Что такое квант – Квант — Википедия

Квант — Википедия

Материал из Википедии — свободной энциклопедии

Квант (от лат. quantum — «сколько») — неделимая часть какой-либо величины в физике; общее название определённых порций энергии (квант энергии), момента количества движения (углового момента), его проекции и других величин, которыми характеризуют физические свойства микро- (квантовых) систем. В основе понятия лежит представление квантовой механики о том, что некоторые физические величины могут принимать только определённые значения (говорят, что физическая величина квантуется). В некоторых важных частных случаях эта величина или шаг её изменения могут быть только целыми кратными некоторого фундаментального значения[1] — и последнее называют квантом. Например, энергия монохроматического электромагнитного излучения угловой частоты ω{\displaystyle \omega } может принимать значения (N+1/2)ℏω{\displaystyle (N+1/2)\hbar \omega }, где ℏ{\displaystyle \hbar } — редуцированная постоянная Планка, а N{\displaystyle N} — целое число. В этом случае ℏω{\displaystyle \hbar \omega } имеет смысл энергии кванта излучения (иными словами, фотона), а N{\displaystyle N} — смысл числа́ этих квантов (фотонов). В смысле, близком к этому, термин квант был впервые введен Максом Планком в его классической работе 1900 года — первой работе по к

ru.wikipedia.org

Что такое кванты – Квантуз

На нынешнем ликбезе мы вынесем мозг рядовому гуманитарию темой, которая давно его интересует, но любые попытки почитать научно-познавательную литературу оканчивается зависанием над первой же формулой. Сейчас мы попросим всех физиков закрыть глаза и уши и расскажем остальным, что такое кванты. Наверняка, вы все постоянно встречаете это слово в литературе, телевизорах, интернетах, шаражкиных конторах и нанотехнолохотронах. Пора уже восполнить пробел и немножко врубиться в тему.


Самый простой способ объяснить, что такое кванты – это аналогия.

Возьмем расстояние между вашими глазами и монитором. Чисто математически это расстояние можно разделить на несколько отрезков. Сначала вполовину, потом еще на четыре, затем на восемь частей. И так, например, до бесконечности. И может показаться, что если вы захотите ткнуть пальцем в монитор, то не сможете это сделать, потому что это расстояние делится до бесконечности. Но вы знаете, что физически вы это сделаете без проблем, потому что, по-видимому, существует мельчайшая единица расстояния, меньше которой уже ничего нет.


Раньше считали, что мельчайший размер имеет атом, но нынче ученые докопались аж до кварков и суперструн. Но вопрос определения мельчайшего расстояния оставим физикам – рано или поздно нам предъявят эталон. Факт в том, что наш опыт подтверждает, что деление отрезка в реальности не бесконечно.

Эти рассуждения близки известному парадоксу Ахиллеса и черепахи. Древние тоже задумывались о бесконечности деления пространства. Так то!


Теперь возьмем другой пример из жизни. Энергию как она есть. Вы поджарили шашлык, и он, стало быть, теперь горячий. Излучает тепло, которое в общем случае является тем, что мы называем энергией, а физики – электромагнитными волнами. Жизненный опыт нам подсказывает, что энергия существует в виде непрерывных волн (помните, непонятные синусоиды на уроках алгебры). То есть энергия, как мы считаем, излучается непрерывно. До начала XX века все ученые мира тоже так думали.

А вот и нет. Выяснилось, что существует конечный кусочек энергии. Самая маленькая порция энергии, меньше которой не существует. Как и в случае с расстоянием, передачу энергии можно делить на кусочки (или пакеты, если вы вэб-программист, и вам так понятнее). Самый крошечный кусочек энергии и называют квантом.

Собственно на этом можно и закончить. Но ведь вам наверняка интересно, как это было обнаружено, да и почему из такого пустяка родилась целая наука – квантовая физика.

О том, что кванты существуют, никто не догадывался. Пока физики чисто из интереса не решили попрактиковаться в расчетах на всяких идеальных ситуациях. Они заморочились на так называемом абсолютно черном теле. Это такая выдуманная фиговина, типа духовки, которую нагревают, а она при этом не теряет (не отражает) ни капельки энергии – все тепло забирает себе без остатка.

Эта гипотетическая духовка после нагревания, разумеется, тоже начнет излучать тепло. Физики стали считать, сколько тепла (энергии) будет излучать такая духовка. И неожиданно у них по тогдашним, казалось бы логичным, формулам умника Максвелла выходила бесконечная энергия. Это была засада – практика показывала, что в реальности подобные бесконечности не наблюдается вообще нигде и тем более в духовках. И вот на этой ерунде вся классическая физика пошла лесом.

Первым что-то путное высказал Макс Планк – дедушка квантовой физики. Он чисто по-студенчески подогнал результат под задачу, придумав формулу, из которой следовало, что энергия излучается порциями. То есть каждая электромагнитная волна несет в себе определенное количество энергии, пропорциональное частоте этой волны. Чем больше частота волны, тем больше энергии несет в себе один квант. Коэффицент пропорциональности назвали постоянной Планка, которая впоследствии оказалась не просто какой-то случайной цифрой, а фундаментальной физической величиной.

Хорошая аналогия: когда мы играем на скрипке, и плавно увеличиваем громкость, то на самом деле громкость растет не непрерывно, а скачками, но такими маленькими, что мы не замечаем этого.


Планк, к сожалению, сам не понял, что открыл – до конца жизни он был противник квантовой физики. Квантование энергии было вообще очень оскорбительным для классиков. Один известный ученый-шутник (Гамов) объяснял квантование энергии так: это все равно, что природа разрешила либо пить целый литр пива сразу, либо вообще не пить ничего, не допуская промежуточных доз. Ну или аналогия от нас: вы покупаете пиво только в бутылках (разной емкости), но никакого розливного пива! Так получается и с энергией.


Формула Планка для излучения абсолютно черного тела выдала адекватный результат без всяких бесконечностей. Потому что кусочки энергии в отличие от бесконечно малых величин можно подсчитать. После этого научный мир замер в нехорошем предчувствии.

Окончательно добил классическую физику Эйнштейн. Его первым открытием была совсем не теория относительности. А объяснение фотоэффекта. За что он получил нобелевскую премию (а совсем не за ТО).

Фотоэффект – это когда свет падает на пластинку и выбивает из нее электроны. Только вот энергия выбитых электронов не зависит от увеличения мощности (яркости) света, хоть ставь сто ламп, но увеличивается только  число электронов, а не их скорость. Энергия же выбитых из пластинки электронов растет, если увеличить частоту волны света, уменьшая ее длину: то есть посветить не красным, а, например, фиолетовым светом. Свет с малой частотой, типа очень красного, вообще не производит эффекта. Это, кстати, напрямую касается великой тайны, почему фотографии проявляют при красном свете – только этот цвет не засвечивает пленку, улавливаете?

Явление фотоэффекта вообще никто не мог объяснить в рамках классической физики. На картинке, походу, нарисован прибор для изучения фотоэффекта.


Никто не мог, кроме Эйнштейна. Чтобы объяснить, почему цвет падающего луча света, а не его энергия, определяет скорость выбиваемых электронов, Эйнштейн решил перенести идейки о порциях энергии Планка на световую волну. Ведь озадаченный Планк применял свою теорию только к тепловым излучениям.

Для начала Эйнштейн впервые озвучил идею, что свет можно и нужно рассматривать не как волну, а как частицу (впоследствии ее назовут фотоном, а Эйнштейн называл ее световым квантом). Для любознательных: обычная лампочка в 100 Ватт излучает в секунду примерно сто миллиардов миллиардов фотонов (это 10 в 20 степени).

При фотоэффекте в силу размеров сражение между электроном и фотоном идет один на один. Чтобы фотон при столкновении с электроном вырвал последний из металлической пластинки, он должен иметь для этого достаточное количество энергии. А если применить формулу Планка именно для света, то выходило, что энергия каждого фотона пропорциональна частоте световой волны, то есть отдельно взятый фотон обладает определенной энергией, зависящей от собственной частоты. Вот и получалось, что частота света (его цвет) определяет скорость вылетающих электронов, а интенсивность (яркость) света влияет только на количество выбитых электронов. Это как сотни детишек будут сбивать снежками сосульки, но никто не сможет докинуть, а потом придет переросток из старшей группы и метнет снежок до самой крыши и собьет цель.

>
Таким образом, Эйнштейн показал, что электромагнитная волна (свет) состоит из маленьких частиц – фотонов, которые в свою очередь представляют собой маленькие порции или кванты света.


И после этого мир уже никогда не был прежним. Физики столкнулись с невероятным для макромира явлением, что материя может быть одновременно и частицей и волной, что энергия не делится бесконечно, а очень даже кратна некоему значению (постоянной Планка), что эти самые кванты обладают такими свойствами, что расскажи кому в приличной компании – не поверят и вызовут санитаров.

Эйнштейн был злостным противником квантовой физики. Он до самой смерти держал оборону, считая, что квантовые явления можно как-то нормально объяснить. Но разные там Нильсы Боры, Гейзенберги, Ландау и прочие открывали все новые и новые свойства квантов. А в 50-е годы, уже после смерти Эйнштейна квантовые штучки были подтверждены экспериментально и окончательно.

Может быть, в дальнейших наших ликбезах мы заглянем в парадоксы квантовой физики, если нам хватит слов и умения объяснить их человеческим гуманитарным языком.
Благодарим за внимание!


NB: Все изображения взяты из гугла (поиск по картинкам) – авторство определяется там же.
Незаконное копирование текста преследуется, пресекается, ну, и сами знаете.
..

quantuz.livejournal.com

Что такое квант, кварк, нуклон, атом, молекула? — Мегаобучалка

Квант (от нем. Quant—«квант», от лат. quantum — «сколько») — неделимая порция какой-либо элементарной частицы или величины вфизике (например, количество (порция) электромагнитного излучения, которое в единичном акте способен излучить или поглотить или др. квантовая система; элементарная частица, то же, что фотон). В основе понятия лежит представление квантовой механики о том, что некоторые физические величины могут принимать только определённые значения (говорят, что физическая величина

квантуется). [1]

В некоторых важных частных случаях эта величина или шаг её изменения могут быть только целыми кратными некоторого фундаментального значения — и последнее называют квантом. Например, энергия монохроматического электромагнитного излученияугловой частоты ω может принимать значения (N+1/2)ℏω, где ℏ — редуцированная постоянная Планка, а N — целое число. В этом случае ℏω имеет смысл энергии кванта излучения (иными словами, фотона), а N — смысл числа́ этих квантов (фотонов). Именно в этом смысле термин квант был впервые введен Максом Планком в его классической работе 1900 года — первой работе по квантовой теории, заложившей ее основу.

Вокруг идеи квантования с начала 1900-х годов развилась полностью новая физическая концепция, обычно называемая квантовой физикой (например, количество (порция) электромагнитного излучения, которое в единичном акте способен излучить или поглотить или др. квантовая система; элементарная частица, то же, что фотон).

Ныне прилагательное «квантовый» используется в названии ряда областей физики (квантовая механика, квантовая теория поля,квантовая оптика и т. д.). Широко применяется термин квантование, означающий построение квантовой теории некоторой системы или переход от её классического описания к квантовому. Тот же термин употребляется для обозначения ситуации, в которой физическая величина может принимать только дискретные значения — например, говорят, что энергия электрона в атоме «квантуется». Сам же термин «квант» в настоящее время имеет в физике довольно ограниченное применение. Иногда его употребляют для обозначения частиц или квазичастиц, соотвествующих бозонным полям взаимодействия (фотон — квант электромагнитного поля, фонон — квант поля звуковых волн в кристалле, гравитон — гипотетический квант гравитационного поля и т. д.), также о таких частицах говорят как о «квантах возбуждения» или просто «возбуждениях» соответствующих полей.



Кроме того, по традиции «квантом действия» иногда называют постоянную Планка. В современном понимании это название может иметь тот смысл, что постоянная Планка является естественной квантовой единицей измерения действия и других физических величин такой же размерности (например, момента импульса).

Кварк — фундаментальная частица в Стандартной модели, обладающая электрическим зарядом, кратным e/3, и не наблюдающаяся в свободном состоянии, но входящая в составадронов (сильновзаимодействующих частиц, таких как протоны и нейтроны). Кварки являются бесструктурными, точечными частицами; это проверено вплоть до масштаба примерно 5·10−18 м, что примерно в 20 тысяч раз меньше размера протона.

В настоящее время известно 6 разных «сортов» (чаще говорят — «ароматов») кварков, свойства которых даны в таблице. Кроме того, для калибровочного описания сильного взаимодействия постулируется, что кварки обладают и дополнительной внутренней характеристикой, называемой «цвет». Каждому кварку соответствует антикварк с противоположными квантовыми числами.

Гипотеза о том, что адроны построены из специфических субъединиц, была впервые выдвинута М. Гелл-Манном и, независимо от него, Дж. Цвейгом в 1964 году.

Нукло́ны (от лат. nucleus — ядро) — частицы, из которых построены атомные ядра. Нуклоны представлены протонами и нейтронами.

С точки зрения электромагнитного взаимодействия протон и нейтрон разные частицы, так как протон электрически заряжен, а нейтрон — нет. Однако с точки зрения сильного взаимодействия, которое является определяющим в масштабе атомных ядер, эти частицы неразличимы, поэтому и был введен термин «нуклон», а протон и нейтрон стали рассматриваться как два различных состояния нуклона, различающихся проекцией изотопического спина. Близость свойств изоспиновых состояний нуклона является одним из проявлений изотопической инвариантности.

Атом — это наименьшая частица химического элемента, сохраняющая все его химические свойства. Атом состоит из ядра, имеющего положительный электрический заряд, и отрицательно заряженных электронов. Заряд ядра любого химического элемента равен произведению Z на e, где Z — порядковый номер данного элемента в периодической системе химических элементов, е — величина элементарного электрического заряда.

Электрон — мельчайшая частица вещества с отрицательным электрическим зарядом е=1,6·10-19 кулона, принятым за элементарный электрический заряд. Электроны, вращаясь вокруг ядра, располагаются на электронных оболочках К, L, М и т. д. К — оболочка, ближайшая к ядру. Размер атома определяется размером его электронной оболочки. Атом может терять электроны и становиться положительным ионом или присоединять электроны и становиться отрицательным ионом. Заряд иона определяет число потерянных или присоединенных электронов. Процесс превращения нейтрального атома в заряженный ион называется ионизацией.
Атомное ядро
(центральная часть атома) состоит из элементарных ядерных частиц — протонов и нейтронов. Радиус ядра примерно в сто тысяч раз меньше радиуса атома. Плотность атомного ядра чрезвычайно велика. Протоны — стабильные элементарные частицы, имеющие единичный положительный электрический заряд и массу, в 1836 раз большую, чем масса электрона. Протон представляет собой ядро атома самого легкого элемента — водорода. Число протонов в ядре равно Z. Нейтрон— нейтральная (не имеющая электрического заряда) элементарная частица с массой, очень близкой к массе протона. Поскольку масса ядра складывается из массы протонов и нейтронов, то число нейтронов в ядре атома равно А — Z, где А — массовое число данного изотопа (см. Периодическая система химических элементов). Протон и нейтрон, входящие в состав ядра, называются нуклонами. В ядре нуклоны связаны особыми ядерными силами.
В атомном ядре имеется огромный запас энергии, которая высвобождается при ядерных реакциях. Ядерные реакции возникают при взаимодействии атомных ядер с элементарными частицами или с ядрами других элементов. В результате ядерных реакций образуются новые ядра. Например, нейтрон может переходить в протон. В этом случае из ядра выбрасывается бета-частица, т. е. электрон.
Переход в ядре протона в нейтрон может осуществляться двумя путями: либо из ядра испускается частица с массой, равной массе электрона, но с положительным зарядом, называемая позитроном (позитронный распад), либо ядро захватывает один из электронов с ближайшей к нему К-оболочки (К-захват).
Иногда образовавшееся ядро обладает избытком энергии (находится в возбужденном состоянии) и, переходя в нормальное состояние, выделяет лишнюю энергию в виде электромагнитного излучения с очень малой длиной волны — гамма-излучение. Энергия, выделяющаяся при ядерных реакциях, практически используется в различных отраслях промышленности.

Молекула (франц. molecule, от лат. moles — масса) — наименьшая способная к самостоятельному существованию частица вещества, обладающая его химическими свойствами.

Учение о строении и свойствах молекул приобрело исключительный интерес для познания субмикроскопической структуры клеток и тканей, а также механизма биологических процессов на молекулярном уровне. Большие успехи в изучении структуры М. и, в частности, М. таких биополимеров, как белки и нуклеиновые кислоты, показали, что важнейшие функции этих веществ в организмах осуществляются на уровне отдельных молекул и поэтому должны исследоваться как молекулярные явления. Установлено, например, что такие функции белков, как ферментативная, структурная, сократительная, иммунная, транспортная (обратимое связывание и перенос жизненно необходимых веществ) разыгрываются на молекулярном уровне и непосредственно определяются структурой и свойствами М. этих веществ. Наследственность и изменчивость организмов связаны с особой структурой и свойствами М. нуклеиновых кислот, в которых зафиксирована вся генетическая информация, необходимая для синтеза белков организма. Небольшие отклонения в структуре или составе молекул ряда биологически важных веществ или изменения в молекулярном механизме некоторых обменных процессов являются причиной возникновения ряда заболеваний (например, серповидноклеточная анемия, наследственная галактоземия, сахарный диабет и др.), называемых молекулярными болезнями.
Молекула каждого вещества состоит из определенного числа атомов (см.) одного химического элемента (простое вещество) или различных элементов (сложное вещество), объединенных посредством химических (валентных) связей. Состав М. выражают химической формулой, в которой знаки элементов указывают вид атомов, образующих М., а числа, стоящие справа внизу, показывают, сколько атомов каждого элемента входит в состав М. Так, из химической формулы глюкозы СвН12Ое следует, что М. глюкозы состоит из 6 атомов углерода, 12 атомов водорода и 6 атомов кислорода. Молекулы инертных газов и паров некоторых металлов одноатомны. Это самые простые М. Наиболее сложными являются М. белков (см.), нуклеиновых кислот (см.) и других биополимеров, состоящие из многих тысяч атомов.

megaobuchalka.ru

Квант — WiKi

Квант (от лат. quantum — «сколько») — неделимая часть какой-либо величины в физике; общее название определённых порций энергии (квант энергии), момента количества движения (углового момента), его проекции и других величин, которыми характеризуют физические свойства микро- (квантовых) систем. В основе понятия лежит представление квантовой механики о том, что некоторые физические величины могут принимать только определённые значения (говорят, что физическая величина квантуется). В некоторых важных частных случаях эта величина или шаг её изменения могут быть только целыми кратными некоторого фундаментального значения[1] — и последнее называют квантом. Например, энергия монохроматического электромагнитного излучения угловой частоты ω{\displaystyle \omega } может принимать значения (N+1/2)ℏω{\displaystyle (N+1/2)\hbar \omega }, где ℏ{\displaystyle \hbar } — редуцированная постоянная Планка, а N{\displaystyle N} — целое число. В этом случае ℏω{\displaystyle \hbar \omega } имеет смысл энергии кванта излучения (иными словами, фотона), а N{\displaystyle N} — смысл числа́ этих квантов (фотонов). В смысле, близком к этому, термин квант был впервые введен Максом Планком в его классической работе 1900 года — первой работе по квантовой теории, заложившей её основу. Вокруг идеи квантования с начала 1900-х годов развилась полностью новая физическая концепция, обычно называемая квантовой физикой.

Ныне прилагательное «квантовый» используется в названии ряда областей физики (квантовая механика, квантовая теория поля, квантовая оптика и т. д.). Широко применяется термин квантование, означающий построение квантовой теории некоторой системы или переход от её классического описания к квантовому. Тот же термин употребляется для обозначения ситуации, в которой физическая величина может принимать только дискретные значения — например, говорят, что энергия электрона в атоме «квантуется».

Сам же термин «квант» в настоящее время имеет в физике довольно ограниченное применение. Иногда его употребляют для обозначения частиц или квазичастиц, соответствующих бозонным полям взаимодействия (фотон — квант электромагнитного поля, фонон — квант поля звуковых волн в кристалле, гравитон — гипотетический квант гравитационного поля и т. д.), также о таких частицах говорят как о «квантах возбуждения» или просто «возбуждениях» соответствующих полей.

Кроме того, по традиции «квантом действия» иногда называют постоянную Планка. В современном понимании это название может иметь тот смысл, что постоянная Планка является естественной единицей измерения действия и других физических величин такой же размерности (например, момента импульса).

ru-wiki.org

КВАНТ – это… Что такое КВАНТ?

  • квант — квант, а; р. мн. ов …   Русское словесное ударение

  • квант — квант, а …   Русский орфографический словарь

  • квант — квант/ …   Морфемно-орфографический словарь

  • КВАНТ — КВАНТ, кванта, муж., и КВАНТА, кванты, жен. (от лат. quantum сколько) (физ.). Наименьшее количество какой нибудь физической величины, обладающее самостоятельным существованием. Теория квант. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 …   Толковый словарь Ушакова

  • КВАНТ — КВАНТ, кванта, муж., и КВАНТА, кванты, жен. (от лат. quantum сколько) (физ.). Наименьшее количество какой нибудь физической величины, обладающее самостоятельным существованием. Теория квант. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 …   Толковый словарь Ушакова

  • квант — кванта, флюксоид, фотон, плазмон, фонон Словарь русских синонимов. квант сущ., кол во синонимов: 7 • гамма квант (1) • …   Словарь синонимов

  • КВАНТ — КВАНТ, а, муж. В физике: наименьшее количество энергии, отдаваемое или поглощаемое физической величиной в её нестационарном состоянии. К. энергии. К. света. | прил. квантовый, ая, ое. Квантовая теория. Квантовая электроника. К. генератор.… …   Толковый словарь Ожегова

  • квант — а; м. [от лат. quantum сколько] Физ. 1. Наименьшее возможное количество, на которое может изменяться дискретная по своей природе величина (действие, энергия, количество движения т.п.). К. световой энергии. К. действия (одна из основных постоянных …   Энциклопедический словарь

  • Квант — («Квант»,)         ежемесячный физико математический научно популярный журнал АН СССР и АПН СССР. Издаётся с 1970 в Москве. Рассчитан на преподавателей средних школ и учащихся старших классов. Тираж около 34 тыс. экз. (1972). Главные редакторы (с …   Большая советская энциклопедия

  • КВАНТ — КВАНТ, в физике наименьшее количество какого либо физического свойства, например, вещества или излучения, которым может обладать система, согласно КВАНТОВОЙ ТЕОРИИ …   Научно-технический энциклопедический словарь

  • dic.academic.ru

    Слово КВАНТ – Что такое КВАНТ?

    Слово квант английскими буквами(транслитом) – kvant

    Слово квант состоит из 5 букв: а в к н т


    Значения слова квант. Что такое квант?

    Квант

    Квант (от лат. quantum — «сколько») — неделимая порция какой-либо величины в физике. В основе понятия лежит представление квантовой механики о том, что некоторые физические величины могут принимать только определённые значения…

    ru.wikipedia.org

    КВАНТ (quantum) Букв.: количество. Обычно термин используется в квантовой физике для обозначения минимальной порции дискретной физической величины. (Например, квантовая теория электромагнитного излучения основана на представлении о том…

    Критический словарь психоанализа

    Квант – мельчайшая далее неделимая количественно выраженная порция ч.-либо. У Гегеля “простой качественно определенный квант” означает ту необходимую количественную прибавку к субстрату…

    Кикель П. Краткий философский словарь

    Квант (от лат. quantum — сколько) — нечто численно измеримое; определенная величина. Квант энергии — конечное количество энергии, которое излучается или поглощается какой-либо микросистемой (ядерной, атомной, молекулярной) в элементарном…

    Начала современного естествознания. – 2006

    КВАНТ (лат. quantum – сколько) нечто численно измеримое; определенная величина: количество, вес, масса.

    Философская энциклопедия

    Квант-1

    КВАНТ-1 (English: Quantum-I/1) (37КЭ) второй модуль советской орбитальной космической станции «Мир». Первый модуль, пристыкованный к базовому блоку станции.

    ru.wikipedia.org

    Квант-2

    Квант-2 (англ. Quantum-II/2) (77KSD, TsM-D, 11F77D) — это третий модуль и второй пристыкованный модуль к космической станции «Мир». Его основная цель состояла в том, чтобы провести новые научные эксперименты…

    ru.wikipedia.org

    Квант (клуб)

    Клуб «Квант» — юмористический клуб физического факультета Новосибирского Государственного Университета, составная часть команды КВН НГУ.

    ru.wikipedia.org

    Квант энергии

    КВАНТ ЭНЕРГИИ — конечное кол-во энергии, к-рое может быть отдано или поглощено к.-л. микросистемой в отд. акте изменения её состояния. Напр., стационарным состояниям атома соответствует определ.

    Большой энциклопедический политехнический словарь

    Квант энергии – конечное количество энергии, которое может излучить или поглотить атом, молекула, атомное ядро и другая микросистема в одном акте изменения ее состояния (при квантовом переходе).

    glossary.ru

    Квант (журнал)

    «Квант» — научно-популярный физико-математический журнал для школьников и студентов, рассчитанный на массового читателя. В 1970—1992 годах журнал выпускался издательством «Наука», в 1993—2010 годах — издательством «Бюро Квантум»…

    ru.wikipedia.org

    “Квант”, ежемесячный физико-математический научно-популярный журнал АН СССР и АПН СССР. Издаётся с 1970 в Москве. Рассчитан на преподавателей средних школ и учащихся старших классов.

    БСЭ. — 1969—1978

    Квант действия

    Планка постоянная (квант действия) — одна из фундаментальных мировых постоянных (констант), играющая определяющую роль в микромире, проявляющуюся в существовании дискретных свойств у микрообъектов и их систем…

    Савченко В.Н., Смагин В.П. Начала современного естествознания. Тезаурус. – Ростов-на-Дону, 2006

    КВАНТ ДЕЙСТВИЯ то же, что (см. ПЛАНКА ПОСТОЯННАЯ). Физический энциклопедический словарь. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983. КВАНТ ДЕЙСТВИЯ – то же, что Планка постоянная. Физическая энциклопедия.

    Физическая энциклопедия. – 1988

    Квант действия, то же, что Планка постоянная.

    БСЭ. — 1969—1978

    КВАНТ МАГНИТНОГО ПОТОКА

    КВАНТ МАГНИТНОГО ПОТОКА минимальное значение магнитного потока Ф0 через кольцо из сверхпроводника с током; одна из фундаментальных физических констант.

    Физическая энциклопедия. – 1988

    КВАНТ МАГНИТНОГО ПОТОКА — минимальное значение магнитного потока Ф0 через кольцо из сверхпроводника с током; одна из фундаментальных физических констант.

    Физическая энциклопедия. – 1988

    КВАНТ МАГНИТНОГО ПОТОКА — миним. значение магн. потока Фо через кольцо сверхпроводника с током, обусловленным движением сверхпроводящих электронов; одна из фундамент. физ. констант.

    Словарь естествознания

    Русский язык

    Квант/.

    Морфемно-орфографический словарь. — 2002

    1. квантуется
    2. квантуются
    3. квантующий
    4. квант
    5. кварки
    6. кварковый
    7. кварк

    wordhelp.ru

    КВАНТ – это… Что такое КВАНТ?

  • квант — квант, а; р. мн. ов …   Русское словесное ударение

  • квант — квант, а …   Русский орфографический словарь

  • квант — квант/ …   Морфемно-орфографический словарь

  • КВАНТ — [нем. Quant Словарь иностранных слов русского языка

  • КВАНТ — КВАНТ, кванта, муж., и КВАНТА, кванты, жен. (от лат. quantum сколько) (физ.). Наименьшее количество какой нибудь физической величины, обладающее самостоятельным существованием. Теория квант. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 …   Толковый словарь Ушакова

  • квант — кванта, флюксоид, фотон, плазмон, фонон Словарь русских синонимов. квант сущ., кол во синонимов: 7 • гамма квант (1) • …   Словарь синонимов

  • КВАНТ — КВАНТ, а, муж. В физике: наименьшее количество энергии, отдаваемое или поглощаемое физической величиной в её нестационарном состоянии. К. энергии. К. света. | прил. квантовый, ая, ое. Квантовая теория. Квантовая электроника. К. генератор.… …   Толковый словарь Ожегова

  • квант — а; м. [от лат. quantum сколько] Физ. 1. Наименьшее возможное количество, на которое может изменяться дискретная по своей природе величина (действие, энергия, количество движения т.п.). К. световой энергии. К. действия (одна из основных постоянных …   Энциклопедический словарь

  • Квант — («Квант»,)         ежемесячный физико математический научно популярный журнал АН СССР и АПН СССР. Издаётся с 1970 в Москве. Рассчитан на преподавателей средних школ и учащихся старших классов. Тираж около 34 тыс. экз. (1972). Главные редакторы (с …   Большая советская энциклопедия

  • КВАНТ — КВАНТ, в физике наименьшее количество какого либо физического свойства, например, вещества или излучения, которым может обладать система, согласно КВАНТОВОЙ ТЕОРИИ …   Научно-технический энциклопедический словарь

  • dic.academic.ru