Цепь электрическая схема – “Электрическая цепь и электрическая схема.. Электрическая цепь Электрические цепи позволяют получать токи, направлять и распределять их так, чтобы разные.”. Скачать бесплатно и без регистрации.
- Комментариев к записи Цепь электрическая схема – “Электрическая цепь и электрическая схема.. Электрическая цепь Электрические цепи позволяют получать токи, направлять и распределять их так, чтобы разные.”. Скачать бесплатно и без регистрации. нет
- Советы абитуриенту
- Электрическая цепь. Как и чем прозвонить основные элементы электрической схемы?
- Электрическая схема – цепь – Большая Энциклопедия Нефти и Газа, статья, страница 1
- Электрическая цепь схема. Электрическая цепь
- Схемы электрических цепей, параметры и элементы электрических цепей, ЭДС. Схемы электрических цепей
- Схемы электрических цепей и их элементы.
- Принципиальные схемы электрических цепей | Вольтик.ру
- Схемы электрических цепей постоянного тока. — МегаЛекции
Электрическая цепь. Как и чем прозвонить основные элементы электрической схемы?
В электротехнике рассматривается устройство и принцип действия основных электротехнических устройств, используемых в быту и промышленности. Чтобы электротехническое устройство работало, должна быть создана электрическая цепь, задача которой передать электрическую энергию этому устройству и обеспечить ему требуемый режим работы.
Электрическая цепь, схема эксперимента
Электрическая цепь — это совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об электрическом токе, ЭДС (электродвижущая сила) и электрическом напряжении. Для анализа и расчета электрическая цепь графически представляется в виде электрической схемы, содержащей условные обозначения ее элементов и способы их соединения.
Все устройства и объекты, входящие в состав электрической цепи, могут быть разделены на три группы:
1) Источники электрической энергии (питания).
Общим свойством всех источников питания является преобразование какого-либо вида энергии в электрическую. Источники, в которых происходит преобразование неэлектрической энергии в электрическую, называются первичными источниками. Вторичные источники – это такие источники, у которых и на входе, и на выходе – электрическая энергия (например, выпрямительные устройства).
2) Потребители электрической энергии.
Общим свойством всех потребителей является преобразование электроэнергии в другие виды энергии (например, нагревательный прибор). Иногда потребители называют нагрузкой.
3) Вспомогательные элементы цепи: соединительные провода, коммутационная аппаратура, аппаратура защиты, измерительные приборы и т.д., без которых реальная цепь не работает.
Когда электрический прибор внезапно перестает работать, то у его владельца появляется желание самостоятельно разобраться с неисправностью и устранить ее. Для этого необходимо убедиться в целостности электрической схемы, качестве подключения соединительных проводов, исправности переключателей, коммутационных аппаратов и других элементов. Такая проверка заключается в измерении электрического сопротивления цепи. На языке электриков ее называют «прозвонкой».
Электрическая цепь, как происходит замер сопротивления
Проверка сопротивления любой электрической схемы основана на действии закона Ома для участка цепи, через который пропускают ток и замеряют его величину. На вход проверяемой схемы подают стабилизированное напряжение. Обычно для этого используют химические источники тока:
- гальванические батарейки
- аккумуляторы
Электрическая цепь, как происходит замер сопротивления в электрической цепи
Реже применяют выпрямленное напряжение от сети переменного тока. Если схема целая и в ней отсутствуют обрывы, то ток преодолеет полное сопротивление цепи, а его величина выразится соотношением I=U/R
Самодельные приборы-прозвонки
Простейшие устройства, которыми пользуются электрики для проверки сопротивления, называют «прозвонками». Самую простую из них можно сделать самостоятельно, исходя из приведенного ниже описания.
К одному концу батарейки припаивают цоколь лампочки от карманного фонаря, а к другому — гибкий электрический провод в изоляции с зажимом-крокодилом на конце. На второй контакт лампочки крепится медная проволока 2,5 квадрата, выполняющая роль щупа. Если посадить крокодил на щуп, то цепь прозвонки замкнется и через нее потечет ток. Его величина достаточна для разогрева нити накала и свечения лампочки. Яркость света зависит от:
- состояния батарейки (при большом разряде напряжение снижается)
- величины сопротивления участка цепи
Если между щупом и крокодилом поместить резистор, то величина его сопротивления скажется уменьшением свечения лампочки. Например, номинальный ток нити накала величиной 100 мА создается при прямом подключении к новой батарейке. Когда при проверке резистора ток снизится до 80 мА, то свечение будет хорошо заметно. При значительном же увеличении сопротивления или разрыве цепи лампочка потухнет.
Таким простым методом электрики проверяют целостность проводов и других участков схемы с величиной сопротивления до нескольких десятков Ом. При этих замерах в проверяемой цепи не должно присутствовать напряжение от посторонних источников, которыми могут быть:
- заряженные конденсаторы
- наводки от соседних электротехнических устройств
- параллельно подключенные цепочки со своим питанием
Внимание! Принцип отсутствия напряжения от постороннего источника на проверяемой схеме должен выполняться при замере сопротивления любым прибором. Иначе не только проявится увеличенная погрешность, но может выйти из строя измерительный прибор.
Если электрики по ошибке подключают такие прозвонки к фазному и нулевому проводникам в действующей электропроводке, то нить накала лампочки от проходящего тока мгновенно получает тепловой удар, от которого стеклянный баллон взрывается и разлетается мелкими осколками. Аналогичные ошибки при замерах омметрами и мультиметрами приводят к перегоранию токопроводящих пружин измерительных головок или компонентов схем у новых электронных моделей. Только дорогие приборы ведущих производителей снабжаются защитой от коротких замыканий, возникающих при подобных ситуациях. Но стоит ли их проверять таким способом? Основной недостаток самодельных прозвонок такого типа — это отсутствие возможности определения высокоомных сопротивлений. Поэтому их используют только при проверках токовых низкоомных цепей.
Многофункциональные индикаторы напряжения-отвертки
Такие устройства сейчас массово выпускаются промышленностью. Они позволяют выполнять 5 основных функций при работе с электричеством. Одна из них — замер сопротивления, который осуществляется подключением контролируемого участка через цепь, созданную между пальцами человека.
В конструкции подобных многофункциональных приборов для замера сопротивления используются:
- элементы питания с общим напряжением 3 вольта
- биполярный транзистор, усиливающий сигнал тока индикации
- светодиод, свечение которого свидетельствует о прохождении тока через проверяемый участок цепи
- наконечник отвертки, служащий контактной площадкой
Маломощные источники напряжения этих приборов способны выдать в схему только токи низких значений, которые при усилении транзистором достигают всего десятка миллиампер. Этого вполне достаточно для свечения светодиода. Однако, проверять ими можно целостность предохранителей, нитей накала лампочек и подобных простых устройств. При измерениях в сложных схемах многофункциональные индикаторы работают некорректно потому, что способны прозвонить высокоомные участки, созданные заниженным сопротивлением окружающей среды. Этот их основной недостаток часто вводит в заблуждение электриков.
Омметры
Их массовое производство в СССР началось с 1940 года. В конструкцию прибора входят:
- эбонитовый корпус с клеммными выводами для подключения проводов к измеряемому сопротивлению
- батарейка на 4,5 вольта, размещаемая в отсеке питания с контактными пластинами
- амперметр, проградуированный в Омах
- регулировочное сопротивление для калибровки напряжения, подаваемого в схему
На корпусе прибора около выходных контактов знаками «+» и «—» промаркирована полярность подаваемого на схему напряжения. Такой омметр измеряет активное сопротивление от 20 до 2000 Ом. На практике электрикам приходится работать не только в этом диапазоне, а с более высокими и низкими значениями. С этой целью выпускают:
- мегаомметры различной мощности, выдающие повышенное напряжение в проверяемую схему
- измерительные мосты, позволяющие делать точные замеры малоомных сопротивлений
Мультиметры, тестеры
Для удобства выполнения электрических замеров на базе омметра работают комбинированные приборы, позволяющие оценивать величины сопротивлений на шкалах:
- Омов
- килоОмов
- мегаОмов
Они имеют одну точную измерительную головку, которая с помощью шунтов или добавочных сопротивлений, подключаемых системой различных режимных переключателей, может работать в качестве:
- омметра
- амперметра
- вольтметра
Для каждого режима на общей шкале нанесена собственная цифровая градуировка в соответствующих единицах. Три объединенных функции измерения сопротивления, тока и напряжения послужили поводом называть такие приборы:
- мультиметром (образовано от слов «много» и «мерить»)
- авометром (сокращение от «ампер», «вольт», «ом», «измерение»)
- тестером (обозначает возможность проведения «тестов»)
Современные приборы работают как на основе обработки аналоговых величин, так и с применением цифровых технологий. Они у большинства моделей снабжены дисплеем, на который сразу выводится значение измеряемого параметра. Это удобно потому, что:
- облегчается снятие показании
- не требуется разбираться с градуировкой шкалы
- отпадает необходимость заниматься дополнительными математическими вычислениями
Однако, принцип подачи напряжения на измеряемый участок цепи и замер величины тока, протекающего через сопротивление, остался прежним во всех устройствах. Электрик, хорошо понимающий, как работает закон Ома, всегда разберется с назначением переключателей и способами отображения информации на любой приборе, выполнит правильно замер сопротивления.
Электрическая цепь, как проверить исправность прибора
Основное правило точного определения сопротивления — это грамотная подготовка измерительного оборудования к работе и использование его по назначению.
Электрическая цепь, проверка целостности электрической цепи
На производственных предприятиях все электроизмерительные приборы, включая омметры, должны своевременно проверяться на:
- целостность изоляции и иметь штамп испытательной лаборатории, подтверждающий разрешение на эксплуатацию в действующих электроустановках
- правильность работы в заявленном классе точности и иметь клеймо поверителя
У бытовых приборов этими вопросами должен заниматься владелец, сдавая свой тестер в соответствующие лаборатории. Перед каждым замером сопротивления необходимо:
- выставить стрелочный прибор в горизонтальной плоскости и зафиксировать его
- проверить предварительную установку стрелки на ноль
- выполнить градуировку источника напряжения
- перевести все переключатели прибора в соответствующий режим измерения
- оценить исправность подключения соединительных проводов и их целостность, для чего замкнуть концы и проверить реакцию стрелки или цифрового отображения сопротивления на дисплее
И всегда помните о проверке отсутствия напряжения на тестируемом участке до начала измерений.
Электрическая цепь, как вызвонить основные элементы электрической схемы
При контроле величины сопротивления любого участка цепи проверяемый компонент подключается на выходные клеммы измерительного прибора, переведенного в режим омметра.
Провода и кабели
Исправная металлическая жила обладает сопротивлением, близким к нулю, а изоляционный слой на ней — стремящимся к бесконечности. Это правило взято за основу проверки проводов и кабелей. Внутри электропроводки встречаются кабельные линии и провода, соединенные различными способами. До начала замера каждый кабель и провод необходимо разъединить с двух сторон, иначе могут возникнуть ошибки из-за дополнительно подключенных цепочек. Если необходимо оценить сборку электрической схемы, то проверяют:
- целостность жил
- отсутствие посторонних цепочек, которые могут возникнуть при нарушениях изоляции
В первом случае работают омметром, а во втором — мегаомметром определенного напряжения и мощности. Когда на одну жилу подается напряжение с омметра, то измерительная головка на исправном проводе покажет «0» Ом. Действующие кабели, которые подлежат прозвонке, могут быть проложены в земле и протянуты на несколько сотен метров. Такое удаление противоположных концов осложняет замер. Выход из создавшейся ситуации состоит в удлинении измерительного провода за счет:
- использования заранее проверенной и промаркированной жилы
- подключения одного конца омметра и противоположной стороны провода к контурам заземления для создания пути тока через землю
При поиске повреждений изоляции, приведшей к коротким замыканиям в сети лучше работать мегаомметром и последовательно замерять сопротивление каждой жилы относительно всех остальных и землей. У кабелей разного назначения нормируемое сопротивление изоляции может колебаться от 0,5 до нескольких мегаом. При выявлении мест нарушения изоляции провода бракуют и выводят из эксплуатации.
Предохранитель
Поскольку этот элемент представляет собой короткий отрезок проволоки, помещенный в диэлектрический корпус, то его исправное состояние будет соответствовать показанию 0 на шкале омметра, а оборванное — ∞.
Резистор
Его изготавливают для работы в схемах с различными значениями электрического сопротивления, которое может быть от долей Ома до нескольких мегаом. Поэтому при проверках резисторов пользуются всеми режимами омметра.
Диод
Основное назначение этого полупроводникового элемента состоит в пропускании тока в одну сторону и блокировании в другую. Поскольку омметр при подключении к схеме выдает ток определенной полярности, то у исправного диода при прямом подключении прибора будет 0 Ом, а при обратном — ∞. Если при прямом и обратном включении омметр показывает 0 или ∞, то диод пробит или перегорел. Его необходимо менять.
Светодиод
В практической электротехнике встречаются как единичные, так и комплексные светодиодные конструкции. Они работают по принципу обычного диода, дополнительно излучающего свет при прохождении тока через него. Когда ток заблокирован, то свечения не будет. На первый взгляд технология проверки светодиода ничем не отличается от предыдущего способа. Но здесь есть особенность: ток номинального свечения большинства светодиодов составляет порядка 10 мА. Если омметр выдает значительно меньшую величину, то свечения просто не будет видно. Это чаще всего присуще современным экономным и дорогим мультиметрам. Значительно превышать ток через светодиод самодельной прозвонкой тоже не рекомендуется. Полупроводниковый слой может не выдержать увеличенный тепловой режим. Поэтому при таких проверках необходимо знать технические возможности измерительного прибора и ограничивать время испытаний. Лучше всего для проверки светодиода использовать регулируемый источник с возможностью плавного увеличения тока до 10 мА.
Катушка индуктивности, трансформатор, электродвигатель, дроссель
Эти устройства выполняют намоткой изолированного провода на катушку, которая размещается внутри магнитопровода. Каждый виток обмотки при прохождении тока создает вокруг себя электромагнитное поле, которое складывается с полями остальных витков. Если изоляция проводов между витками будет нарушена, то возникает электрический контакт (межвитковое замыкание), которое резко уменьшает суммарную индуктивность. При прозвонке таких обмоток их активное сопротивление меняется так незначительно, что выявить подобную неисправность замером омметром невозможно. Межвитковые замыкания определяют:
- включением под нагрузку в цепях переменного тока
- снятием вольтамперной характеристики
Методом омметра можно только определить обрыв провода или нарушение контактного соединения в обмотке.
ТЭН
Теплонагревательные элементы работают в электрочайниках, электрических котлах отопления, обогревателях. Они изготовлены из нихромовой проволоки, помещенной в металлический корпус и подсоединенной к контактным ножкам. При замере исправного ТЭНа показание сопротивления на омметре будет иметь небольшое значение, которое может составлять от нескольких единиц до десятков Ом (зависит от конструкции). Обрыв нити проявится индикацией ∞. У мощных обогревателей используют несколько ТЭНов, которые подключают параллельно, а клеммы располагают рядом. В таких случаях надо внимательно разобраться с принадлежностью клеммных выводов. При прозвонке ТЭНа надо дополнительно замерять мощным мегаомметром сопротивление изоляции между нихромовой нитью и корпусом. Если оно пробито, то обогреватель надо браковать, иначе при его работе будет присутствовать потенциал напряжения на корпусе.
Лампа накаливания
Ее нить тоже состоит из нихромовой проволоки, которая расположена между центральным и боковым контактами и обладает в холодном состоянии сопротивлением от 3 до 200 Ом. Обрыв же часто можно увидеть визуально.
Люминесцентная лампа
Стеклянная герметичная трубчатая колба заполнена инертным газом, а по обоим торцам расположены по 2 контактных вывода, подключенные к нитям накала. Их надо прозвонить с каждой стороны. Если одна из них оборвана, то лампа неисправна и светить не будет.
Энергосберегающие и светодиодные лампы
Компактные люминесцентные лампы имеют такое же устройство, как и обычные, только у них электронная схема запуска вмонтирована внутри корпуса цоколя. Подключиться к колбе для выполнения замера без демонтажа конструкции не получится. Поэтому такие лампы, как и светодиодные, проверяют подачей напряжения, а разборкой схемы занимаются только при ремонте.
Будем рады, если подпишетесь на наш Блог!
[wysija_form id=»1″]
powercoup.by
Электрическая схема – цепь – Большая Энциклопедия Нефти и Газа, статья, страница 1
Электрическая схема – цепь
Cтраница 1
Электрическая схема цепей АВР выполнена так, что одновременное включение двух контакторов невозможно. [2]
Электрические схемы цепей вторичной коммутации изображают обычно в виде так называемых разверток ( развернутых схем), на которых каждая цепь показана от одного полюса до другого ( от одной фазы до другой), независимо от фактического расположения контактов и катушек, входящих в цепь. Такие схемы гораздо нагляднее обычных схем, на которых показаны аппараты в целом, а соединяющие проводники нанесены в соответствии с ситуационным расположением аппаратов. [3]
Электрическая схема цепи высокого напряжения ясна из этого же рисунка. Основой КРУ является стальной сварной каркас, к которому крепятся оборудование и стенки ячейки. [4]
В электрической схеме цепи управления ( рис. 139 6) силовая цепь остается такой же, как на рис. 136 6; контакты реле давления включены в аварийную цепь, образуемую контактами кнопки пуск и стоп, контактами РД и катушкой промежуточного реле РП. [5]
В электрической схеме цепи управления ( рис. 139 6) силовая цепь остается такой же, как на рис. 136 6; ко: нта / кты реле давления включены в аварийную цепь, образуемую контактами кнопки пуск и стоп, контактами РД и катушкой промежуточного реле РП. [6]
В электрических схемах цепи или в схемах замещения узлы изображаются точками. Формально все эти точки также можно считать узлами схемы. Особенность таких мнимых узлов заключается в том, что они соединены участками цепи, где протекают токи и нет напряжений, так как сопротивление таких участков считаем равным нулю. По этой причине потенциалы таких узлов равны и их можно изобразить одним узлом, несколько видоизменив схему. [7]
В электрических схемах цепи или в схемах замещения узлы изображаются точками. Формально все эти точки также можно считать узлами схемы. Особенность таких мнимых узлов заключается в том, что они соединены участками цепи, где протекают токи и нет напряжений, так как сопротивление таких участков считаем равным нулю. По этой причине потенциалы таких узлов равны, и их можно изобразить одним узлом, несколько видоизменив схему. [8]
Графическое изображение электрической цепи с помощью условных обозначений ее элементов называется электрической схемой цепи. [9]
Полученное отрицательное значение тока / 2 свидетельствует о том, что в электрической схеме цепи направление тока было указано неправильно. Действительное направление тока противоположно указанному на схеме. [10]
Увеличение амплитуды импульсов в 103 – Ш6 раз при переходе от области пропорционального усиления к гейгеровской области позволяет существенно упростить электрическую схему внешней приемной цепи счетчика Гейгера по сравнению с пропорциональным счетчиком. Зато пропорциональный счетчик дает возможность различать частоты рентгеновских лучей по амплитуде импульсов. Специальный ламповый блок – амплитудный анализатор, – поставленный в выходной цепи, позволяет отделить импульсы с амплитудами, лежащими в заданной области, и тем самым отфильтровать лучи определенных длин волн от лучей других частот без потери в их интенсивности, неизбежной при использовании фильтров. В рентгеноструктурном анализе эта особенность пропорционального счетчика используется для уменьшения фона – частичного устранения побочных импульсов, регистрируемых счетчиком. [11]
Заметим, что если для обмотки, изображенной на рис. 2.3, а, питаемой от источника ЭДС евнеш и не имеющей активного сопротивления, изображение на рис. 2.3, б является не только условным изображением обмотки, но и схемой ее замещения – индуктивностью, то для вторичной обмотки воздушного трансформатора ( рис. 2.3, а) схема рис. 2.3 6 – только условное изображение обмотки, но не индуктивность в электрической схеме цепи обмотки. [12]
Рассмотрим задачу поворота вала двигателя постоянного тока с управлением по току возбуждения. Электрическая схема цепи возбуждения приведена на рис. 3.1. Управляющее напряжение u ( t) прикладывается к обмотке возбуждения. [13]
Для питания цепей управления и обмоток возбуждения постоянным током на этом экскаваторе, так же как и на экскаваторах СЭ-3 и ЭКГ-4, установлен возбудитель В.
Если на объект охлаждения работает несколько компрессоров ( два и более), то может быть осуществлен один из видов плавного регулирования пропорциональное или астатическое, при этом электрические схемы не отличаются друг от друга и только настройка приборов автоматики различна. На рис. 141 представлена электрическая схема цепи управления для трех компрессоров, работающих на один объект охлаждения при пропорциональном или астатическом регулировании. [15]
Страницы: 1 2
www.ngpedia.ru
Электрическая цепь схема. Электрическая цепь
Электрическая цепь – это… Что такое Электрическая цепь?
Рисунок 1 — Условное обозначение электрической цепиЭлектри́ческая цепь — совокупность устройств, элементов, предназначенных для протекания электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий сила тока и напряжение.
Изображение электрической цепи с помощью условных знаков называют электрической схемой (рисунок 1).
Классификация электрических цепей
Неразветвленные и разветвленные электрические цепи
Рисунок 2 — Разветвленная цепьЭлектрические цепи подразделяют на неразветвленные и разветвленные. На рисунке 1 представлена схема простейшей неразветвленной цепи. Во всех элементах ее течет один и тот же ток. Простейшая разветвленная цепь изображена на рисунке 2. В ней имеются три ветви и два узла. В каждой ветви течет свой ток. Ветвь можно определить как участок цепи, образованный последовательно соединенными элементами (через которые течет одинаковый ток) и заключенный между двумя узлами. В свою очередь узел есть точка цепи, в которой сходятся не менее трех ветвей. Если в месте пересечения двух линий на электрической схеме поставлена точка (рисунок 2), то в этом месте есть электрическое соединение двух линий, в противном случае его нет. Узел, в котором сходятся две ветви, одна из которых является продолжением другой, называют устранимым или вырожденным узлом
Линейные и нелинейные электрические цепи
Линейной электрической цепью называют такую цепь, все компоненты которой линейны. К линейным компонентам относятся зависимые и независимые идеализированные источники токов и напряжений, резисторы (подчиняющиеся закону Ома), и любые другие компоненты, описываемые линейными дифференциальными уравнениями, наиболее известны электрические конденсаторы и индуктивности. Если цепь содержит отличные от перечисленных компоненты, то она называется нелинейной.
Изображение электрической цепи с помощью условных обозначений называют электрической схемой. Функция зависимости тока, протекающего по двухполюсному компоненту от напряжения на этом компоненте называют вольт-амперной характеристикой (ВАХ). Часто ВАХ изображают графически в декартовых координатах. При этом по оси абсцисс на графике обычно откладывают напряжение, а по оси ординат — ток.
В частности, омические резисторы, ВАХ которых описывается линейной функцией и на графике ВАХ являются прямыми линиями, называют линейными.
Примерами линейных (как правило, в очень хорошем приближении) цепей являются цепи, содержащие только резисторы, конденсаторы и катушки индуктивности без ферромагнитных сердечников.
Некоторые нелинейные цепи можно приближенно описывать как линейные, если изменение приращений токов или напряжений на компоненте мало, при этом нелинейная ВАХ такого компонента заменяется линейной (касательной к ВАХ в рабочей точке). Этот подход называют “линеаризацией”. При этом к цепи может быть прменён мощный математический аппарат анализа линейных цепей. Примерами таких нелинейных цепей, анализируемых как линейные относятся практически любые электронные устройства, работающие в линейном режиме и содержащие нелинейные активные и пассивные компоненты (усилители, генераторы и др.).
Законы, действующие в электрических цепях
См. также
Литература
- Электротехника: Учеб. для вузов/А. С. Касаткин, М. В. Немцов.— 7-е изд., стер.— М.: Высш. шк., 2003.— 542 с.: ил. ISBN 5-06-003595-6
- Бессонов Л.А. Теоретические основы электротехники. Электрические цепи. — М.: Гардарики, 2002. — 638 с. — ISBN 5-8297-0026-3
Ссылки
dal.academic.ru
Электрическая цепь: состав и элементы
Электрическая цепь – набор разнородных элементов, соединенных проводниками, предназначенный для протекания тока. Ассортимент составляющих широкий. Элементы выпускают линейные, нелинейные, активные, пассивные. Классификация бессильна охватить возможные случаи.
Состав электрической цепи
Электрическая цепь включает (в общем случае): источник питания, рубильник (выключатель), соединительные провода, потребителей. Обязательно сформируйте замкнутый контур. В противном случае по цепи не сможет течь ток. Электрическими не принято называть контуры заземления, зануления. Однако по сути считаются таковыми, иногда здесь течет ток. Замыкание контура при заземлении, занулении обеспечивается посредством грунта.
Источники питания. Внутренняя, внешняя электрическая цепь
Для образования упорядоченного движения носителей заряда, формирующего ток, потрудитесь создать разность потенциалов на концах участка. Достигается подключением источника питания, который в физике принято называть внутренней электрической цепью. В противовес прочим элементам, составляющим внешнюю. В источнике питания заряды движутся против направления поля. Достигается приложением сторонних сил:
- Обмотка генератора.
- Гальванический источник питания (батарейка).
- Выход трансформатора.
Напряжение, формируемое на концах участка электрической цепи, бывает переменным, постоянным. Сообразно в технике принято контуры делить соответствующим образом. Электрическая цепь предназначена для протекания постоянного, переменного тока. Упрощенное понимание, закон изменения упорядоченного движения носителей заряда воспринимается сложным. С трудом понимаем, переменный в цепи ток или постоянный.
Помимо упорядоченного движения носители характеризуются хаотичным тепловым движением. Скорость (интенсивность) определена температурой, родом материала, некоторыми другими факторами. В образовании электрического тока вид движения участия фактически не принимает.
Род тока определен источником, характером внешней электрической цепи. Гальванический элемент дает постоянное напряжение, обмотки (трансформаторы, генераторы) – переменное. Связано с протекающими в источнике питания процессами.
Сторонние силы, обеспечивающие движения зарядов, называют электродвижущими. Численно ЭДС характеризуется работой, совершаемой генератором для перемещения единичного заряда. Измеряется вольтами. На практике для расчета цепей удобно делить источники питания двумя классами:
- Источники напряжения (ЭДС).
- Источники тока.
В действительности неизвестны, имитацию пытаются создать практики. В розетке ожидаем увидеть 230 вольт (220 вольт по старым нормативам). Причем ГОСТ 13109 однозначно устанавливает пределы отклонения параметров от нормы. В быту пользуемся источником напряжения. Параметр нормируется. Величина тока не играет значения. Напряжение подстанции круглые сутки стремятся сделать постоянным вне зависимости от текущего запроса потребителей.
В противовес источник тока поддерживает заданный закон упорядоченного движения носителей заряда. Значение напряжения роли не играет. Ярким примером подобного рода устройств выступает сварочный аппарат на базе инвертора. Каждый знает: диаметр электрода прочно связан с толщиной металла, прочими факторами. Чтобы процесс сварки шел правильно, приходится с высокой степенью постоянства поддерживать то
xn—-7sbeb3bupph.xn--p1ai
Схемы электрических цепей, параметры и элементы электрических цепей, ЭДС. Схемы электрических цепей
Электрические цепи, элементы электрических цепей. Условные обозначения элементов электрической цепи
Электротехнические устройства очень важны в жизни современного цивилизованного человека. Но для их работы необходимо соблюдение целого ряда требований. В рамках статьи мы внимательно рассмотрим электрические цепи, элементы электрических цепей и как они функционируют.
Что нужно для работы электротехнического устройства?
Для его функционирования должна быть создана электрическая цепь. Её задача – передавать энергию устройству и обеспечивать требуемый режим работы. Что же называют электрической цепью? Так обозначают совокупность объектов и устройств, которые образуют путь передвижения тока. При этом электромагнетические процессы могут быть описаны с помощью знаний об электрическом токе, а также тех, что предлагает электродвижущая сила и напряжение. Стоит отметить, что, говоря о таком понятии, как элемент электрической цепи, сопротивление в данном случае будет играть довольно значительную роль.
Нюансы графической маркировки
Чтобы удобнее было анализировать и рассчитывать электрическую цепь, её изображают в виде схемы. В ней содержатся условные обозначения элементов, а также способы из соединения. В целом, что собой представляет электрическая цепь в виде схемы, хорошо дают понять, использованные в статье фотографии. Периодически можно встретить рисунки с иными схемами. Почему это так? Обозначения элементов электрической цепи схем, созданных на территории СНГ и других стран, немного разнятся. Это происходит из-за использования различных систем графической маркировки. Основные элементы электрической цепи, в зависимости от конструкции и роли в схемах, могут быть классифицированы по разным системам. В рамках статьи их будет рассмотрено три.
Виды элементов
Условно их можно разделить на три группы:
- Источники питания. Особенностью данного вида элементов является то, что они могут превращать какой-то вид энергии (чаще всего химическую) в электрическую. Различают два типа источников: первичные, когда в электрическую энергию превращается другой вид, и вторичные, которые на входе, и на выходе имеют электрическую энергию (в качестве примера можно привести выпрямительное устройство).
- Потребители энергии. Они преобразовывают электрический ток во что-то другое (освещение, тепло).
- Вспомогательные элементы. Сюда относят различные составляющие, без которых реальная цепь не будет работать, как то: коммутационная аппаратура, соединительные провода, измерительные приборы и прочее, подобное по назначению.
Все элементы охвачены одним электромагнитным процессом.
Как трактовать изображения на практике?
Чтобы рассчитать и проанализировать реальные электрические цепи, используют графическую составляющую в виде схемы. В ней, размещённые элементы изображаются с помощью условных обозначений. Но здесь есть свои особенности: так, вспомогательные элементы обычно на схемах не указываются. Также, если сопротивление у соединительных проводов значительно меньше, чем у составляющих, то его не указывают и не учитывают. Источник питания обозначается как ЭДС. При необходимости подписать каждый элемент, указывается, что у него внутреннее сопротивление r0. Но реальные потребители подставляют свои параметры R1, R2, R3, …, Rn. Благодаря этому параметру, учитывается способность элемента цепи преобразовывать (необратимо) электроэнергию в другие виды.
Элементы схемы электрической цепи
Условные обозначения элементов электрической цепи в текстовом варианте представлены быть не могут, поэтому они изображены на фото. Но всё же описательная часть должна быть. Так, необходимо отметить, что элементы электрической цепи делят на пассивные и активные. К первым относят, например, соединительные провода и электроприёмники. Пассивный элемент электрической цепи отличается тем, что его присутствием при определённых условиях можно пренебречь. Чего не скажешь о его антиподе. К активным элементам относят те из них, где индуцируется ЭДС (источники, электродвигатели, аккумуляторы, когда они заряжаются и так далее). Важными в этом плане являются специальные детали схем, которые обладают сопротивлением, что характеризуется вольт-амперной зависимостью, поскольку они взаимно влияют друг на друга. Когда сопротивление является постоянным независимо от показателя тока или напряжения, то данная зависимость выглядит как прямой отрезок. Называют их линейные элементы электрической цепи. Но в большинстве случаев, на величину сопротивления влияет и ток, и напряжение. Не в последнюю очередь это происходит из-за температурного параметра. Так, когда элемент нагревается, то сопротивление начинает возрастать. Если данный параметр находится в сильной зависимости, то вольт-амперная характеристика неодинакова в любой точке мысленного графика. Поэтому элемент называется нелинейным.
Как вы видите, условные обозначения элементов электрической цепи существуют разные и в большом количестве. Поэтому запомнить их сразу вряд ли удастся. В этом помогут схематические изображения, представленные в данной статье.
В каких режимах работает электрическая цепь?
Когда к источнику питания подключено разное количество потребителей, то соответственно меняются величины токов, мощностей и напряжения. А от этого зависит режим работы цепи, а также элементов, что в неё входят. Схему используемой на практике конструкции можно представить, как активный и пассивный двухполюсник. Так называют цепи, которые соединяются с внешней частью (по отношению к ней) с помощью двух выводов, которые, как можно догадаться, имеют разные полюса. Особенность активного и пассивного двухполюсника состоит в следующем: в первом имеется источник электрической энергии, а во втором он отсутствует. На практике широко используются схемы замещения во время работ
xn—-7sbeb3bupph.xn--p1ai
Схемы электрических цепей и их элементы.
Тема 1. Введение
Электротехника – техническая дисциплина, которая занимается анализом и практическим использованием для нужд промышленного производства и быта всех физических явлений, связанных с электрическими и магнитными полями. Область практического применения электротехники имеет четыре связанные друг с другом направления :
1. Получение электрической энергии.
2. Передача энергии на расстояние.
3. Преобразование электромагнитной энергии.
4. Использование электроэнергии.
Научно-технический прогресс происходит при все более широком использовании электрической энергии во всех отраслях отечественной промышленности. Поэтому электротехническая подготовка инженеров не электротехнических специальностей должна предусматривать достаточно подробное изучение вопросов теории и практики использования различных электроустановок. Инженер любой специальности должен знать устройство, принцип действия, характеристики и эксплуатационные возможности электрических цепей, электрических машин, различных аппаратов и другого электрооборудования, способы регулирования и управления ими.
История развития электротехники как науки связана с важнейшими исследованиями и открытиями. Это исследования атмосферного электричества, появление источников непрерывного электрического тока – гальванических элементов (1799 г.), открытие электрической дуги (1802 г.) и возможность ее использования для плавки металлов и освещения, открытие закона о направлении индуцированного тока (1832 г.) и принципа обратимости электрических машин, в 1834 г. впервые осуществлен электропривод судна, открытие закона теплового действия тока – закона Джоуля – Ленца (1844 г.), в 1876 г. положено начало практическому применению электрического освещения с изобретением электрической свечи, в 1889-1891 гг. созданы трехфазный трансформатор и асинхронный двигатель.
В настоящее время отечественная электроэнергетика занимает передовые позиции в мире по созданию мощных ГЭС и каскадов электростанций, производству мощных гидрогенераторов, высоким темпам теплофикации, строительству высоковольтных линий электропередач и мощных объединенных энергосистем, высокому техническому уровню электросетевого хозяйства.
В современных производственных машинах с помощью электротехнической и электронной аппаратуры осуществляется управление ее механизмами, автоматизация их работы, контроль за ведением производственного процесса, обеспечивается безопасность обслуживания и т.д. Все шире используется в технологических установках электрическая энергия, например, для нагрева изделий, плавления металлов, сварки.
Основной задачей данного курса является получение основных сведений и формирование знаний, умений и навыков по электротехнике, электронным устройствам и электроприводу.
Тема 2. Линейные электрические цепи постоянного тока.
Основные понятия и определения.
Электрической цепью называется совокупность источников и потребителей электрической энергии, соединенных друг с другом с помощью проводников.
Электрический ток – направленное движение заряженных частиц (электронов или ионов ).
Постоянный ток – ток, неизменный по величине и направлению.
Ветвью называется участок цепи между двумя соседними узлами, содержащий последовательное соединение элементов.
Точка, где соединяются три и более ветвей называется узлом.
Любой замкнутый путь, проходящий по ветвям данной цепи, называется контуром.
Основными параметрами, характеризующими электрические цепи постоянного тока, являются: I(А)- сила тока – количество электричества, проходящего через поперечное сечение проводника за единицу времени, U(В) – напряжение на некотором участке электрической цепи, равное разности потенциалов на концах этого участка, R(Ом) – сопротивление, Р(Вт)- мощность. Все обозначения основных физических величин предусмотрены государственным стандартом. Единицы измерения диктуются международной системой единиц.
Схемы электрических цепей и их элементы.
Графическое изображение электрической цепи и ее элементов называется электрической схемой (рис. 1)
![]() | На любую машину, в состав которой входят электрические устройства, кроме конструкторских чертежей имеется электродокументация, состоящая из различных электрических схем. Электрические функциональные схемы раскрывают принцип действия устройства. Существуют электромонтажные схемы, в которых раскрывается монтаж (соединение) электрических элементов цепи. Электрические принципиальные схемы раскрывают электрические связи всех отдельных элементов электрической цепи между собой. |
Все схемы вычерчиваются по определенным стандартам- ГОСТам. ГОСТы являются основой технического языка, применяемого в масштабе всей страны.
Кроме основных электрических схем существуют схемы замещения, по которым наиболее удобно составлять математические уравнения, описания электрических и энергетических процессов. Такие схемы являются эквивалентными моделями электрической цепи. Схемы максимально упрощены и по ним удобнее провести анализ отображаемых ими сложных электрических цепей.
Все элементы электрических цепей можно разделить на три группы: источники (активные элементы), потребители и элементы для передачи электроэнергии от источников к потребителю (пассивные элементы).
Источником электрической энергии (генератором) называют устройство, преобразующее в электроэнергию какой-либо другой вид энергии (электромашинный генератор – механическую, гальванический элемент или аккумулятор – химическую, фотоэлектрическая батарея – лучистую и т.п.).Источники делятся на источники напряжения (Е,U=соnst, при изменении и I) и источники тока (I=соnst, при изменении U). Все источники имеют внутреннее сопротивление Rвн, значение которого невелико по сравнению с сопротивлением других элементов электрической цепи .
Приемником электрической энергии (потребителем) называют устройство, преобразующее электроэнергию в какой-либо другой вид энергии (электродвигатель – в механическую, электронагреватель – в тепловую, источник света – в световую (лучистую) и т.п.).
Элементами передачи электроэнергии от источника питания к приемнику служат провода, устройства, обеспечивающие уровень и качество напряжения и др.
Условные обозначения элементов электрической цепи на схеме стандартизованы. Примеры:
Законы Ома и Кирхгофа
Закон Ома в простейшем случае связывает величину тока через сопротивление с величиной этого сопротивления и приложенного к нему напряжения:
Сила тока на некотором участке электрической цепи прямо пропорциональна напряжению на этом участке и обратно пропорциональна сопротивлению этого участка.
Закон Ома справедлив для любой ветви (или части ветви) электрической цепи, в таких случаях его называют обобщенным законом Ома. Для ветви, не содержащей ЭДС, закон Ома запишется:
Здесь – потенциалы крайних точек ветви, их разность можно заменить напряжением Uab.
Обобщенный закон Ома для ветви, содержащей ЭДС (т.е. для активной ветви):
Пример: Записать закон Ома для активной цепи на рис. 2.
Первый закон Кирхгофа
Алгебраическая сумма токов, сходящихся в любом узле электрической цепи равна нулю. При этом токи, текущие к узлу считаются положительными, а от узла – отрицательными. Другая формулировка: сумма токов, подходящих к узлу, равна сумме токов, отходящих от узла.
Первый закон Кирхгофа по сути является законом баланса токов в узлах цепи.
Второй закон Кирхгофа
В любом замкнутом контуре электрической цепи алгебраическая сумма падений напряжений на элементах, входящих в контур, равна алгебраической сумме ЭДС.
Второй закон Кирхгофа по сути является законом баланса напряжений в контурах электрических цепей.
Для составления уравнения по 2-му закону Кирхгофа выбирается произвольное направление обхода контура. Тогда, если направление тока в цепи совпадает с направлением обхода, то соответствующее слагаемое берется со знаком “+”, а если не совпадает, то со знаком “-“. Аналогичное правило расстановки знаков справедливо и для ЭДС.
Пример:
Уравнение по 2-му закону Кирхгофа может быть записано и для контура, имеющего разрыв цепи, однако при этом необходимо в уравнении учитывать напряжение между точками разрыва.
Пример:
pdnr.ru
Принципиальные схемы электрических цепей | Вольтик.ру
При разработке электрических/электронных устройств без электрических схем не перейти к созданию этих устройств (кроме самых простых).
Схема электрической цепи – графическое представление всех её элементов, их параметров и соединений между ними. Условные обозначения на схемах стандартизированы ЕСКД (Единая Система Конструкторской Документации).
Схемы электрических цепей по своему назначению делятся на несколько типов. Чаще всего используются принципиальные и монтажные схемы. Принципиальные схемы дают наиболее полное представление о работе и составе устройства, а монтажные схемы используются при проведении монтажных работ. Принципиальная схема, в отличие от монтажной схемы не показывает физическое расположение элементов относительно друг друга. На рисунке внизу можно увидеть отдельные элементы, пример простой принципиальной электрической схемы и направление тока в них.
На электрически заряженные частицы в цепи воздействуют не только силы электрической природы, но и при определённых условиях силы, обусловленные воздействием сторонних процессов, таких как, например, химические реакции, тепловые процессы и прочее. В результате этого в цепях образуется ЭДС (электродвижущая сила). То есть, ЭДС характеризует работу сил неэлектрического происхождения. В международной системе единиц ЭДС измеряется в вольтах, так же как и напряжение.
Ниже приведены условные обозначения самых распространённых радиоэлементов на принципиальных схемах.
Рисовать принципиальные схемы можно как от руки (удобно в небольших проектах), так и с помощью специализированного программного обеспечения, например, Proteus VSM. Proteus позволяет собрать принципиальную схему и эмулировать её работу, если схема содержит микроконтроллер – отладить его прошивку. Его бесплатная версия не позволяет сохранять файлы.
Также можно рекомендовать полностью бесплатную программу Fritzing, помимо создания принципиальных схем имеющую возможность создавать монтажные схемы. Однако, эмулировать работу цепи она не умеет. Fritzing предназначена в первую очередь для создания схем с использованием Arduino.
voltiq.ru
Схемы электрических цепей постоянного тока. — МегаЛекции
Курс лекций
Тема №2. Электротехника.
Основные параметры электрической цепи.
– Напряжение (Э.Д.С.) источника электрической энергии – U(B). Электрическое напряжение есть энергетическая характеристика поля вдоль рассматриваемого пути из одной точки в другую, которой оценивается возможность совершения работы при перемещении заряженных частиц между этими точками. Электродвижущая сила – характеристика источника энергии в электрической цепи. Электродвижущая сила измеряется отношением работы сторонних сил по перемещению заряда вдоль контура к величине этого заряда. ЭДС измеряется в вольтах.
– Электрический ток – направленное и упорядоченное движение электронов под действием электрического поля, создаваемого за счет Э.Д.С. источника питания. За направление электрического тока в электротехнике принято направление, противоположное направлению движения электронов. Всегда в электрической цепи ток направлен от положительного полюса источника к отрицательному.
– Сопротивление приемника электрической энергии – R(Ом). Противодействие, оказываемое материалом протеканию электрического тока, называется сопротивлением. Сопротивление проводника зависит от его геометрических размеров, материала и от температуры окружающей среды. Зависимость сопротивления от геометрических размеров и материала выражается формулой R=r, где R- сопротивление проводника, Ом; l – длина проводника, м; S – площадь поперечного сечения проводника, мм2; r – удельное сопротивление проводника,Ом´мм2/м.
– Мощность источника электрической энергии – Р(Вт).
– Мощность приемника электрической энергии – P(Вт). Работа приемника произведенная в единицу времени, называется мощностью P=A/t, [ Вт = Дж/С]. Мощность можно выразить также через напряжение и ток Р=UI, [ Вт=ВА]. Кроме ватта, применяются также производные единицы 1 мВт=10-3 Вт; 1кВт=103 Вт; 1МВт=106 Вт.
Схемы электрических цепей постоянного тока.
Под цепями постоянного тока подразумевают цепи, в которых ток не меняет своего направления, т.е. полярность источников Э.Д.С. в которых постоянна.
В электротехнике рассматривается устройство и принцип действия основных электротехнических устройств, используемых в быту и промышленности. Чтобы электротехническое устройство работало, должна быть создана электрическая цепь, задача которой передать электрическую энергию этому устройству и обеспечить ему требуемый режим работы.
«Электрической цепью называется совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об электрическом токе, ЭДС (электродвижущая сила) и электрическом напряжении».
Для анализа и расчета электрическая цепь графически представляется в виде электрической схемы, содержащей условные обозначения ее элементов и способы их соединения. Электрическая схема простейшей электрической цепи, обеспечивающей работу осветительной аппаратуры, представлена на рис. 1.
Рис. 1
Все устройства и объекты, входящие в состав электрической цепи, могут быть разделены на три группы:
1) Источники электрической энергии (питания).
Общим свойством всех источников питания является преобразование какого-либо вида энергии в электрическую. Источники, в которых происходит преобразование неэлектрической энергии в электрическую, называются первичными источниками. Вторичные источники – это такие источники, у которых и на входе, и на выходе – электрическая энергия (например, выпрямительные устройства).
2) Потребители электрической энергии.
Общим свойством всех потребителей является преобразование электроэнергии в другие виды энергии (например, нагревательный прибор). Иногда потребители называют нагрузкой.
3) Вспомогательные элементы цепи: соединительные провода, коммутационная аппаратура, аппаратура защиты, измерительные приборы и т.д., без которых реальная цепь не работает.
Все элементы цепи охвачены одним электромагнитным процессом.
В электрической схеме на рис. 1 электрическая энергия от источника ЭДС E, обладающего внутренним сопротивлением r0, с помощью вспомогательных элементов цепи передаются через регулировочный реостат R к потребителям (нагрузке): электрическим лампочкам EL1 и EL2.
Для расчета и анализа реальная электрическая цепь представляется графически в виде расчетной электрической схемы (схемы замещения). В этой схеме реальные элементы цепи изображаются условными обозначениями, причем вспомогательные элементы цепи обычно не изображаются, а если сопротивление соединительных проводов намного меньше сопротивления других элементов цепи, его не учитывают. Источник питания показывается как источник ЭДС E с внутренним сопротивлением r0, реальные потребители электрической энергии постоянного тока заменяются их электрическими параметрами: активными сопротивлениями R1, R2, …, Rn. С помощью сопротивления R учитывают способность реального элемента цепи необратимо преобразовывать электроэнергию в другие виды, например, тепловую или лучистую.
При этих условиях схема на рис. 1 может быть представлена в виде расчетной электрической схемы (рис. 2), в которой есть источник питания с ЭДС E и внутренним сопротивлением r0, а потребители электрической энергии: регулировочный реостат R, электрические лампочки EL1 и EL2 заменены активными сопротивлениями R, R1 и R2.
Рис. 2.
Источник ЭДС на электрической схеме (рис. 2) может быть заменен источником напряжения U, причем условное положительное направление напряжения U источника задается противоположным направлению ЭДС.
При расчете в схеме электрической цепи выделяют несколько основных элементов.
Ветвь электрической цепи (схемы) – участок цепи с одним и тем же током. Ветвь может состоять из одного или нескольких последовательно соединенных элементов. Схема на рис. 2 имеет три ветви: ветвь bma, в которую включены элементы r0, E, R и в которой возникает ток I; ветвь ab с элементом R1 и током I1; ветвь anb с элементом R2 и током I2.
Узел электрической цепи (схемы) – место соединения трех и более ветвей. В схеме на рис. 1.2 – два узла a и b. Ветви, присоединенные к одной паре узлов, называют параллельными. Сопротивления R1 и R2 (рис. 1.2) находятся в параллельных ветвях.
Контур – любой замкнутый путь, проходящий по нескольким ветвям. В схеме на рис. 2 можно выделить три контура: I – bmab; II – anba; III – manbm, на схеме стрелкой показывают направление обхода контура.
Условные положительные направления ЭДС источников питания, токов во всех ветвях, напряжений между узлами и на зажимах элементов цепи необходимо задать для правильной записи уравнений, описывающих процессы в электрической цепи или ее элементах. На схеме (рис. 2) стрелками укажем положительные направления ЭДС, напряжений и токов:
а) для ЭДС источников – произвольно, но при этом следует учитывать, что полюс (зажим источника), к которому направлена стрелка, имеет более высокий потенциал по отношению к другому полюсу;
б) для токов в ветвях, содержащих источники ЭДС – совпадающими с направлением ЭДС; во всех других ветвях произвольно;
в) для напряжений – совпадающими с направлением тока в ветви или элемента цепи.
Все электрические цепи делятся на линейные и нелинейные.
Элемент электрической цепи, параметры которого (сопротивление и др.) не зависят от тока в нем, называют линейным, например электропечь.
Нелинейный элемент, например лампа накаливания, имеет сопротивление, величина которого увеличивается при повышении напряжения, а следовательно и тока, подводимого к лампочке.
Следовательно, в линейной электрической цепи все элементы – линейные, а нелинейной называют электрическую цепь, содержащую хотя бы один нелинейный элемент.
Рекомендуемые страницы:
Читайте также:
Воспользуйтесь поиском по сайту:
megalektsii.ru