки, звонка и двух ключей. Такой вот маркетинговый ход!
    Как читать Элекрические схемы

    Список предметов

    Все исправления в цепях проводите при отключенном источнике тока. Функциональные схемы имеют подробную характеристику всех элементов.

    Давайте исходя из описанных выше правил попробуем составить простейшую принципиальную схему, состоящую из трех элементов: источника аккумуляторная батарея , приемника лампа накаливания и выключателя.

    Во избежание лишних потерь энергии в разрядном резисторе последовательно с ним иногда включают полупроводниковый вентиль V.

    Затем следует ознакомиться со схемой силовой цепи, начиная с источника тока. После одно- или двухбуквенного кода ставится номер элемента в виде одной или нескольких цифр.

    Линии связи должны состоять из горизонтальных и вертикальных отрезков и иметь наименьшее количество изломов и взаимных пересечений. Электрические связи на схемах показывают провода и кабели электротехнической установки.


    Электрические схемы раскрывают способы управления электродвигателем, которые слагаются из следующих этапов: пуска, изменения частоты вращения, реверса, торможения и выключения. Согласно ГОСТ 2.

    Если кнопочный выключатель S2 отпустить, то его замыкающий контакт разомкнётся. Закон Ома для участка цепи Расчет силы тока, напряжения, сопротивления в электрической цепи по закону Ома для участка цепи.

    Возьмите листочки. Итак, принципиальная схема устройства необходима, во-первых, для того, чтобы иметь представление о том, какие элементы входят в состав устройства, во-вторых, как эти элементы соединены между собой и, в-третьих, какие характеристики имеют эти элементы.
    Как читать электрические схемы. Урок №6

    Дополнительные материалы по теме: Схема электрической цепи.

    Для устранения этого явления в цепях управления предусматривают специальные блокировки. При необходимости допускается изменять последовательность присвоения порядковых номеров в зависимости от размещения элементов в изделии, направления прохождения сигналов или функциональной последовательности процесса.

    Цифры порядковых номеров, которые указывают на нумерацию одинаковых элементов, должны быть выполнены одним размером шрифта с буквенными обозначениями элемента. Например, на схеме имеется два контактора с двумя и тремя контактами.

    При сборке электрических цепей избегайте пересечения проводов. Пуск двигателя, например, может быть прямым, т.

    Способы управления зависят от многих факторов типа двигателя, мощности, требований к эксплуатации. Элементами схемы являются: обмотки электрических машин, катушки контакторов и реле, контакты электрических аппаратов, резисторы и др. Установка рукоятки командоконтроллера в нулевое положение приводит к отключению всех контакторов и двигателя от сети. В схеме на рис.

    Популярное

    Правило 3. Возьмите листочки. Элемент электрической цепи — какое-либо устройство, которое является частью электрической цепи и выполняет отдельную задачу. Элементами схемы являются: обмотки электрических машин, катушки контакторов и реле, контакты электрических аппаратов, резисторы и др.

    Домашнее задание. Наличие такой схемы существенно облегчало процесс ремонта. Перед вами схемы электрических цепей. Вид и номер элемента являются обязательной частью обозначения.

    Читайте также

    Источники тока подключайте в последнюю очередь. Например, на схеме имеется два контактора с двумя и тремя контактами. В пределах схемы все линии связи должны быть изображены одинаковой толщины. Перемещение рукоятки командоконтроллера в том же направлении на следующие положения второе и третье приведет к последовательному замыканию контактов и и срабатыванию контакторов К3 и К4, к выключению ступеней реостатов и Я2 и последовательному увеличению угловой скорости двигателя. Практическая работа.

    Памятка по технике безопасности при работе с электрическим током. Закон Ома для участка цепи Расчет силы тока, напряжения, сопротивления в электрической цепи по закону Ома для участка цепи.
    Монтажные схемы и маркировка электрических цепей

    Принципиальная схема

    - узнайте все о принципиальных схемах

    Что такое принципиальная схема?

    Принципиальная схема - это визуальное отображение электрической цепи с использованием основных изображений деталей или стандартных промышленных символов. Использование символа зависит от аудитории, просматривающей диаграмму. Эти два разных типа принципиальных схем называются графическими (с использованием основных изображений) или схематическими (с использованием стандартных символов). Принципиальная схема в виде принципиальной схемы используется для визуального представления электрической цепи электрику.Принципиальная схема в графическом стиле будет использоваться для более широкой, менее технической аудитории.

    Обозначения принципиальных схем

    На принципиальной схеме можно использовать сотни различных символов. К ним относятся простые изображения объектов, таких как батарея или резистор, для принципиальной схемы в графическом стиле или стандартные символы для таких объектов, как конденсаторы или катушки индуктивности.

    В сочетании с символами принципиальной схемы существует также ряд различных типов стилей линий для соединения объектов.В случае пересечения линий используйте переход между линиями, чтобы показать пересечение линий. Важно понимать, кто будет просматривать принципиальную схему, чтобы гарантировать использование правильных типов символов.

    Как создать принципиальную схему

    Существует много разных способов создания принципиальной схемы. Их можно создавать вручную, но более эффективным способом является использование программного обеспечения для построения диаграмм, такого как SmartDraw, которое предназначено для этой цели. Программное обеспечение для построения диаграмм, специально разработанное для создания принципиальных схем, имеет несколько преимуществ.

    • Быстрая и простая конструкция.
    • Предоставляет доступ к тысячам символов.
    • Легко поделиться в электронном виде.
    • Обеспечивает точное размещение предметов.
    • Легко редактировать.

    SmartDraw позволяет быстро, точно и легко создать принципиальную схему. Он также позволяет вам создавать персональные пользовательские библиотеки символов, которые вы обычно используете.Посмотрите это краткое руководство по созданию электрических схем. Узнайте больше о том, как сделать принципиальную схему, прочитав это руководство по принципиальной схеме.

    Примеры схем

    Лучший способ понять принципиальные схемы - это взглянуть на некоторые примеры принципиальных схем.

    Щелкните любую из этих принципиальных схем, включенных в SmartDraw, и отредактируйте их:

    Просмотрите всю коллекцию примеров схем и шаблонов SmartDraw.

    Схема подключения

    - все, что вам нужно знать о схеме подключения

    Что такое электрическая схема?

    Схема подключения - это простое визуальное представление физических соединений и физической компоновки электрической системы или цепи. Он показывает, как электрические провода соединяются между собой, а также может показать, где приспособления и компоненты могут быть подключены к системе.

    Когда и как использовать электрическую схему

    Используйте электрические схемы, чтобы помочь в создании или изготовлении схемы или электронного устройства.Также они пригодятся при ремонте.

    Энтузиасты DIY используют электрические схемы, но они также распространены в домостроении и ремонте автомобилей.

    Например, строитель дома захочет подтвердить физическое расположение электрических розеток и осветительных приборов с помощью схемы подключения, чтобы избежать дорогостоящих ошибок и нарушений строительных норм.

    Как нарисовать принципиальную схему

    SmartDraw поставляется с готовыми шаблонами электрических схем. Создавайте сотни электрических символов и быстро вставляйте их в свою электрическую схему.Специальные ручки управления вокруг каждого символа позволяют при необходимости быстро изменять их размер или вращать.

    Чтобы нарисовать провод, просто нажмите на опцию Draw Lines в левой части области рисования. Если щелкнуть линию правой кнопкой мыши, можно изменить цвет или толщину линии, а также при необходимости добавить или удалить стрелки. Перетащите символ на линию, и он вставится и защелкнется на месте. После подключения он останется подключенным, даже если вы переместите провод.

    Если вам нужны дополнительные символы, щелкните стрелку рядом с видимой библиотекой, чтобы открыть раскрывающееся меню, и выберите Еще .Вы сможете искать дополнительные символы и открывать любые соответствующие библиотеки.

    Щелкните Set Line Hops в SmartPanel, чтобы показать или скрыть линейные переходы в точках пересечения. Вы также можете изменить размер и форму хмеля. Выберите Показать размеры , чтобы показать длину проводов или размер компонента.

    Щелкните здесь, чтобы прочитать полное руководство SmartDraw о том, как рисовать принципиальные и другие электрические схемы.

    Чем электрическая схема отличается от схемы?

    Схема показывает план и функции электрической цепи, но не касается физического расположения проводов.На схемах подключения показано, как соединяются провода и где они должны располагаться в реальном устройстве, а также физические соединения между всеми компонентами.

    Чем электрическая схема отличается от графической схемы?

    В отличие от графической схемы, схема подключения использует абстрактные или упрощенные формы и линии для отображения компонентов. Графические схемы часто представляют собой фотографии с этикетками или подробные чертежи физических компонентов.

    Стандартные символы электрических схем

    Большинство символов, используемых на схеме соединений, выглядят как абстрактные версии реальных объектов, которые они представляют.Например, выключатель будет разрывом линии с линией под углом к ​​проводу, очень похоже на выключатель, который вы можете включать и выключать. Резистор будет представлен серией волнистых линий, символизирующих ограничение тока. Антенна - это прямая линия с тремя маленькими линиями, отходящими на ее конце, очень похожая на настоящую антенну.

    • Провод токопроводящий
    • Предохранитель, отключается, когда ток превышает определенную величину
    • Конденсатор для хранения электрического заряда
    • Тумблер, останавливает ток при открытии
    • Кнопочный переключатель, на мгновение разрешает прохождение тока при нажатии кнопки, прерывает ток при отпускании
    • Аккумулятор, накапливающий электрический заряд и вырабатывающий постоянное напряжение
    • Резистор, ограничивает ток
    • Провод заземления, используемый для защиты
    • Автоматический выключатель, используемый для защиты цепи от перегрузки по току
    • Индуктор, катушка, создающая магнитное поле
    • Антенна, принимает и передает радиоволны
    • Устройство защиты от перенапряжения, используется для защиты цепи от скачков напряжения
    • Лампа, излучает свет при протекании тока через
    • Диод, позволяет току течь в одном направлении, указанном стрелкой или треугольником на проводе
    • Микрофон, преобразует звук в электрический сигнал
    • Электродвигатель
    • Трансформатор, изменяет напряжение переменного тока с высокого на низкое или наоборот
    • Наушники
    • Термостат
    • Электророзетка
    • Распределительная коробка

    Примеры электрических схем

    Лучший способ понять электрические схемы - это посмотреть на несколько примеров электрических схем.

    Щелкните любую из этих схем подключения, включенных в SmartDraw, и отредактируйте их:

    Просмотрите всю коллекцию примеров и шаблонов схем подключения SmartDraw

    Условные обозначения электрических цепей и электрические схемы

    До сих пор в этом разделе учебного курса «Физический класс» основное внимание уделялось ключевым компонентам электрической цепи и концепциям разности электрических потенциалов, тока и сопротивления. Концептуальные значения терминов были введены и применены к простым схемам.Обсуждаются математические отношения между электрическими величинами и моделируется их использование при решении задач. Урок 4 будет посвящен средствам, с помощью которых два или более электрических устройства могут быть соединены в электрическую цепь. Наше обсуждение продвинется от простых схем к умеренно сложным схемам. К этим сложным схемам будут применяться прежние принципы разности электрических потенциалов, тока и сопротивления, и для их анализа будут использоваться те же математические формулы.

    Электрические цепи, простые или сложные, можно описать разными способами. Электрическая цепь обычно описывается простыми словами. Сказать что-то вроде «Лампочка подключена к D-элементу» - это достаточное количество слов, чтобы описать простую схему. Во многих случаях в уроках с 1 по 3 для описания простых схем использовались слова. Услышав (или прочитав) слова, человек привыкает быстро представлять схему в своем уме. Но еще один способ описания схемы - просто нарисовать ее.Такие рисунки дают более быстрое представление о реальной цепи. Схемы, подобные приведенному ниже, много раз использовались в уроках с 1 по 3.

    Описание цепей словами

    «Цепь содержит лампочку и D-элемент на 1,5 В».

    Описание схем с помощью чертежей

    Последним средством описания электрической цепи является использование условных обозначений цепи для получения принципиальной схемы цепи и ее компонентов.Некоторые символы схем, используемые в принципиальных схемах, показаны ниже.

    Отдельный элемент или другой источник питания представлен длинной и короткой параллельной линией. Набор элементов или батареи представлен набором длинных и коротких параллельных линий. В обоих случаях длинная линия представляет положительный вывод источника энергии, а короткая линия представляет отрицательный вывод. Прямая линия используется для обозначения соединительного провода между любыми двумя компонентами схемы.Электрическое устройство, которое оказывает сопротивление потоку заряда, обычно называется резистором и представлено зигзагообразной линией. Открытый переключатель обычно представлен разрывом по прямой линии, когда поднимает часть линии вверх по диагонали. Эти обозначения цепей будут часто использоваться в оставшейся части Урока 4, поскольку электрические цепи представлены схематическими диаграммами. Важно либо запомнить эти символы, либо часто обращаться к этому короткому списку, пока вы не привыкнете к их использованию.


    В качестве иллюстрации использования электрических символов на принципиальных схемах рассмотрим следующие два примера.

    Пример 1:

    Описание со словами: Три D-элемента помещаются в аккумуляторную батарею для питания цепи, содержащей три лампочки.
    Используя словесное описание, можно получить мысленную картину описываемого контура. Это словесное описание может быть представлено изображением трех ячеек и трех лампочек, соединенных проводами.Наконец, символы схемы, представленные выше, могут использоваться для обозначения той же схемы. Обратите внимание, что три набора длинных и коротких параллельных линий были использованы для представления аккумуляторной батареи с ее тремя D-ячейками. Обратите внимание, что каждая лампочка обозначена отдельным символом резистора. Прямые линии были использованы для соединения двух клемм батареи с резисторами и резисторов друг с другом.

    Вышеупомянутые схемы предполагали, что три лампочки были соединены таким образом, что заряд, протекающий по цепи, проходил через каждую из трех лампочек последовательно.Путь положительного тестового заряда, покидающего положительный полюс батареи и проходящего через внешнюю цепь, будет включать прохождение через каждую из трех подключенных лампочек перед возвращением к отрицательной клемме батареи. Но разве это единственный способ подключения трех лампочек? Должны ли они быть подключены последовательно, как показано выше? Точно нет! Фактически, приведенный ниже пример 2 содержит то же словесное описание, при этом рисунок и схематические диаграммы нарисованы по-разному.

    Пример 2:

    Описание со словами: Три D-элемента помещаются в аккумуляторную батарею для питания цепи, содержащей три лампочки.
    Используя словесное описание, можно получить мысленную картину описываемого контура. Но на этот раз подключение лампочек выполняется таким образом, чтобы в цепи была точка, в которой провода отходили друг от друга.Место разветвления упоминается как узел . Каждая лампочка помещается в отдельную ветвь. Эти ответвления в конечном итоге соединяются друг с другом, образуя второй узел. Одиночный провод используется для подключения этого второго узла к отрицательной клемме аккумулятора.

    Эти два примера иллюстрируют два распространенных типа соединений в электрических цепях. Когда в цепи присутствуют два или более резистора, они могут быть подключены последовательно или параллельно .Оставшаяся часть Урока 4 будет посвящена изучению этих двух типов соединений и их влияния на электрические величины, такие как ток, сопротивление и электрический потенциал. Следующая часть Урока 4 познакомит вас с различием между последовательным и параллельным подключением.

    Проверьте свое понимание

    1. Используйте символы цепей для построения принципиальных схем для следующих цепей:

    а.Одиночный элемент, лампочка и выключатель помещены вместе в цепь, так что выключатель можно открывать и закрывать, чтобы включить лампочку.

    г. Блок из трех D-элементов помещается в цепь для питания лампочки фонарика.

    г.

    г.

    2. Используйте концепцию обычного тока, чтобы нарисовать непрерывную линию на схематической диаграмме справа, которая указывает направление обычного тока. Поместите стрелку на непрерывную линию.

    Как читать схему

    Добавлено в избранное Любимый 98

    Обзор

    Схемы

    - это наша карта для проектирования, создания и устранения неисправностей схем.Понимание того, как читать схемы и следовать им, - важный навык для любого инженера-электронщика.

    Это руководство должно превратить вас в грамотного читателя схем! Мы рассмотрим все основные символы схемы:

    Затем мы поговорим о том, как эти символы связаны на схемах, чтобы создать модель цепи. Мы также рассмотрим несколько советов и приемов, на которые следует обратить внимание.

    Рекомендуемая литература

    Понимание схем - это довольно базовый навык работы с электроникой, но есть несколько вещей, которые вы должны знать, прежде чем читать это руководство.Посмотрите эти уроки, если они звучат как пробелы в вашем растущем мозгу:

    Условные обозначения (часть 1)

    Готовы ли вы к шквалу компонентов схемы? Вот некоторые из стандартизованных основных схематических символов для различных компонентов.

    Резисторы

    Самый фундаментальный из схемных компонентов и символов! Резисторы на схеме обычно представлены несколькими зигзагообразными линиями с двумя выводами , выходящими наружу.В схемах, использующих международные символы, вместо волнистых линий может использоваться безликий прямоугольник.

    Потенциометры и переменные резисторы

    Переменные резисторы и потенциометры дополняют обозначение стандартного резистора стрелкой. Переменный резистор остается устройством с двумя выводами, поэтому стрелка просто расположена по диагонали посередине. Потенциометр - это трехконтактное устройство, поэтому стрелка становится третьей клеммой (дворником).

    Конденсаторы

    Обычно используются два символа конденсатора.Один символ представляет поляризованный (обычно электролитический или танталовый) конденсатор, а другой - неполяризованные колпачки. В каждом случае есть две клеммы, перпендикулярно входящие в пластины.

    Символ с одной изогнутой пластиной указывает на то, что конденсатор поляризован. Изогнутая пластина обычно представляет собой катод конденсатора, который должен иметь более низкое напряжение, чем положительный анодный вывод. Знак плюс также должен быть добавлен к положительному выводу символа поляризованного конденсатора.

    Катушки индуктивности

    Катушки индуктивности

    обычно представлены серией изогнутых выступов или петлевых катушек. Международные символы могут просто обозначать катушку индуктивности как закрашенный прямоугольник.

    Переключатели

    Коммутаторы

    существуют во многих различных формах. Самый простой переключатель, однополюсный / однопозиционный (SPST), представляет собой две клеммы с полусоединенной линией, представляющей привод (часть, которая соединяет клеммы вместе).

    Переключатели с более чем одним ходом, такие как SPDT и SP3T ниже, добавляют больше посадочных мест для привода.

    Многополюсные переключатели обычно имеют несколько одинаковых переключателей с пунктирной линией, пересекающей средний привод.

    Источники энергии

    Так же, как существует множество вариантов питания вашего проекта, существует множество символов схем источника питания, помогающих указать источник питания.

    Источники постоянного или переменного напряжения

    В большинстве случаев при работе с электроникой вы будете использовать источники постоянного напряжения. Мы можем использовать любой из этих двух символов, чтобы определить, подает ли источник постоянный ток (DC) или переменный ток (AC):

    Аккумуляторы

    Батарейки, будь то цилиндрические, щелочные батарейки типа AA или литий-полимерные аккумуляторные батареи, обычно выглядят как пара непропорциональных параллельных линий:

    Чем больше пар линий, тем больше ячеек в батарее.Кроме того, более длинная линия обычно используется для обозначения положительной клеммы, а более короткая линия соединяется с отрицательной клеммой.

    Узлы напряжения

    Иногда - особенно на очень загруженных схемах - вы можете назначить специальные символы для узловых напряжений. Вы можете подключать устройства к этим символам с одной клеммой , и они будут напрямую связаны с 5 В, 3,3 В, VCC или GND (землей). Узлы положительного напряжения обычно обозначаются стрелкой, направленной вверх, в то время как узлы заземления обычно включают от одной до трех плоских линий (или иногда стрелку или треугольник, направленную вниз).

    Условные обозначения (часть 2)

    Диоды

    Базовые диоды обычно представляют собой треугольник, прижатый к линии. Диоды также поляризованы, поэтому для каждого из двух выводов требуются отличительные идентификаторы. Положительный анод - это вывод, входящий в плоский край треугольника. Отрицательный катод выходит за линию символа (воспринимайте его как знак -).

    Существует множество различных типов диодов, каждый из которых имеет специальный рифф на стандартном символе диода. Светодиоды (LED) дополняют символ диода парой линий, направленных в сторону. Фотодиоды , которые генерируют энергию из света (в основном, крошечные солнечные элементы), переворачивают стрелки и направляют их в сторону диода.

    Другие специальные типы диодов, такие как диоды Шоттки или стабилитроны, имеют свои собственные символы с небольшими вариациями на штриховой части символа.

    Транзисторы

    Транзисторы

    , будь то биполярные транзисторы или полевые МОП-транзисторы, могут существовать в двух конфигурациях: положительно легированные или отрицательно легированные.Итак, для каждого из этих типов транзисторов есть как минимум два способа его нарисовать.

    Биполярные переходные транзисторы (БЮТ)

    БЮТ - трехполюсные устройства; у них есть коллектор (C), эмиттер (E) и база (B). Существует два типа BJT - NPN и PNP, и каждый имеет свой уникальный символ.

    Контакты коллектора (C) и эмиттера (E) расположены на одной линии друг с другом, но на эмиттере всегда должна быть стрелка. Если стрелка указывает внутрь, это PNP, а если стрелка указывает наружу, это NPN.Мнемоника для запоминания: «NPN: n ot p ointing i n ».

    Металлооксидные полевые транзисторы (МОП-транзисторы)

    Как и BJT, полевые МОП-транзисторы имеют три терминала, но на этот раз они названы исток (S), сток (D) и затвор (G). И снова, есть две разные версии символа, в зависимости от того, какой у вас полевой МОП-транзистор с n-каналом или p-каналом. Для каждого типа полевого МОП-транзистора существует ряд часто используемых символов:

    Стрелка в середине символа (называемая основной частью) определяет, является ли полевой МОП-транзистор n-канальным или p-канальным.Если стрелка указывает внутрь, это означает, что это n-канальный MOSFET, а если он указывает, это p-канал. Помните: «n is in» (своего рода противоположность мнемонике NPN).

    Цифровые логические ворота

    Наши стандартные логические функции - И, ИЛИ, НЕ и ИСКЛЮЧАЮЩЕЕ - все имеют уникальные условные обозначения:

    Добавление пузыря к выходу отменяет функцию, создавая NAND, NOR и XNOR:

    У них может быть более двух входов, но формы должны оставаться такими же (ну, может быть, немного больше), и все равно должен быть только один выход.

    Интегральные схемы

    Интегральные схемы

    решают такие уникальные задачи, и их так много, что они действительно не получают уникального символа схемы. Обычно интегральная схема представляет собой прямоугольник с выступающими по бокам выводами. Каждый вывод должен иметь номер и функцию.

    Схематические символы для микроконтроллера ATmega328 (обычно присутствующего на Arduinos), микросхемы шифрования ATSHA204 и микроконтроллера ATtiny45. Как видите, эти компоненты сильно различаются по размеру и количеству выводов.

    Поскольку микросхемы имеют такой общий символ схемы, имена, значения и метки становятся очень важными. Каждая микросхема должна иметь значение, точно определяющее название микросхемы.

    Уникальные ИС: операционные усилители, регуляторы напряжения

    Некоторые из наиболее распространенных интегральных схем получают уникальный символ схемы. Обычно вы увидите операционные усилители, расположенные, как показано ниже, с 5 выводами: неинвертирующий вход (+), инвертирующий вход (-), выход и два входа питания.

    Часто в один корпус интегральной схемы встроено два операционных усилителя, для которых требуется только один вывод для питания и один для заземления, поэтому тот, что справа, имеет только три контакта.

    Простые регуляторы напряжения обычно представляют собой трехконтактные компоненты с входными, выходными и заземляющими (или регулирующими) контактами. Обычно они имеют форму прямоугольника с выводами слева (вход), справа (выход) и внизу (заземление / регулировка).

    Разное

    Кристаллы и резонаторы

    Кристаллы или резонаторы обычно являются важной частью схем микроконтроллера. Они помогают обеспечить тактовый сигнал. Кристаллические символы обычно имеют два вывода, в то время как резонаторы, которые добавляют два конденсатора к кристаллу, обычно имеют три вывода.

    Заголовки и разъемы

    Будь то обеспечение питания или отправка информации, разъемы необходимы для большинства цепей. Эти символы различаются в зависимости от того, как выглядит разъем, вот образец:

    Двигатели, трансформаторы, динамики и реле

    Мы объединим их вместе, так как они (в основном) все так или иначе используют катушки. Трансформаторы (не самые очевидные) обычно включают две катушки, прижатые друг к другу, с парой линий, разделяющих их:

    Реле обычно соединяют катушку с переключателем:

    Динамики и зуммеры обычно имеют форму, аналогичную их реальным аналогам:

    Двигатели

    и обычно имеют обведенную буквой «М», иногда с небольшим количеством украшений вокруг клемм:

    Предохранители и PTC

    Предохранители и PTC - устройства, которые обычно используются для ограничения больших скачков тока - каждое имеет свой уникальный символ:

    Символ PTC на самом деле является общим символом для термистора , резистора, зависящего от температуры (обратите внимание на международный символ резистора там?).


    Без сомнения, многие символы схем не включены в этот список, но те, что указаны выше, должны дать вам 90% грамотности в чтении схем. В общем, символы должны иметь довольно много общего с реальными компонентами, которые они моделируют. Помимо символа, каждый компонент на схеме должен иметь уникальное имя и значение, которое в дальнейшем помогает его идентифицировать.

    Обозначения и значения имен

    Один из важнейших ключей к схемотехнической грамотности - это способность распознавать, какие компоненты какие.Компонентные символы рассказывают половину истории, но для завершения каждый символ должен сочетаться с именем и значением.

    Имена и значения

    Значения помогают точно определить, что такое компонент. Для схемных компонентов, таких как резисторы, конденсаторы и катушки индуктивности, значение говорит нам, сколько у них Ом, фарад или генри. Для других компонентов, таких как интегральные схемы, значением может быть просто название микросхемы. Кристаллы могут указывать свою частоту колебаний как свою ценность.По сути, значение компонента схемы вызывает его наиболее важную характеристику .

    Имена компонентов обычно представляют собой комбинацию одной или двух букв и числа. Буквенная часть имени определяет тип компонента - R для резисторов, C для конденсаторов, U для интегральных схем и т. Д. Каждое имя компонента на схеме должно быть уникальным; если в цепи несколько резисторов, например, они должны называться R 1 , R 2 , R 3 и т. д.Имена компонентов помогают нам ссылаться на определенные точки на схемах.

    Префиксы имен довольно хорошо стандартизированы. Для некоторых компонентов, таких как резисторы, префикс - это просто первая буква компонента. Другие префиксы имен не столь буквальны; индукторы, например, L (потому что ток уже взял I [но он начинается с C ... электроника - глупое место]). Вот краткая таблица общих компонентов и их префиксов:

    9045 DI 9045
    Имя Идентификатор Компонент
    R Резисторы
    C Конденсаторы
    L Индукторы
    Q Транзисторы
    U Интегральные схемы
    Y Кристаллы и генераторы

    Хотя эти термины являются «стандартизированными» названиями символов компонентов, они не всегда соблюдаются.Вы можете увидеть интегральные схемы с префиксом IC вместо U , например, или кристаллы с маркировкой XTAL вместо Y . Используйте свой здравый смысл при диагностике, какая часть есть какая. Символ обычно должен передавать достаточно информации.

    Схема чтения

    Понимание того, какие компоненты есть на схеме, - это более чем полдела на пути к ее пониманию. Теперь все, что осталось, - это определить, как все символы связаны друг с другом.

    Сети, узлы и метки

    Схематические цепи сообщают вам, как компоненты соединяются вместе в цепи. Цепи представлены в виде линий между клеммами компонентов. Иногда (но не всегда) они имеют уникальный цвет, например, зеленые линии на этой схеме:

    Соединения и узлы

    Провода могут соединять две клеммы вместе, или их можно соединять десятки. Когда провод разделяется на два направления, образуется соединение . На схемах изображаем стыки с узлами , маленькие точки размещены на пересечении проводов.

    Узлы

    дают нам возможность сказать, что «провода, пересекающие этот переход , соединены ». Отсутствие узла на стыке означает, что два отдельных провода просто проходят мимо, не образуя никакого соединения. (При разработке схем обычно рекомендуется по возможности избегать этих несвязанных перекрытий, но иногда это неизбежно).

    Сетевые имена

    Иногда, чтобы схема была более разборчивой, мы даем цепи имя и маркируем ее, а не прокладываем провод по всей схеме.Предполагается, что цепи с таким же именем подключены, даже если между ними нет видимого провода. Имена могут быть написаны прямо поверх сети, или они могут быть «тегами», свисающими с провода.

    Каждая цепь с таким же именем подключена, как на этой схеме для коммутационной платы FT231X. Имена и метки помогают сохранить схемы от слишком хаотичного (представьте, если бы все эти цепи были действительно соединены проводами). Цепям

    обычно дается имя, в котором конкретно указывается назначение сигналов на этом проводе.Например, цепи питания могут быть обозначены «VCC» или «5V», а цепи последовательной связи - «RX» или «TX».

    Советы по чтению схем

    Определить блоки

    Действительно обширные схемы следует разбивать на функциональные блоки. Это может быть раздел для ввода мощности и регулирования напряжения, или раздел микроконтроллера, или раздел, посвященный разъемам. Попытайтесь распознать, какие секции какие, и проследить за цепочкой от входа к выходу. По-настоящему хорошие разработчики схем могут даже выложить схему в виде книги: входы слева, выходы - справа.

    Если ящик схемы действительно хорош (например, инженер, который разработал эту схему для RedBoard), они могут разделить части схемы на логические помеченные блоки.
    Распознать узлы напряжения

    Узлы напряжения - это одноконтактные компоненты схемы, к которым мы можем подключать клеммы компонентов, чтобы назначить им определенный уровень напряжения. Это специальное приложение имен цепей, означающее, что все клеммы, подключенные к узлу напряжения с одинаковым именем, соединены вместе.

    Узлы напряжения с одинаковыми названиями - например, GND, 5 В и 3,3 В - все подключены к своим аналогам, даже если между ними нет проводов.

    Узел заземления особенно полезен, потому что очень многие компоненты нуждаются в заземлении.

    Таблицы технических данных эталонных компонентов

    Если в схеме есть что-то, что не имеет смысла, попробуйте найти таблицу для наиболее важного компонента. Обычно компонент, выполняющий большую часть работы со схемой, - это интегральная схема, такая как микроконтроллер или датчик.Обычно это самый крупный компонент, часто расположенный в центре схемы.

    Ресурсы и дальнейшее развитие

    Вот и все, что нужно для чтения схем! Знание символов компонентов, отслеживание цепей и определение общих меток. Понимание того, как работает схема, открывает вам целый мир электроники! Ознакомьтесь с некоторыми из этих руководств, чтобы попрактиковаться в новых знаниях схемотехники:

    • Делители напряжения - это одна из самых основных принципиальных схем.Узнайте, как с помощью всего двух резисторов превратить большое напряжение в меньшее!
    • Как использовать макетную плату - Теперь, когда вы знаете, как читать схемы, почему бы не сделать ее! Макетные платы - отличный способ создавать временные функциональные прототипы схем.
    • Работа с проводом - Или пропустите макет и сразу начните с проводки. Умение разрезать, зачищать и подключать провода - важный навык электроники.
    • Последовательные и параллельные схемы
    • - Построение последовательных или параллельных схем требует хорошего понимания схем.
    • Шитье проводящей нитью - Если вы не хотите работать с проволокой, как насчет создания схемы электронного текстиля с проводящей нитью? В этом прелесть схематических схем, одна и та же схематическая схема может быть построена множеством различных способов с использованием различных носителей.
    Схема подключения

    - подробное руководство

    Что такое электрическая схема?

    Схема подключения - это визуальное представление компонентов и проводов, относящихся к электрическому соединению.Эта графическая диаграмма показывает нам физические связи, которые намного проще понять в электрической цепи или системе. Одна электрическая схема может обозначать все межсоединения, тем самым сигнализируя об относительных местоположениях. Использование электрической схемы положительно распознается в проектах по производству или поиску и устранению неисправностей электрооборудования. Это может предотвратить множество повреждений, которые даже подорвут электрическую схему.

    В этой статье мы узнаем некоторые интересные факты о схеме подключения , их важности и полезном онлайн-инструменте, т.е.э., Edraw Max, чтобы их быстро нарисовать.

    Источник изображения : smartdraw.com

    Почему мы используем схемы подключения?

    Электрические схемы широко используются в производстве схем или других проектах электронных устройств. Компоновка облегчает общение между инженерами-электриками, проектирующими и реализующими электрические схемы.Фотографии также пригодятся при ремонте. Он показывает, была ли установка спроектирована и реализована надлежащим образом, подтверждая регуляторы безопасности.

    Схема подключения

    A также может быть полезна при ремонте автомобилей и строительстве домов. Например, домостроитель может легко найти правильное расположение осветительных приборов и электрических розеток, чтобы избежать дорогостоящих дефолтов или любых нарушений кодекса.

    Преимущества схем подключения:

    Схема подключения дает несколько преимуществ, как указано ниже.

    • Диаграммой легко поделиться даже в электронном виде.
    • Процесс создания диаграммы быстрый и допускает обычное построение.
    • Доступ к сотням и тысячам символов соединений делает схему более понятной.
    • Диаграмму легко редактировать в зависимости от различных условий.
    • Правильный инструмент обеспечивает точное размещение символов, что невозможно сделать вручную или другими способами.

    Тип электросхемы

    С использованием различных символов электрическая схема в основном состоит из трех основных типов. Все, что связано с электрической системой, можно отобразить на одной из диаграмм, чтобы убедиться, что соединения работают правильно.Его три основных вида заключаются в следующем.

    A. Принципиальные схемы

    Схематические диаграммы показывают схему цепи с ее впечатлением, а не подлинным изображением. Они предоставляют только общую информацию и не могут использоваться для ремонта или проверки цепи. Функции различного оборудования, используемого в схеме, представлены с помощью принципиальной схемы, символы которой обычно включают вертикальные и горизонтальные линии.Однако известно, что эти линии показывают поток системы, а не ее провода.

    B. Схемы электрических соединений

    Схема соединений представляет исходную и физическую схему электрических соединений. Схема подключения на картинке с разными символами показывает точное расположение оборудования во всей цепи. Это гораздо более полезно в качестве справочного руководства, если кто-то хочет узнать об электрической системе дома.Его компоненты показаны на картинке, чтобы их можно было легко идентифицировать.

    C. Иллюстрированный

    Это наименее эффективная схема среди электрических схем. Часто это фотографии, прикрепленные к подробным чертежам или этикеткам физических компонентов. Картинка даже не пытается быть четкой или эффектной. Человек, хорошо разбирающийся в схемах электропроводки, может понять только изображения.

    Схема подключения

    Принципиальная схема VS

    Эта концепция может сбивать с толку, поскольку электрическая схема указывает на физическую компоновку или расположение компонентов, тогда как схемы показывают функции различного оборудования, используемого в цепи.

    Давайте посмотрим на его сходства и различия.

    Сходства

    Отличия

    Как читать электрические схемы: символы, которые вы должны знать

    Чтобы прочитать электрическую схему , вы должны знать различные используемые символы, такие как основные символы, линии и различные соединения.

    Стандартные или основные элементы, используемые в схеме подключения, включают источник питания, заземление, провода и соединения, переключатели, выходные устройства, логический вентиль, резисторы, свет и т. Д.

    1. Переключатель - Переключатель на электрической схеме включает вспомогательные символы, такие как размыкающий переключатель, размыкающий переключатель, двухпозиционный переключатель, переключатель DPST, переключатель DPDT и т. Д.
    2. Батарея - Батарея представляет собой более одной ячейки для обозначения электрической энергии. Более того, он работает от постоянного напряжения.
    3. Резистор - резистор показывает ограничение протекания тока. Он используется вместе с конденсатором в цепи синхронизации.
    4. Провод и соединение - Обозначения проводов и соединений включают провод, соединенный провод и несоединенный.Соединенные провода обычно образуют двутавровое соединение, тогда как несоединенные провода представляют собой просто пересекающиеся несоединенные провода.
    5. Конденсатор - Конденсатор - это накопитель электрического заряда. Этот символ используется с резистором, а также может отображаться как фильтр для пропускания сигналов переменного тока и блокировки сигналов постоянного тока.
    6. Логический вентиль - Логический вентиль - это своего рода сигнал процесса, используемый для представления истинного (высокий, 1, вкл., + Vs) или ложного (низкий, 0, выкл., OV).Он также содержит субсимволы, такие как AND, NOT, NAND, NOR и OR.
    7. Полупроводник - Полупроводниковые символы являются интеллектуальными и обычно используются для обозначения таких компонентов, как биполярный, полевой МОП-транзистор, управляемый выпрямитель, управляемый переключатель, диод, диод, симистор и т. Д. преобразуется в кинетическую энергию.
    8. Динамик - Динамик представляет собой цифровой вход, преобразованный в аналоговые звуковые волны. Это одна из важнейших частей различных продуктов, таких как телефоны и телевизоры.
    9. Индуктор - это компонент электрической цепи, обладающий индуктивностью. Он также включает в себя различные символы, такие как индуктор передатчика положения, половина индуктора, взаимная индуктивность и т. Д.

    Примеры электрических схем

    1.Схема 2-ходового переключателя

    В схеме двухпозиционного переключателя необходимо управлять потоком мощности (включение / выключение) на нагрузку (лампа, свет, потолочный вентилятор, розетка и т. Д.). Однако типичная схема будет включать 3-проводной кабель называется Ромекс. Он состоит из белого, черного и неизолированного медных проводов.

    A. Белый провод = нейтраль

    B. Черный провод = горячий или силовой

    С. Оголенный медный провод = Земля

    Подключение двухпозиционного переключателя требует, чтобы вы управляли горячим или черным проводом для включения и выключения нагрузки.

    На схеме поясняется, что источник питания входит слева. Здесь единственный провод, то есть черный провод, управляется двухпозиционным переключателем. К одному винту на стороне двухпозиционного переключателя подводится черный или горячий провод. Черный провод также идет от другого винта на двухпозиционном переключателе, идущем к нагрузке.Комбинированные белые провода помогают продолжить цепь.

    Источник изображения : how-to-wire-it.com

    Также важно подключить коммутатор к заземляющему проводу. Зеленый винт представляет собой заземляющий провод для подключения, как показано ниже.

    Источник изображения : инструкции по подключению.com

    Теперь все оголенные медные или заземляющие провода подключены. Схема двухпозиционного переключателя, показанная ниже, поможет вам понять основную концепцию подачи электроэнергии к нагрузке. Здесь вы должны воспринимать контролируемую нагрузку как свет.

    Источник изображения : how-to-wire-it.com

    2.Схема 3-ходового переключателя

    Этот трехпозиционный переключатель также использует трехжильный кабель Romex, идущий от источника. Между трехпроводным кабелем и трехпозиционными переключателями также проложен 4-проводный кабель. Трехжильный кабель содержит тот же провод, что и белый провод, черный провод и неизолированный медный провод, тогда как четырехжильный кабель содержит дополнительный красный провод, который также является горячим.

    Источник изображения : инструкции по подключению.com

    Левая коробка

    Здесь левый винт в нижнем положении является стандартным и получает свой черный провод от 3-х проводного источника. Тем не менее, левый винт в верхней части получает черный провод от 4-х проводной правой коробки.

    Правая коробка

    В ней левый винт в нижнем положении получает черный провод от 3-х проводной нагрузки.Левый винт в верхнем положении получает красный провод от 4-х проводной левой коробки. Его правый винт в верхней части получает черный провод от 4-проводной левой коробки.

    Источник изображения : how-to-wire-it.com

    3. Подключите розетку

    Стандартные розетки также являются дуплексными розетками.При подключении розетки необходимо выбрать один из нескольких вариантов. Вам понадобится трехжильный кабель в обеих розетках для подключения розетки (горячей. Также вам понадобится четырехжильный кабель для переключения верхней или нижней розетки.

    Источник изображения : how-to-wire-it.com

    Черный или горячий провод, идущий слева, является основным источником питания. Провод перевязан проводом, идущим к черному проводу и выключателю, который далее идет к розетке.

    Источник изображения : how-to-wire-it.com

    Как нарисовать электрическую схему в Edraw?

    После того, как мы лучше всего поняли основную концепцию, мы должны перейти к изучению того, как нарисовать электрическую схему с помощью одного из лучших онлайн-инструментов - Edraw Max.Чтобы сделать схему подключения в Интернете, перейдите на официальный сайт Edraw и выполните следующие действия.

    Шаг 2: Выберите Электротехника и Базовая электрическая часть. Поскольку создание электрической схемы - это электрическая концепция, вам необходимо выбрать Электротехника на боковой панели.Это приведет вас к различным параметрам в главном интерфейсе, откуда вы должны перейти к Basic Electrical .

    Шаг 3: Создайте шаблон. Следующим шагом будет создание вашего шаблона. Во-первых, вам нужно выбрать значок + Basic Electrical . Этот выбор приведет вас к основному интерфейсу создания диаграммы, как показано ниже.

    Шаг 4: Создайте электрическую схему с помощью различных инструментов.

    В этом окне вы можете создать свою электрическую схему, выбирая различные символы коммутационной схемы из библиотеки символов. Доступны различные символы, такие как путь передачи, квалификационные символы, полупроводниковые устройства, переключатели и реле, а также другие необходимые электрические символы.

    Статьи по теме

    Как читать электрические схемы

    Электрическая схема - это схема, которая показывает, как соединены все провода и компоненты в электронной схеме.Они похожи на карту для построения или устранения неисправностей схем и могут рассказать вам почти все, что вам нужно знать, чтобы понять, как работает схема.

    Умение читать электрические схемы - действительно полезный навык. Чтобы начать развивать свои способности к чтению схем, важно запомнить наиболее распространенные схематические символы. Каждый физический компонент (например, резистор, конденсатор, транзистор) имеет уникальный схематический символ. Основная цель этого руководства - показать вам основные компоненты схемы, которые вы должны знать.

    Недостаточно просто уметь распознавать компоненты в схеме. Вы также должны иметь возможность получить общее представление о том, как работает схема, просто взглянув на нее. После этой статьи я рекомендую прочитать «Как анализировать схемы», где мы обсуждаем более продвинутые методы анализа схем, такие как закон Кирхгофа по току и закон Кирхгофа по напряжению.

    ИСТОЧНИКИ ПИТАНИЯ

    Источники питания поставляют электрическую энергию в цепь в виде напряжения и тока.Каждая функциональная электронная схема должна иметь источник постоянного или переменного тока.

    Источники питания постоянного тока

    Источники питания постоянного тока (DC) вырабатывают электрический ток, который течет в постоянном направлении. Это схематический символ источника питания постоянного тока:

    Источник питания переменного тока с

    Источники питания переменного тока (AC) вырабатывают электрический ток в двух направлениях. Это схематический символ источника питания переменного тока:

    Тесто х годов

    Батарея - это распространенный тип источника постоянного тока.Схематический символ батареи состоит из коротких и длинных параллельных линий. Более длинная линия представляет собой положительную клемму аккумулятора, а более короткая линия представляет отрицательную клемму:

    Земля

    Земля - ​​это общий обратный путь цепи, по которому ток возвращается к своему источнику. Это часто называют отрицательной стороной схемы. Это схематический символ заземления:

    Клеммы

    Клеммы - это точки подключения к внешним цепям.Для внешних подключений клеммы обозначены пустыми кружками:

    Концевые соединения отличаются от узлов или соединений, обозначенных сплошными кружками:

    Переключатели

    Переключатели замыкают или разрывают соединение в цепи. Они также позволяют вам изменить путь тока.

    Переключатель SPST es

    Переключатель SPST (однополюсный, однопозиционный) - это переключатель включения и выключения. Два схематических символа ниже показывают различные состояния переключателя SPST.Верхний символ указывает на то, что переключатель находится в выключенном положении, что блокирует прохождение тока. Нижний символ указывает на то, что переключатель включен, что позволяет току течь через переключатель.

    Переключатель SPDT es Переключатели

    SPDT (однополюсные, двухпозиционные) могут направлять путь тока к различным частям цепи. В зависимости от положения переключателя существует два пути прохождения тока в этом переключателе:

    Переключатель мгновенного действия es

    Переключатели мгновенного действия остаются разомкнутыми или замкнутыми только при нажатии.Кнопочные переключатели являются наиболее распространенным типом переключателей мгновенного действия. Эти переключатели либо нормально разомкнутые, либо нормально замкнутые. Верхний схематический символ ниже показывает нормально разомкнутый кнопочный переключатель в разомкнутом положении, а нижний символ показывает нормально замкнутый кнопочный переключатель в замкнутом положении:

    Многоточечный переключатель es

    Многоточечные переключатели позволяют переключать путь входного тока на несколько различных выходных путей.

    Переключатели

    DPST (двухполюсные, однопозиционные) имеют 2 входа и 2 выхода.Эти переключатели позволяют управлять током на два выхода. Поскольку переключатели одноходовые, две выходные клеммы будут включаться и выключаться одновременно. На схемах ниже показаны разомкнутый переключатель DPST (слева) и замкнутый переключатель DPST (справа):

    Переключатели

    DPDT (двухполюсные, двухпозиционные) имеют две клеммы для входного тока и четыре клеммы для выходного тока. Эти переключатели позволяют переключать путь двух входных токов на четыре отдельных пути вывода.Вот схематический символ переключателя DPDT:

    Резистор с Резистор

    А - один из самых основных пассивных компонентов схемы. Резисторы обладают электрическим сопротивлением, ограничивающим ток. Схематический символ резистора показан ниже. Символ слева - это соглашение, используемое в Соединенных Штатах, а символ справа - международный стандарт:

    .

    Переменный резистор с

    Переменный резистор может увеличивать или уменьшать свое сопротивление в зависимости от внешнего входа.Аналоговые датчики, такие как фоторезисторы и термисторы, являются типами переменных резисторов, поскольку их сопротивление изменяется при изменении уровня света или температуры. Схематическое обозначение переменного резистора аналогично фиксированному резистору, но диагональная стрелка помещена посередине:

    Потенциометр с

    Потенциометр - это трехконтактный переменный резистор, который используется для регулировки напряжения и тока в цепи. Два вывода резистора - это V + и земля.Стрелка представляет собой дворник потенциометра, где выходное напряжение берется из:

    Фоторезистор с

    Фоторезисторы, также известные как светозависимые резисторы (LDR), представляют собой светочувствительные переменные резисторы, которые изменяют сопротивление в зависимости от уровня освещенности. Это схематическое обозначение фоторезистора:

    .

    Конденсатор с

    Конденсаторы - это пассивные электронные компоненты, накапливающие электрический заряд. Есть два распространенных типа конденсаторов - неполяризованные и поляризованные.

    Неполяризованный конденсатор с

    Неполяризованные конденсаторы не имеют полярности, поэтому не имеет значения, какая сторона подключена к плюсу, а какая - к минусу. Эти конденсаторы обычно имеют меньшую емкость, чем поляризованные конденсаторы:

    Поляризованный конденсатор с

    Поляризованные конденсаторы имеют полярность, поэтому имеет значение, какая сторона подключена к плюсу, а какая - к земле. Поляризованные конденсаторы обычно имеют более высокие значения емкости по сравнению с неполяризованными конденсаторами.Вот схематический символ поляризованного конденсатора:

    .

    Катушки индуктивности

    Катушки индуктивности - это пассивные компоненты, которые создают магнитное поле, когда через них протекает ток. Индукторы могут быть такими же простыми, как катушка с проволокой. Схематическое обозначение катушки индуктивности похоже на катушку:

    .

    Трансформаторы Трансформаторы

    используются для повышения или понижения напряжения. Они состоят из двух катушек, намотанных вокруг железного сердечника, поэтому на схематическом изображении есть две катушки с прямыми линиями между ними.Линии представляют собой железный сердечник:

    Реле

    Реле - это переключатель с электрическим управлением. Реле в основном представляют собой электромагниты, подключенные к исполнительному механизму, который размыкает и замыкает переключатель при подаче тока на катушку:

    Диоды

    Диод - это поляризованное устройство, пропускающее ток только в одном направлении. Поляризованный, он имеет положительный вывод (анод) и отрицательный вывод (катод). Плоский край треугольника - анод, линия - катод:

    Транзисторы

    Транзисторы используются либо для усиления напряжения, либо для переключения электрических токов.Наиболее распространенными транзисторами являются транзисторы с биполярным переходом (BJT). Есть два основных типа BJT-транзисторов - NPN и PNP. Транзисторы NPN включаются, когда ток течет через базу транзистора, а транзисторы PNP включаются, когда на базе транзистора нет тока. Верхний схематический символ показывает транзистор NPN, а нижний символ показывает транзистор PNP:

    Интегральные схемы Интегральные схемы

    - это схемы, содержащие от сотен до миллионов резисторов, конденсаторов и транзисторов в небольшом корпусе.Интегральные схемы выполняют множество функций. Существуют интегральные схемы для усилителей звука, таймеров, микропроцессоров и многого другого. Три наиболее часто используемых интегральных схемы - это таймер 555, аудиоусилитель LM386 и операционный усилитель LM358.

    Таймер

    555

    Чаще всего таймер 555 используется для обеспечения синхронизированных электрических задержек. Однако его также можно использовать как осциллятор и как элемент триггера. На схеме ниже показано фактическое расположение контактов таймера 555 с внутренней схемой IC:

    .

    Второе изображение является схематическим обозначением таймера 555, используемого в схемах:

    Операционный усилитель с

    Операционные усилители - это усилители напряжения со входами и обычно с одним выходом.Их также называют операционными усилителями. Условное обозначение операционного усилителя выглядит так:

    Модель

    LM386

    Аудиоусилитель LM386 - это операционный усилитель, специально разработанный для маломощного усиления звука. Будучи маломощным, он идеально подходит для аудиоустройств с батарейным питанием, таких как гитары, радио и любых других схем, издающих звук. Вот схема контактов LM386:

    И это символ, используемый на принципиальных схемах:

    LM358

    LM358 - это интегральная схема двойного операционного усилителя, работающая от общего источника питания.Обычно используется в качестве усилителя преобразователя, интегратора, дифференциатора или повторителя напряжения. Вот схема контактов LM358:

    А вот символ, используемый на принципиальных схемах:

    Схематические символы для операционных усилителей обычно не показывают контакты, которые не используются в цепи, как в случае с символом LM358 выше, где показаны только пять из восьми контактов.

    Логические ворота

    Логические вентили - это электронные схемы, обрабатывающие сигналы, представляющие истинные или ложные значения.Четыре стандартные логические функции - это И, ИЛИ, НЕ и ИСКЛЮЧАЮЩЕЕ ИЛИ. В дополнение к этим функциям есть также логические вентили И-НЕ, ИЛИ-ИЛИ и ИСКЛЮЧИТЕЛЬНОЕ НЕ.

    И

    Выход логического элемента И истинен, когда все его входы истинны. Вот схематический символ логического элемента И:

    ИЛИ

    Выход логического элемента ИЛИ является истинным, если хотя бы один из его входов истинен. Вот схематический символ ворот OR:

    НЕ

    Элемент НЕ выводит сигнал, противоположный входу, поэтому его также называют инвертором.Следовательно, выход истинен, когда вход ложен. Вот схематический символ ворот НЕ:

    XOR

    Элемент «исключающее ИЛИ» или исключающее ИЛИ имеет два входа. Выход элемента XOR может быть истинным только тогда, когда один вход истинен, а другой - ложен. Вот схематический символ логического элемента XOR:

    NAND

    Логический элемент «НЕ-И» или «НЕ-И» может иметь два или более входа. Выход логического элемента И-НЕ истинен, если какой-либо из входов ложен.Вот схематический символ логического элемента И-НЕ:

    НОР

    Элемент «НЕ-ИЛИ» или «НЕ-ИЛИ» имеет два или более входов. Выход логического элемента ИЛИ-НЕ истинен, когда все его входы ложны. Вот схематический символ ворот ИЛИ:

    XNOR

    Элемент «исключающее ИЛИ-ИЛИ» или ИСКЛЮЧАЮЩЕЕ ИЛИ имеет два входа. Выход логического элемента XNOR истинен только тогда, когда оба его входа истинны или когда оба его входа ложны. Вот схематический символ ворот XNOR:

    Оптоэлектронные устройства

    Оптоэлектронные устройства - это устройства, которые используют свет и электричество для различных целей.Оптоэлектронные устройства можно разделить на две категории - светочувствительные и светоизлучающие. Например, вот схематический символ светочувствительного устройства, называемого фотодиодом:

    В отличие от этого, вот схематическое обозначение светоизлучающего устройства, называемого светоизлучающим диодом (LED):

    Динамик с

    Динамик преобразует электрическую энергию в звуковую. Его схематический символ выглядит как реальный динамик:

    Микрофон s

    Микрофоны - это преобразователи, преобразующие звуковые волны в электрический сигнал.Вот схематический символ микрофона:

    Предохранитель с

    Предохранители - это предохранительные устройства, обеспечивающие защиту от перегрузки по току в электрической цепи. Основным элементом предохранителя является провод узкого сечения, который плавится, когда через него протекает слишком большой ток. Вот схематический символ предохранителя:

    Двигатель с

    Двигатель преобразует электрическую энергию в кинетическую. Его схематический символ - круг с буквой «M», а положительные и отрицательные клеммы слева и справа:

    Антенна с

    Антенна - это устройство, которое принимает или передает радиосигналы.Вот схематический символ антенны:

    Провода и соединения на схемах

    Теперь, когда вы знакомы с общими символами, используемыми в схематических диаграммах, давайте посмотрим, как читать соединения и пересечения проводов. Провода представлены линиями, а соединения - точками.

    На изображениях ниже показаны схематические обозначения проводов, когда они физически соединены в цепи. Точки над перекрестками называются узлами:

    Отсутствие узла означает, что провода не соединены, а просто проходят друг мимо друга, вот так:

    Есть еще один способ показать неподключенные провода на схеме с полукругом над точкой пересечения проводов, например:

    Теперь, когда вы знакомы с основными условными обозначениями и соединениями проводов, вы готовы читать простую схему.Не забывайте о полярностях. Ниже представлена ​​простая схема, состоящая всего из трех элементов - батареи, светодиода и резистора:

    Батарея 9 В питает цепь, а резистор ограничивает ток батареи, чтобы не перегорел светодиод. Помните, что положительная сторона диода - это плоский край треугольника, а отрицательная сторона - прямая линия.

    Понимание того, как читать схемы, также поможет вам при желании изменить схему.Но это также важно и для многих других целей, например, для поиска и устранения неисправностей в схемах и проектирования печатных плат. Надеюсь, вы нашли этот урок полезным! Не стесняйтесь оставлять комментарии ниже, если у вас есть какие-либо вопросы…


    Электрические чертежи и обзор схем

    Проектирование, установка и устранение неисправностей электрических систем требует использования различных чертежей, чтобы дать инженерам, установщикам и техническим специалистам визуальное представление систем, с которыми они работают.

    Электрооборудование и схемы часто выражаются в виде символов и линий, которые представляют различные компоненты и соединения внутри системы. Уровень сложности электрического чертежа будет варьироваться в зависимости от предполагаемого назначения и персонала, работающего с чертежом.

    Инженеры-конструкторы и технические специалисты

    используют схемы для построения и устранения неисправностей сложных цепей, в то время как операторы предприятий используют однолинейные схемы и схемы стояков для облегчения операций переключения в своей распределительной системе.Умение читать и интерпретировать различные типы электрических чертежей - важный навык, которым должны обладать все электротехники для эффективного выполнения своих задач.

    Символы и линии на электрическом чертеже говорят на языке, который все участники должны понимать, чтобы проектировать, строить и устранять неисправности электрических систем. В этой статье мы кратко опишем несколько типов общих электрических схем, встречающихся в полевых условиях, и объясним их назначение.

    Схема однолинейная

    Однолинейная схема распределительного устройства Medoum-Voltage

    .Фотография: General Electric

    Когда вам нужен вид энергосистемы с высоты птичьего полета, однолинейная схема часто является первым чертежом, к которому следует обратиться. Эти рисунки, также называемые однолинейными диаграммами, показывают поток электроэнергии или ход электрических цепей и то, как они связаны.

    Физические взаимосвязи обычно не учитываются на однолинейной схеме, однако они должны отображать все основные компоненты в энергосистеме и перечислять все важные характеристики. Системное напряжение, полное сопротивление трансформатора, отключающие характеристики и ток короткого замыкания - это лишь некоторые из основных элементов, включенных в однолинейную схему.

    Эти чертежи должны храниться в главном диспетчерском пункте предприятия, чтобы помочь в управлении операциями переключения путем определения фидеров и нагрузки, которую они обслуживают. Обычно включаются напряжение системы, частота, фаза и нормальные рабочие положения.

    Другие элементы, такие как коэффициенты измерительного трансформатора и защитные реле, можно найти на однолинейной схеме. Если диаграмма не может охватить все задействованные компоненты, можно нарисовать дополнительные диаграммы вместе с основной диаграммой.

    Связанные: Обозначения электрических однолинейных схем


    Трехлинейная схема

    Трехпроводная схема шины 4160 В. Фото: NRC.gov

    Для более детального представления системы распределения электроэнергии используется трехлинейная диаграмма, показывающая соотношение фаз. В многофазных системах переменного тока эти чертежи иллюстрируют различные соединения для A, B, C, нейтрали и заземления, каждое из которых представлено своей собственной линией.

    Трехлинейные схемы дополняют однолинейные, предоставляя базовое визуальное руководство для реальной прокладки кабеля фидера, соединений измерительного трансформатора и защитных устройств.На этих чертежах показано, как соединены фазы и конкретные конфигурации обмоток без учета их физического расположения.


    Схема подъема

    Схема электрического стояка

    . Фото: BGR Engineers.

    Чтобы проиллюстрировать электрическую распределительную систему многоуровневого здания, используется диаграмма стояка. Эти чертежи похожи на однолинейные чертежи, но часто фокусируются на том, как энергия перетекает с одного уровня здания на другой.

    На схемах

    Riser показаны компоненты распределения, такие как стояки для шин, шинные вилки, щитовые панели и трансформаторы, от точки входа до небольших ответвлений на каждом уровне.Эти чертежи иногда могут использоваться совместно с системами охранной сигнализации, телекоммуникационными и интернет-кабелями.


    Принципиальная схема

    Пример электронной принципиальной схемы. Фото: DOE.gov

    Основная цель принципиальной схемы - выделить элементы схемы и то, как их функции соотносятся друг с другом. Схемы - чрезвычайно ценный инструмент для поиска и устранения неисправностей, который определяет, какие компоненты включены последовательно или параллельно, и как они соединяются друг с другом.

    Компоненты, которые обычно встречаются на принципиальных схемах, включают резисторы, конденсаторы, катушки индуктивности, диоды, логические вентили, контакты предохранителей, переключатели и многое другое.Каждый компонент на принципиальной схеме имеет свой собственный символ, обозначающий его.

    Схематические диаграммы должны быть расположены для простоты и легкости понимания без учета фактического физического расположения любого компонента, уделяя внимание только тому, как они соединяются вместе. Эти схемы всегда должны быть нарисованы с переключателями и контактами, показанными в обесточенном положении.

    Связано: Разъяснение схемы управления автоматическим выключателем


    Схема электрических соединений

    Схема подключения реле датчика нагрузки

    Exmpale.Фото: Площадь Д.

    Основная цель электрической схемы - показать все компоненты в электрической цепи и расположить их так, чтобы показать их фактическое физическое расположение. В отличие от принципиальной схемы, которую можно рассматривать как концептуальный чертеж, схема подключения предназначена для конечных пользователей и установщиков, которые сосредоточены на подключении и устранении неполадок компонентов.

    На схемах подключения

    должны быть указаны все части оборудования, устройства и клеммные колодки с их соответствующими номерами, буквами или цветами.Обозначения клемм и соединений между компонентами четко обозначены, чтобы облегчить сборку или ремонт оборудования, показанного на чертеже.


    Блок-схема

    Пример блок-схемы. Фото: Mercer.edu

    Возможно, самый простой тип электрических чертежей, блок-схемы представляют основные компоненты сложной системы в виде блоков, соединенных между собой линиями, которые показывают их отношение друг к другу. Эти диаграммы не следует путать с однолинейными чертежами, поскольку они не передают никакой технической информации, а только основные компоненты сложной системы.

    Блок-схема дает концептуальное представление о том, как завершается процесс, без учета электрических символов или терминов. Каждый блок представляет собой сложную схему, которая может быть объяснена с помощью других чертежей, таких как схемы и электрические схемы.


    Логическая схема

    Логическая схема реле отказа выключателя

    . Фото: SEL, Inc.

    .

    В современных реле защиты используются логические схемы для представления сложных цепей и процессов, в которых сигнал рассматривается в двоичном формате (1 или 0).Логические функции на этих схемах представлены соответствующими символами, тогда как блоки используются для представления сложной логической схемы.

    Блоки на логической схеме помечены для лучшего понимания без знания внутренней структуры и соединены линиями, которые представляют входы и выходы для двоичных сигналов. Логические схемы обычно не показывают электрические характеристики, такие как напряжение, ток и мощность.


    Расписания

    Примеры расписания двигателей и питателей.Фотография: Волусский уезд, Флорида

    При перечислении таких позиций, как автоматические выключатели и размеры проводов для конкретного проекта или части распределительного оборудования, используется расписание. Термин «график» может также относиться к датам, в которые должно быть завершено определенное действие, обычно называемым «графиком проекта».

    Что касается распределения электроэнергии, то графики часто включаются в чертежи распределительных щитов и щитов, чтобы перечислить количество автоматических выключателей, их размер и нагрузки, которые они обслуживают.Расписания фидеров используются, чтобы помочь определить размер и количество проводов, используемых для входящих и исходящих грузов в рамках строительного проекта.

    Расписания

    обычно представлены в табличной форме и организованы таким образом, чтобы не требовать пояснений, что упрощает быстрый поиск информации. Информация в расписании обычно не включает однолинейные схемы или схемы соединений, но они обычно идентифицируют эту информацию со справочными чертежами, легендами и примечаниями.


    Рабочие чертежи

    Каждый раз, когда строительный проект завершается, «Как построено» представляет собой измененный чертеж, созданный и отправленный подрядчиком, чтобы выделить любые изменения, которые были внесены в первоначальные проектные чертежи в процессе строительства.


    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *