Электрический ток переменный и постоянный – Электрическое поле. Постоянный и переменный электрический ток. физические основы реографии

Содержание

ПОСТОЯННЫЙ И ПЕРЕМЕННЫЙ ТОК

В 21-веке электроника стала очень популярной. Многие люди хотят узнать больше о радиотехнике и начинают читать специальные книги, хотя многое в книгах не понятно. И поэтому начинают путаться, задавать много вопросов. Не могут найти подходящие и понятные сайты о электронике, где можно вкратце и просто понять что к чему. Но что-то мы далеко ушли, ладно давайте приступим к делу. Задача – рассказать всё подробнее и понятнее о постоянном и переменном токе.

Постоянный ток

До того времени, когда не было радиоприёмников и радиосвязи, был ток который тёк в одну сторону – его назвали постоянным, на графике он изображается прямой линией, как показано на рисунке ниже.

Давайте разберёмся, каков принцип работы этого тока, а он очень прост. Потому что постоянный ток течёт только в одну сторону. На мощных электростанциях вырабатывается переменный ток, его нужно сделать в постоянный. Постоянный ток может создать только гальванический элемент. Гальванический элемент – это элемент вырабатывающим постоянный ток, то есть обычная батарейка. Принцип работы батарейки разбирать не будем, нам сейчас главное, чтобы в вашей памяти уложился только постоянный и переменный ток. Допустим, мы выработали постоянный ток, он начнёт двигаться от плюса к минусу, это обязательно запомнить.

Переменный ток

Теперь переходим к переменному току, всё радиосвязь появилась, переменный ток стал изюминкой. Рассмотрим график переменного тока. Вы сразу обратили внимание на эти странные буквы, они нам не нужны, кроме одной – Т. У переменного тока есть особенность, он может менять своё направление, например: он, движется то в одну сторону, потом в другую. Этот процесс называется колебанием или периодом. На рисунке период обозначен этой самой буквой Т. Видно, что выше оси t волна, и ниже её, тоже волна. Это значит, что выше оси это движение к плюсу, а ниже, движение к минусу, проще говоря, это положительный полупериод, почему полупериод, потому что два полупериода равны T, то есть равны периоду, значит они всё таки полупериоды. Период – то же самое, что и колебание. Несколько колебаний совершённые в 1 секунду называют частотой. Итак, разобрались, что такое постоянный и переменный ток, думаю что разобрались.

Запомните: В розетке всегда 220 В переменного тока – он очень опасный. Один удар может даже убить человека, поэтому соблюдайте осторожность!

В памяти у вас должно отложиться: движение постоянного и переменного тока; графики постоянного и переменного тока; что такое частота, полупериод, период.

Кстати забыл сказать, в чём измеряется частота. Запомните: частота измеряется в Герцах. Допустим, совершается 50 колебаний в секунду, это значит что частота равна 50 герц. Таким образом можно определять любые другие значения. Всем пока, с вами был Дмитрий Цывцын.

   Справочники радиодеталей

 

elwo.ru

Kvant. Постоянный и переменный ток — PhysBook

Кикоин А.К. Постоянный и переменный электрический ток //Квант. — 1984. — № 10. — С. 28-29.

По специальной договоренности с редколлегией и редакцией журнала “Квант”

Долгое время единственным источником электрического тока служил гальванический элемент, появившийся в самом начале XIX века. В цепи, присоединенной к такому источнику, течет постоянный электрический ток.

Успехи в изучении электромагнетизма привели к изобретению генератора переменного тока, и с тех пор именно переменный ток стал основой современной электроэнергетики.

Почему? Чем переменный ток «лучше» постоянного?

Переменный ток, как и постоянный,— это упорядоченное движение заряженных частиц, в частности в металлах — электронов. Но в цепи переменного тока электроны по многу раз изменяют направление своего упорядоченного движения. Малая масса электронов позволяет им «успевать> изменять направление движения не только 100 раз в секунду, как это происходит в промышленной сети, но и десятки миллионов раз в секунду, как, например, в антеннах радиостанций.

Чтобы в электрической цепи протекал переменный ток, цепь должна быть присоединена к источнику переменной ЭДС. Она выступает здесь в роли периодической вынуждающей силы, и ток в цепи совершает вынужденные колебания, разумеется, с частотой вынуждающей силы. Если ЭДС в источнике изменяется со временем по закону \(~\varepsilon = \varepsilon_m \cos \omega t\) и источник включен в цепь с активным сопротивлением R, то и ток в цепи изменяется по косинусоидальному закону («Физика 10», § 17):

\(~i = \frac{\varepsilon}{R} = \frac{\varepsilon_m}{R} \cos \omega t = I_m \cos \omega t\) .

Здесь εm и Im — амплитуды (максимальные значения) ЭДС и силы тока. Но свойства функции косинуса таковы, что в среднем за период колебаний сила тока равна нулю. Это, однако, не значит, что такой ток бесполезен и ни в чем себя не проявляет. Потому что хотя в среднем сила тока и равна нулю, не равен нулю квадрат силы тока. А мощность тока определяется именно квадратом силы тока. В любой момент времени мощность переменного тока в цепи с активным сопротивлением выражается равенством

\(~p = i^2 R = I^2_m R \cos^2 \omega t\) .

Среднее значение квадрата косинуса за период равно не нулю, а 1/2, так что среднее значение мощности

\(~\bar{p} = \bar{i^2} R = \frac{1}{2} I^2_m R\) .

Величина \(~I = \frac{I_m}{\sqrt{2}}\) называется действующим значением силы тока. В нашем случае мощность можно также выразить через напряжение на сопротивлении:

\(~p = \frac{u^2}{R} ; \bar{p} = \frac{\bar{u^2}}{R} = \frac{1}{2} \frac{U^2_m}{R} = \frac{U^2}{R}\) .

где \(~U = \frac{U_m}{\sqrt{2}}\) — действующее значение напряжения.

В этом состоит одно из отрицательных свойств переменного тока. Ведь провода, по которым протекает ток, необходимо рассчитывать на максимальное значение силы тока, а практически используется немногим более 2/3 этого значения. Есть и другие отрицательные следствия. Явление электромагнитной индукции приводит, например, к тому, что переменный ток в проводах распределяется не равномерно по всему сечению, а главным образом вблизи поверхности. (Это явление называется скин- эффектом, о нем в «Физике 10» не рассказывается. Характерно, что глубина проникновения переменного тока зависит от многих факторов, в том числе — и от частоты колебаний. Так, при частоте 50 Гц в медном проводнике эта глубина составляет ≈9 мм. С увеличением частоты глубина проникновения тока уменьшается.) Благодаря тому, что используется не все сечения проводов, их сопротивление реально возрастает. Далее, переменный ток, как и ток постоянный, окружен магнитным полем, но полем переменным. А такое поле, согласно закону электромагнитной индукции, вызывает в соседних проводах и в других проводящих материалах электрические токи, что приводит к бесполезной потере энергии.

Все эти недостатки полностью отсутствуют у постоянного тока. Почему же все-таки переменный ток практически безраздельно господствует в технике и в быту?

Прежде всего, сам принцип действия электрических генераторов таков, что в них возникает именно переменная ЭДС («Физика 10», § 23). Но не в этом главное. С помощью нехитрого устройства можно тот же генератор сделать источником и постоянного тока. Главная причина «популярности» переменного тока связана с тем, что электрическую энергию приходится передавать из мест, где она производится (электростанции), к местам ее потребления и часто на большие расстояния. При этом часть передаваемой энергии неизбежно теряется в виде тепла в проводах, по которым она передается в линиях электропередачи (ЛЭП). Чтобы эти потери были ие слишком высокими, нужно, оказывается, использовать для передачи высокое напряжение.

Необходимость высокого напряжения видна из следующего простого расчета. Допустим, что электрическая мощность Р = 66 кВт передается от электростанции в город под напряжением 220 В (именно такое напряжение обычно используется потребителями). Пусть сопротивление ЛЭП равно 0,4 Ом. Тогда сила тока в ЛЭП составит I = 66 000 Вт / 220 В = 300 А, а выделившееся в линии количество теплоты — Q = I2R =(300 A)2·0,4 Ом = 36 000 Вт. Больше половины передаваемой мощности (54,5 %) будет потеряно в виде тепла в ЛЭП! А теперь представим себе, что та же мощность по той же ЛЭП передается при напряжении 22 000 В. Теперь ток в цепи будет равен I = 66 000 Вт / 22 000 В = 3 А, а выделившееся количество теплоты — Q = (3 A)2·0,4 Ом = 3,6 Вт. Потеряно будет всего около 0,005 %! Вот почему электрическая энергия по ЛЭП всегда передается при очень высоком напряжении — 110, 220, 330, 400, 500 и даже 750 киловольт.

Но на клеммах генераторов электростанций напряжение значительно меньше — всего несколько тысяч вольт. Значит, в начале линии электропередачи это напряжение нужно повысить, а перед распределением энергии среди потребителей — понизить так, чтобы, потребитель получил ее при напряжении 220 вольт. Такое повышение и понижение напряжения оказывается возможным только для переменного тока. Делается это с помощью устройств, действующих на основе явления электромагнитной индукции, — трансформаторов («Физика 10», § 24). Существование трансформаторов — пожалуй, единственная причина повсеместного применения переменного тока в технике.

Однако те недостатки переменного тока, которые были изложены выше, заставляют думать о том, нельзя ли все-таки для передачи электрической энергии использовать постоянный ток, конечно, тоже высокого напряжения? Это сделать непросто. Действительно, сначала нужно переменное напряжение, после его повышения, преобразовать в постоянное (для этого служат выпрямители), а затем на другом конце ЛЭП — превратить переданное постоянное напряжение в переменное (это можно сделать с помощью устройств, называемых инверторами), чтобы напряжение можно было понизить до значения, нужного потребителю. Одна такая ЛЭП постоянного тока на напряжении 400 кВ в СССР уже работает.

Сказанное в этой заметке нельзя понимать так, что постоянный ток — это «хороший» ток, а переменный — «плохой». И тот и другой — это явления природы, и их нельзя оценивать словами «лучше», «хуже». Сказанное лишь означает, что для передачи энергии на большие расстояния предпочтительнее постоянный ток. И если пока все же преобладает применение для этой цели переменного тока, то это объясняется тем, что преобразование переменного тока в постоянный и обратно до сих пор еще представляет собой трудную задачу, которая, впрочем, успешно решается. Для техники в равной мере нужны и полезны оба тока. В некоторых случаях незаменим постоянный ток, например там, где используется электролиз. Но без переменных токов не было бы радиосвязи, телевидения и т. д. Перефразируя известное детское стихотворение, можно сказать: токи всякие нужны!

www.physbook.ru

Постоянный и переменный ток в технике » Детская энциклопедия (первое издание)

Гальванические элементы дают постоянный ток.

В наше время нет такой отрасли народного хозяйства, в которой не применялось бы электричество. И каждая из них предъявляет к электрическим машинам и аппаратам определенные требования, от которых зависит не только конструкция этих машин, но и род используемого тока. Хотя в технике и в промышленности широко используются и переменный и постоянный токи, области их применения весьма четко разграничены.

Впервые люди получили электрический ток от гальванических элементов. Эти элементы создавали в электрической цепи поток электронов, движущихся все время в одном определенном направлении. Такой ток получил название «постоянного».

Первые вращающиеся генераторы, электрические двигатели и приборы также работали на постоянном токе. И когда в конце прошлого столетия русский электротехник М. О. Доливо-Добровольский предложил применять трехфазный переменный ток, многие ученые отнеслись к этому с недоверием. Даже знаменитый американский электротехник Эдисон считал переменный ток выдумкой, не заслуживающей внимания. Однако очень скоро переменный ток стали использовать во многих областях электротехники. Электрические генераторы переменного тока создают в электрической цепи поток электронов, непрерывно изменяющий направление своего движения. Так, в цепи электрической лампочки, освещающей вашу комнату, электроны успевают за одну секунду

Генераторы электрических станций вырабатывают переменный ток с частотой 50 пер/сек.

100 раз изменить направление своего движения: 50 раз они движутся в одном направлении и 50 — в обратном. Про такой ток говорят, что он имеет частоту 50 периодов в секунду.

Эта особенность движения электронов придает переменному току целый ряд свойств, определивших его главенствующее положение в современной электротехнике.

Одно из важнейших свойств переменного тока — его способность к трансформации. Как мы знаем, передача электрической энергии на большие расстояния возможна только при очень высоком напряжении, достигающем 110, 220 и даже 500-800 тыс. в. Столь высокое напряжение нельзя получить непосредственно в генераторах. В то же время для различных электрических машин и аппаратов нужен электрический ток напряжением в несколько десятков или сотен вольт. Вот здесь-то и пригодилась его способность к трансформации,—  она позволила с помощью трансформаторов изменять напряжение переменного тока в любых пределах.

С помощью трансформаторов можно изменять напряжение переменного тока в любых пределах.

Мало того. Соединение обмоток генератора в трехфазную систему позволило получить трехфазный переменный ток. Это система трех переменных токов, которые имеют одинаковую частоту, но различаются по фазе на одну треть периода. Трехфазный ток обладает важными достоинствами. Во-первых, трехфазные линии электропередач выгоднее однофазных: по ним при той же затрате проводов и изоляции можно передать больше электрической энергии, чем при однофазном переменном токе. А во-вторых, благодаря свойству трехфазного переменного тока создавать вращающееся магнитное поле, удалось построить очень простые и надежные асинхронные электрические двигатели без коллектора и щеток.

Эти качества переменного тока и послужили причиной того, что в наши дни все промышленные электростанции вырабатывают только трехфазный переменный ток.

Больше половины электрической энергии, вырабатываемой этими электростанциями, расходуется электрическими двигателями. Чтобы они могли выполнять разнообразную работу, их делают различными и по устройству и по размерам.

Электрические двигатели позволили создать автоматические станочные линии.

Кроме простых асинхронных двигателей, которые широко используются для привода станков, есть двигатели с обмоткой и контактными кольцами на роторе. Они развивают большие усилия при трогании с места и поэтому успешно применяются на подъемных кранах. Есть еще синхронные двигатели, имеющие постоянную скорость вращения. По своим размерам электрические двигатели бывают маленькими — с катушку ниток — и огромными, как карусель.

Применение для привода станков сразу нескольких электрических двигателей дало возможность упростить механизмы станка, облегчило управление ими и позволило создать автоматические станочные линии.

Малые размеры электрических двигателей позволили использовать электрическую энергию там, где раньше применялся только ручной труд. Электрические дрели, пилы, рубанки и другой электрифицированный инструмент намного облегчили труд рабочих, сделали его более производительным.

Электрические полотеры, пылесосы, стиральные машины и холодильники пришли на помощь домашним хозяйкам.

Электрические дуговые и индукционные печи широко применяются в технике и промышленности. Небольшие печи сопротивления можно встретить в вагонах поездов, в троллейбусах и даже дома.

Переменный ток — хороший источник тепла. В мощных дуговых электропечах плавят и варят металл. Электрические печи сопротивления широко используются для кондиционирования воздуха, обогрева сушильных шкафов и различных помещений.

Электрические лампочки дают свет независимо от того, какой ток идет через их нити. Но поскольку передача переменного тока более экономична, а трансформаторы позволяют легко поддерживать необходимое для них напряжение, вся осветительная сеть городов и сел обслуживается переменным током.

Непрерывное изменение направления движения электронов в переменном токе, его способность к трансформации открыли ему широкую дорогу во многие области техники. Но не всегда хорош ток, все время меняющий свое направление. Вот вы сели в троллейбус, поезд метро или в вагон «электрички» на железной дороге. Здесь вы попали во владения постоянного тока.

Дело в том, что простые и удобные электрические двигатели переменного тока не позволяют в широких пределах плавно менять скорость своего вращения. А вспомните, сколько раз водителю приходится изменять скорость движения троллейбуса; с такой беспокойной работой хорошо справляется только двигатель постоянного тока. Питание этих двигателей осуществляется с тяговых выпрямительных подстанций. Приходящий на них с электростанций переменный ток при помощи ртутных выпрямителей преобразуется в постоянный, а затем подается в контактную сеть — в провода и рельсы.

Применение тяговых двигателей постоянного тока на транспортных машинах оказалось настолько выгодным, что их можно встретить на тепловозах и теплоходах.

Их основными двигателями служат дизели, которые приводят в движение генераторы, вырабатывающие постоянный ток. А он в свою очередь заставляет работать электрические двигатели, вращающие колеса или гребные винты.

Однако высокая стоимость и сложность преобразовательных подстанций заставили ученых и инженеров задуматься над использованием переменного тока на транспорте. Сейчас уже есть участки железных дорог, использующие однофазный переменный ток. С успехом используют его и на многих дизель-электрических кораблях.

Для питания двигателей электровозов вдоль электрифицированной железной дороги устанавливаются тяговые выпрямительные подстанции, на которых переменный ток преобразуется в постоянный при помощи ртутных выпрямителей.

Дальнейшая электрификация железных дорог в нашей стране будет осуществляться преимущественно с использованием переменного тока напряжением 25 тыс. в. Этот ток будет превращаться в постоянный непосредственно на электровозах при помощи выпрямительных устройств.

Хорошие регулировочные способности электродвигателей постоянного тока позволили с успехом применить их также на подъемно-транспортных механизмах. На обычных кранах, которые вы видите на строительстве, работают двигатели переменного тока. Но на мощных подъемных кранах больших металлургических заводов устанавливают двигатели постоянного тока. Ведь здесь надо плавно поднимать и переносить огромные ковши с расплавленным металлом, разливать его в изложницы или подавать раскаленные болванки на прокатные станы.

Эти двигатели приводят в движение и механизмы гигантских шагающих экскаваторов.

В гальванических ваннах при помощи постоянного тока покрывают различные предметы тонким слоем никеля или хрома.

Двигатели постоянного тока могут развивать очень большие скорости вращения — до 25 тыс. об/мин. Это позволяет получать большую мощность при очень небольших размерах двигателя. Поэтому они незаменимы в качестве моторов управления, применяемых на самолетах для поворотов рулей, элеронов и закрылков, для подъема и опускания шасси и других механизмов.

Неизменное направление движения электронов в цепи постоянного тока определило большую и важную область его применения, в которой переменный ток с ним соперничать не может. Речь идет об электролизе — процессе, связанном с прохождением тока через жидкие растворы — электролиты. Под воздействием постоянного тока, проходящего через электролит, он разлагается на отдельные элементы, которые осаждаются на определенных электродах — на аноде или катоде. Это свойство широко используется в цветной металлургии — для получения алюминия, магния, цинка, меди, марганца. В химической промышленности при помощи электролиза получают фтор, хлор, водород и другие вещества.

В гальванотехнике электролиз применяют для осаждения металла на поверхность различных изделий. Таким образом наносят защитные покрытия на металлические изделия (никелирование, хромирование), изготавливают металлические монументы, печатные формы и т. д. Гальванизацию применяют в медицине для лечения некоторых болезней.

Постоянное направление движения электронов помогает постоянному току соперничать с переменным в сварочном деле и некоторых видах освещения. При сварке постоянным током частички металла переносятся с электрода на изделие более правильно и шов получается качественнее, чем при сварке переменным током.

Зайдите на киностудию. Мощные дуговые кинопроекторы заливают светом съемочный павильон. На переменном токе дуга горит менее устойчиво, дает меньше света и издает гул, мешающий записи звука при киносъемке. Поэтому кинопрожекторы питают постоянным током, который дает бесшумную устойчивую дугу. В мощных военных прожекторах и дуговых кинопроекционных аппаратах также используется постоянный ток.

На киностудиях на постоянном токе работают мощные дуговые кинопрожекторы.

Чтобы получить переменный ток, нужно непрерывно вращать генератор переменного тока, а постоянный ток могут давать неподвижные аккумуляторные батареи или же гальванические элементы. Эти свойства источника электрического тока также в ряде случаев определяют область применения постоянного тока.

Автомобиль стоит на месте. Как завести его двигатель? К вашим услугам аккумуляторная батарея. Вы нажимаете кнопку стартера, и двигатель постоянного тока, получая питание от аккумуляторной батареи, заводит мотор. А когда мотор работает, он вращает генератор, который заряжает аккумулятор, восстанавливает израсходованную энергию. Такой обратимый процесс недоступен для переменного тока.

Что было бы, если бы в поездах освещение питалось переменным током? Остановился поезд — перестали вращаться колеса вагонов, а вместе с ним остановились бы электрические генераторы и свет в вагонах погас бы. Но этого не происходит, потому что под вагонами установлены генераторы постоянного тока, работающие параллельно с аккумуляторными батареями. Идет поезд — генераторы вращаются, дают энергию для освещения и одновременно заряжают батарею. Остановился состав — аккумуляторная батарея посылает ток в осветительную сеть.

Представьте себе, что на электростанции произошла авария: все турбо- или гидрогенераторы остановились и линии электропередачи, связывавшие ее с другими электростанциями, отключились. В таких случаях выручает постоянный ток, получаемый от больших аккумуляторных батарей. С его помощью приводят в движение вспомогательные механизмы, включают отключившиеся выключатели и снова пускают в работу главные турбо- или гидрогенераторы. Питание от аккумуляторной батареи очень надежно, поэтому все цепи защиты управления, автоматики и сигнализации на больших электростанциях работают на постоянном токе.

Аккумуляторные батареи применяются в различных областях техники.

Может ли плавать подводная лодка без постоянного тока? На поверхности воды может. В этом случае ее гребные винты вращаются дизелями. Но под водой дизели останавливаются — не хватает воздуха. Там работает двигатель постоянного тока, получающий энергию от аккумуляторных батарей. Когда лодка вновь всплывает на поверхность и включаются в работу дизели, электрический двигатель превращается в генератор и вновь заряжает батареи.

В шахтах не везде можно подвесить контактный провод для электровозов. Как же им передвигаться? И тут опять выручает аккумуляторная батарея. На многих шахтах рудничные аккумуляторные электровозы доставляют уголь из самых отдаленных забоев. Электрические тележки с аккумуляторами — электрокары — вы часто видите на вокзалах. Они есть и в цехах больших заводов и фабрик.

Обратите внимание, как кинооператор снимает какое-нибудь важное событие. В руках у него легкий киносъемочный аппарат, а на поясе — аккумулятор. Нажал кнопку, и аппарат заработал. Такие легкие аккумуляторные батареи широко применяются для переносных радиостанций, сигнальных устройств, электрических измерительных приборов.

Конечно, перечисленными здесь примерами не исчерпываются все области применения электрической энергии. Мы ничего не рассказали о ее использовании для телеграфной и телефонной связи, для радио и телевидения и других целей — об этом вы прочтете в соответствующих статьях нашего сайта.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Что будет завтра Энергетика будущего

.

de-ussr.ru

Отличие постоянного тока от переменного: история и примеры

Изначально люди не знали, что такое ток. Был известен статический заряд, но никто не понимал и не осознавал природы электричества. Понадобились долгие века, пока Кулон разработал собственную теорию, а немецкий священник фон Клейн обнаружил, что банка способна запасать энергию. К тому времени, как Ван де Грааф создал первый генератор, любой уже знал, в чем отличие постоянного тока от переменного.

История переменного и постоянного электрического тока

Издавна, к примеру, люди видели, что кристалл турмалина притягивает пепел. Кстати, свойства пьезоэлектричества впервые описаны именно на примере турмалина.

Сравнение типов тока

В начала 19-го века было показано, что нагретый кристалл приобретает электрический заряд. За счёт деформации образовались два полюса:

  • Южный (аналогический).
  • Северный (антилогический).

Причём если температура после нагрева остаётся постоянной, электричество исчезает. Потом появление полюсов отмечается уже при охлаждении. Выходит, кристалл турмалина при изменении температуры вырабатывает электричество. Дальнейшие исследования показали, что размер потенциала зависит от:

  1. Поперечного сечения кристалла (среза поперёк полюсов).
  2. Разницы температур.

Прочие факторы влияния на величину заряда не оказывают. Указанное явление получило название пироэлектричества. Диэлектрик турмалин потихоньку заряжался от тока, текущего внутри. А заряд оставался на месте (определённые участки поверхности) из-за изолирующих свойств. Пока не замкнуть полюса турмалина проводником, кристалл продолжит копить заряд по мере изменения температуры. Линию, объединяющую полюса, назвали пироэлектрической осью.

Пьезоэлектричество открыто известной парой Кюри на основе турмалина в 1880 году. Осознавалось, что при изменении размеров кристалла начнут вырабатываться заряды, осталось лишь придумать методику для проведения опыта. Кюри использовал для этого статическое давление обычной массы. Эксперимент проводится на изолирующей поверхности. К примеру, масса в 1 кг вызывает появление в кристалле турмалина электрического заряда в пределах пяти сотых статических единиц.

Электрический ток

Как появляется электрический ток

Любопытно, что стройная теория по описанному явлению ещё не создана. Важно указание, что в природе присутствуют заряды, получаемые различными методами. Во время грозы это происходит за счёт сил трения воздушных масс, молекул влаги и прочих явлений. Земля заряжена отрицательно, вверх постоянно течёт ток через атмосферу. Током называется движение носителей заряда в силу неких причин. К примеру, разницы потенциалов – перепад в уровне носителей между двумя точками пространства.

Сравним с напором воды. Когда преграда устраняется, поток хлынет в направлении меньшего давления. Теперь возьмём аналогию с кристаллом турмалина. Допустим, появились на его концах заряды. Дальше потребуется вызвать движение, к примеру, медной жилкой провода. Объединим полюса, и потечёт электрический ток. Движение носителей продолжится, пока потенциал не уравняется. При этом кристалл разряжается.

О переменности или постоянстве тока нельзя сказать в ходе указанного ходе процесса. Переменный и постоянный ток являются физическими идеалами, а используются в силу относительной простоты получения математических моделей и управления при помощи них технологическим оборудованием.

  1. Под постоянным током понимается такой, когда носители текут в едином направлении. Количество через сечение среды неодинаково. В более широком смысле постоянным (выпрямленным) током называется именно движение носителей заряда в одном направлении. Но исходное понятие в физике требует строгих условий. Ток образовывается именно постоянным количеством носителей, движущихся в общем направлении. Причём носители эти положительные (что противоречит практике, где в качестве таковых рассматриваются электроны по большей части).

    Принцип переменного тока

  2. Переменным током называется не просто тот, где носители двигаются попеременно в разных направлениях, а делают это в такт. Половину периода волна бежит влево, а вторую вправо, образно говоря. Плотность носителей меняется по закону синусоиды. Собственно, это график, отображающий поведение процесса. В точках перехода через нуль ток отсутствует. В сети происходит 100 раз в секунду. Следовательно, половина периода выпадает на движение носителей в положительном направлении, а вторая – в отрицательном. Всего полных циклов в секунду образуется 50, что соответствует сетевой частоте 50 Гц.

Электрический ток в действительности

На практике форма тока (зависимость плотности зарядов от времени) не синусоидальная. По разным причинам вид графика искажается. Это, к примеру, происходит при запуске оборудования и остановке, из-за наведённых помех различной природы. Форма переменного и постоянного тока искажается. Причём давно установлено, что это вредит аппаратуре. Для борьбы с подобной напастью требовались методы, и математики придумали спектральный анализ.

Колебание любой формы возможно представить в виде суммы с различным удельным весом простейших синусоид разной частоты. Получается, что по цепи двигается одновременно масса составляющих, в совокупности дающих ток. Причём не обязательно все составляющие двигаются заодно с основной массой. Представим элементы как группу муравьёв, каждый тащит в свою сторону, а результирующий эффект заставляет груз перемещаться лишь в одну. Упомянем, что помимо коэффициента (амплитуды) каждая составляющая обладает фазой (направлением), а именуется гармоникой.

Схема постоянного тока

Каскады техники устроены так, чтобы полезные частоты (преимущественно 50 Гц) проходили внутрь прибора, а прочее уходило на землю. Указан признак для решения затруднения, упомянутого в начале. Любое колебание представляется в виде набора полезных и вредных сигналов, исходя из этого, аппаратуру полагается конструировать надлежащим образом. К примеру, на описанном принципе работают все приёмники: избирательно пропускают ток нужной частоты. Так удаётся отрезать помехи, а волна передаётся с минимальными искажениями на большие расстояния.

Примеры использования переменного и постоянного тока

Приблизительно постоянным считается ток разряда автомобильного аккумулятора. Напряжение здесь постепенно падает, а потому даже при одинаковой нагрузке эффект разнится хронометрически. В целом, происходит это плавно. Ток течёт в одном направлении и проявляет приблизительно постоянную плотность. Аналогично работают:

  1. Аккумулятор сотового телефона.
  2. Батарейка любого типа.
  3. Аккумулятор питания ноутбуков.

В природе источников постоянного тока (генераторов), за исключением матушки-Земли, нет. Человеку гораздо удобнее создавать роторы, которые, вращаясь с конкретной частотой, создают условия для образования в катушках статора переменного электрического тока. Потом промышленная частота 50 Гц проходит по проводам и через подстанцию подаётся на потребителя.

Источником постоянного тока допустимо считать адаптеры. Это устройства, выполняющие преобразование переменного тока в постоянный. Допустим, у сотовых телефонов это +5 В, а для мобильных раций характерен большой разброс. Устройство постоянного тока может функционировать исключительно от номинала, для которого сконструировано. В противном случае либо работоспособность нарушается, либо – при больших отклонениях – возможен полный выход из строя.

Это касается и переменного, и постоянного тока. Теперь пришла пора сказать, что в промышленности преобразование постоянного тока в переменный и обратно не практикуется. Из соображений экономии двигатели работают от трёх фаз. Каждая считается переменным током частоты 50 Гц. Говорили выше, что у любой гармоники присутствует фаза. В рассматриваемом случае фаза равна 120 градусов. А круг образуется за счёт 360 градусов. Получается, что три фазы равно отстоят друг от друга. При подобном раскладе генераторам ГЭС легче производить энергию, поступающую в дома в неизменном виде. Но в квартиру заходит единственная фаза переменного тока.

Поэтому бытовые приборы по внутреннему устройству сильно отличаются от промышленных. Важными признаются параметры переменного тока. В любом государстве они стандартизированы и чётко выдерживаются. К параметрам переменного тока относят:

  1. Действующее значение напряжения — вызывающее в обычном проводнике постоянное идентичного номинала. Действующее значение ниже амплитуды в корень из двух раз либо близко к указанному. Требования для РФ составляют 220-230 В плюс-минус 10% от номинала.
  2. К частоте переменного тока предъявляются повышенные строгие требования. Предел отклонений от 50 Гц измеряется десятыми долями процента. Потому стабилизации движения вала на ГЭС уделяется столько внимания. От скорости его вращения зависит параметр.
  3. Нелинейные искажения считаются отдельной темой. Требований множество, определиться непросто. Особенно строго нормируются гармоники основной частоты, к примеру: 100, 150, 200, 250 Гц.

Подобные требования предъявляются и к параметрам постоянного тока. Допустим, известные автомобильные аккумуляторы в действительности включают в арсенал не 12, а 14 В. По мере разряда вольтаж падает. Если на аккумуляторе зарегистрировано напряжение 11,9 В, банка считается вышедшей из строя. Предлагаем внимательно читать инструкции. Дополним: в отдельных ноутбуках присутствует заряд бережного расхода энергии аккумулятора. В этом случае уровень поддерживается в рамках двух третей от полного. Считается, что тогда батарея прослужит дольше.

Итак, требования направлены на поддержание долгого и правильного функционирования оборудования. Параметры постоянного и переменного тока считаются фактором, определяющим надёжность и работоспособность системы.

vashtehnik.ru

Постоянный ток — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 26 декабря 2017; проверки требуют 8 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 26 декабря 2017; проверки требуют 8 правок.

Постоя́нный ток — электрический ток, который с течением времени не изменяется по величине и направлению.

Постоянный ток является разновидностью однонаправленного тока. Однонаправленный ток (англ. direct current) — это электрический ток, не изменяющий своего направления[1]. Часто можно встретить сокращения DC от первых букв англ. слов, или символом

ru.wikipedia.org

Электрическое поле. Постоянный и переменный электрический ток. физические основы реографии

1. Понятие об электрическом поле. Силовая и энергетическая характеристики электрического поля

Электрическое поле – это вид материи, образующийся вокруг заряженных тел, посредством которого они взаимодействуют друг с другом.

Сила взаимодействия двух точечных зарядов определяется законом Кулона: F = k·q1·q2/r2. При этом если заряженные тела имеют одинаковые заряды, то они отталкиваются друг от друга, а разноимённые – притягиваются. Заряженные тела взаимодействуют друг с другом посредством их электрических полей.

Выделяют следующие характеристики электрического поля:

1. силовая характеристика – напряжённость электрического поля – это сила, которая действует на единицу заряда, помещённого в данное электрическое поле: E = F/q . Измеряется в [В/м]

Если определённый точечный заряд Q образует электрическое поле, то напряжённость этого поля в точке, находящейся на расстоянии r от заряда вычисляется по формуле: E = Q/(4πε0εr2) где Q– заряд, образующий данное электрическое поле; ε0 = 8, 84*10-12 Ф/м- электрическая постоянная; ε- электрическая проницаемость среды, в которой образуется поле; r – расстояние от точечного заряда до точки, в которой исследуется напряжённость.

За направление напряжённости принимают направление силы, действующей на положительный заряд.

Величина напряжённости электрического поля графически изображается в виде силовых линий – тех линий, направление касательных к которым в любой точке совпадают с направлением напряжённости электрического поля. Чем больше линий – тем больше напряжённость.

2. энергетическая характеристика электрического поля – потенциал.

В каждой точке электрического поля на внесённый в это поле заряд действует определённая сила. При перемещении заряда в электрическом поле будет совершаться работа. При этом каждая точка электрического поля будет характеризоваться потенциалом.

Потенциал поля в данной точке – это потенциальная энергия электрического поля в этой точке, приходящаяся на единицу помещённого в эту точку заряда: φ = Wp/q [В] Потенциал поля характеризует возможную работу, которую совершает электрическое поле или которая совершается над электрическим полем при перемещении этого заряда в точку с другим потенциалом: Δφ = A/q.

Поскольку работа будет совершаться только при перемещении заряда между точками, обладающими неодинаковыми потенциалами, то физический смысл имеет лишь разность потенциалов, или напряжение между двумя точками электрического поля. Поэтому, когда употребляют термин ″потенциал″, имеют в виду разность потенциалов между данной точкой, потенциал которой измеряют, и бесконечно удалённой точкой пространства, потенциал которой можно считать равным 0. При этом потенциал в данной точке поля, созданного точечным зарядом Q, равен: φ = Q/(4πε0εγ) и , если потенциал создается большим числом зарядов, то φ = ∑φ.

Только разность потенциалов можно измерить с помощью вольтметра. Считают, что напряженность электрического поля – отрицательный градиент потенциала.

2. Действие электрического поля на вещества

Действие электрического поля на различные вещества неодинаково и зависит от их внутреннего строения. По этому действию все вещества делят на:

– проводники электрического тока

– полупроводники

– изоляторы, или диэлектрики.

Проводники характеризуются тем, что в них под действием электрического поля образуется электрический ток – направленное движение заряженных частиц. Это происходит благодаря тому, что в проводниках имеются свободные заряды. Существуют проводники 1 рода (металлы, в которых есть свободные электроны) и 2 рода (растворы электролитов, в которых свободными зарядами являются положительно заряженные ионы – катионы и отрицательно заряженные ионы – анионы).

Полупроводники при обычной температуре имеют мало свободных зарядов. Причём когда электроны в полупроводниках становятся свободными, то на их месте образуется дырка – избыток положительного заряда. Поэтому носителями заряда в полупроводниках являются электроны и дырки.

В диэлектриках нет свободных носителей зарядов, поэтому под действием электрического поля в них не возникает электрического тока, но возникает явление, называемое поляризацией диэлектрика – приобретение диэлектриком полярности за счёт разделения в нём положительных и отрицательных зарядов под действием электрического поля. Поляризация существует в 3 вариантах: ориентационная, электронная и ионная.

Указанные различия хорошо описываются зонной теорией твёрдых тел, или квантовой теорией энергетического спектра электронов в кристалле. Согласно теории в кристалле существуют запрещённые и разрешённые энергетические зоны для электронов. Нижние зоны заполнены полностью электронам. Физические свойства кристаллов определяются верхними зонами, содержащими электроны. Если между верхней зоной и следующей разрешённой зоной запрещённая зона узкая (энергетический интервал невелик), то вещество является проводником, а если запрещённая зона велика – то диэлектриком.

3. Электрический ток

Основной характеристикой электрического тока является сила тока – количество заряда, пересекающее поперечное сечение проводника за единицу времени. Iср = Δq/Δt или для мгновенной силы тока : I = dq/dt. Единицей измерения силы тока является ампер (A). 1 ампер – сила тока, когда заряд 1 кулон проходит через поперечное сечение проводника за 1 секунду. Часто используют миллиампер (мА). 1 мА = 0, 001 A. Обычно за направление электрического тока в проводнике принимают направление движения положительных зарядов.

Другой величиной, характеризующей электрический ток, является плотность тока – сила тока, приходящаяся на единицу площади проводника. Измеряется в амперах на квадратный метр: J = I/S.

Различают:

– Постоянный ток – электрический ток, параметры которого (сила и направление) не изменяются во времени. Источниками постоянного тока являются генераторы, которые поддерживают постоянную разность потенциалов на концах проводника.

– Переменный ток – электрический ток, параметры которого изменяются во времени по закону синуса или косинуса. Электрический ток, передаваемый в потребительской электросети, представляет собой синусоидальное колебание частотой 50 Гц: I = Imax·cos(ωt + φ0).

Основным законом, описывающим постоянный электрический ток, является закон Ома: сила тока в проводнике прямо пропорциональна разности потенциалов между его концами, или электрическому напряжению (U): I = U/R.

Величина R называется электрическим сопротивлением. Сопротивление является свойством проводников препятствовать прохождению через него электрического тока, при этом электрическая энергия превращается в тепловую энергию. Сопротивление возникает из-за столкновения заряженных частиц (носителей тока) с внутренними структурами проводника – атомами и молекулами. Единицей измерения сопротивления является Ом. Обратная величина сопротивлению называется электрической электропроводностью (D).

Для многих веществ сопротивление является постоянной величиной, независимой от силы тока. Сопротивление проводника является функцией его размера, формы, строения и температуры. Величина сопротивления провода: R = ρ(1/S) (5)

, где l – длина проводника, S – площадь поперечного сечения проводника. Константа прямой пропорциональности ρ называется удельным сопротивлением [ом·м] . Она зависит только от свойств вещества и температуры. Обратной величиной удельному сопротивлению является удельная электропроводность (γ) [ом-1·м-1] .

На основе удельной электропроводности характеризуют свойство веществ проводить электрический ток. Хорошие проводники тока имеют высокую удельную электропроводность. Изоляторы, или диэлектрики, имеют низкую удельную электропроводность. Полупроводники имеют промежуточную удельную электропроводность. Используя удельную электропроводность, как характеристику вещества, можно представить закон Ома в другой форме: J = γE.

Из формулы следует, что плотность тока в проводнике прямо пропорциональна напряженности электрического поля (Е), создающего этот ток, и удельной электропроводности вещества проводника (γ).

Удельная электропроводность электролитов и биологических тканей

Плотность тока в растворе электролитов определяется электрическим зарядом положительных и отрицательных ионов, их концентрациями и скоростями движения в электрическом поле: J = q+n+v+ + q-n-v.

Если принять, что концентрация и величина электрического заряда положительных и отрицательных ионов равны, то J = qn(v+ + v-)(8)

Скорость v ионов пропорциональна напряженности электрического поля E и зависит от подвижности ионов u, которая, в свою очередь, является функцией размера, степени гидратации ионов, вязкости растворителя:

v = uE (9)

Тогда J = qn(u+ + u-)·E (10).

Это выражение является законом Ома для растворов электролитов.

Хотя сопротивление биологических тканей постоянному электрическому току велико, и по удельной электропроводности биологические ткани близки к диэлектрикам, для объяснения различий в электропроводности различных тканей, их рассматривают как проводники 2 рода, носителями заряда в которых служат ионы.

Биологические ткани не различаются существенно по их ионному составу, но отличаются условиями ионного перемещения. Поэтому ткани разнородны с точки зрения их электрических свойств. Мембраны клеток препятствуют перемещению ионов. Их электрическое сопротивление является наибольшим. Кровь, лимфа, цереброспинальная жидкость характеризуются низким сопротивлением электрическому току. Внутренние органы, содержащие много воды (мышцы, печень, почки, и т.п.), также имеют сравнительно низкое сопротивление. Но сопротивление таких тканей, как кожа и кости, очень высокое. Постоянный электрический ток плохо проникает через сухую кожу. Он распространяется в теле человека, главным образом, вдоль кровеносных и лимфатических сосудов и через мышцы.

mirznanii.com

Постоянный электрический ток – это что такое?

Постоянный электрический ток – это непрерывное движение электронов из области отрицательных (-) в область положительных (+) зарядов через проводящий материал, такой как металлическая проволока. Хотя статические разряды и представляют собой спонтанные движения заряженных частиц от отрицательно к положительно заряженной поверхности, непрерывного движения частиц через проводник не происходит.

Для создания потока электронов необходима цепь постоянного электрического тока. Это источник энергии (например, батарея) и проводник, идущий от положительного полюса к отрицательному. В цепь могут быть включены различные электрические устройства.

Непрерывное движение электронов

Постоянный ток представляет собой непрерывное движение электронов через проводящий материал, такой как металлическая проволока. Заряженные частицы движутся к положительному (+) потенциалу. Для создания потока электроэнергии требуется электрическая цепь, состоящая из источника питания постоянного тока и провода, образующего замкнутый контур. Хорошим примером такой цепи является фонарик.

Хотя отрицательно заряженные электроны движутся через провод к положительному (+) полюсу источника питания, движение тока указывается в противоположном направлении. Это является следствием неудачного и путающего соглашения. Ученые, экспериментировавшие с токами, посчитали, что электричество движется от (+) к (-), и это стало общепринятым еще до открытия электронов. В действительности отрицательные заряженные частицы движутся к положительному полюсу, противоположно направлению, указанному как направление движения тока. Это сбивает с толку, но после того, как соглашение было принято, уже трудно что-то исправить.

Напряжение, ток и сопротивление

Электричество, проходящее через провод или другой проводник, характеризуется напряжением U, током I и сопротивлением R. Напряжение является потенциальной энергией. Ток представляет собой поток электронов в проводнике, а сопротивление – силу его трения.

Хороший способ представить постоянный электрический ток – это провести аналогию с водой, текущей по шлангу. Напряжение представляет собой потенциал, нарастающий на одном конце провода из-за избытка отрицательно заряженных электронов. Это похоже на повышенное давления воды в шланге. Потенциал заставляет электроны двигаться через провод в область положительного заряда. Эта потенциальная энергия называется напряжением и измеряется в вольтах.

Постоянный электрический ток – это поток электронов, измеряемый в амперах. Он подобен скорости движения воды по шлангу.

Ом является единицей измерения электрического сопротивления. Атомы проводника расположены так, что электроны будут проходить с небольшим трением. В изоляторах или плохих проводниках атомы оказывают сильное сопротивление или препятствуют перемещению заряженных частиц. Это аналогично трению воды в шланге при прохождении через него.

Таким образом, напряжение подобно давлению, расход – току и гидравлическое сопротивление – электрическому.

Создание постоянного тока

Хотя статическое электричество может быть разряжено через металлическую проволоку, оно не является источником постоянного тока. Им являются батареи и генераторы.

В батареях для создания электроэнергии постоянного тока используются химические реакции. Например, автомобильный аккумулятор состоит из свинцовых пластин, помещенных в раствор серной кислоты. Когда пластины получают заряд от сети или генератора автомобиля, они изменяются химически и удерживают заряд. Этот источник постоянного тока может затем использоваться для питания фар автомобиля и т. д. Проблема заключается в том, что серная кислота очень едкая и опасная.

Другую батарею можно сделать самостоятельно из лимона. Она не требует зарядки, но зависит от кислотной реакции разных металлов. Медь и цинк работают лучше всего. Можно использовать медную проволоку или монету. В качестве другого электрода можно использовать оцинкованный гвоздь. Железный тоже будет работать, но не так хорошо. Достаточно воткнуть медный провод и гальванизированный гвоздь в обычный лимон и измерить напряжение между ними вольтметром. Некоторым с помощью этой батареи даже удавалось зажечь лампочку фонарика.

Надежным источником является генератор, который сделан из проволоки, намотанной между северными и южными полюсами магнита.

Таким образом, постоянный электрический ток – это непрерывное движение электронов от отрицательного к положительному полюсу проводника, такого как металлическая проволока. Для прохождения заряженных частиц необходима цепь. В ней направление движения тока противоположно потоку электронов. Цепь характеризуется такими величинами, как напряжение, ток и сопротивление. Источниками постоянного тока являются аккумуляторы и генераторы.

Электрические цепи

Электрическая схема постоянного тока состоит из источника, к полюсам которого подсоединены проводники, соединяющие приемники в замкнутый контур. Это обязательное условие для прохождения тока. Цепи могут быть последовательными, параллельными или комбинированными.

Если взять источник постоянного тока, например аккумулятор, и подсоединить его положительный и отрицательный полюсы проводами к нагрузке, например лампочке, то образуется электрическая цепь. Иными словами, электроэнергия течет от одного контакта батареи к другому. Последовательно с лампой можно установить выключатель, который при необходимости будет регулировать подачу постоянного электрического тока.

Источники постоянного тока

Цепь требует наличия источника питания. Как правило, для этого используется батарея или аккумулятор. Другим источником энергии служит генератор постоянного тока. Кроме того, можно пропустить переменный ток через выпрямитель. Обычный адаптер, используемый с некоторыми портативными устройствами (например, смартфонами), преобразует 220 В переменного тока в постоянный напряжением 5 В.

Проводники

Провода и нагрузка должны проводить электричество. Медь или алюминий являются хорошими проводниками и имеют низкое сопротивление. Вольфрамовая нить в лампе накаливания проводит ток, но имеет высокое сопротивление, которое заставляет ее нагреваться и накаляться.

Последовательное и параллельное подключение

В электроцепи несколько устройств, таких как лампочки, могут соединяться в одну линию между положительным и отрицательным полюсами батареи. Такое подключение называется последовательным. Одной из проблем такой компоновки является то, что в случае перегорания одной лампочки она действует как выключатель и отключает всю цепь.

Приемники также могут соединяться параллельно, так что, если какая-либо лампа погаснет, цепь не будет обесточена. Параллельная схема включения используется не только в елочных гирляндах – электропроводка в домах тоже проводится параллельно. Поэтому освещение и приборы можно включать и выключать независимо друг от друга.

Закон Ома

К законам постоянного электрического тока относится закон Ома, который является самой фундаментальной формулой для электрических цепей. Согласно ему, ток, проходящий через проводник, прямо пропорционален разности потенциалов на нем. Закон был впервые сформулирован в 1827 году немецким физиком Георгом Омом, когда он исследовал проводимость металлов. Закон Ома лучше всего описывает простые электрические цепи постоянного тока. Хотя он также применим к переменному току, в этом случае следует учитывать другие возможные переменные. Соотношение между током, напряжением и сопротивлением позволяет вычислить одну физическую величину, если известны значения двух других.

Закон Ома показывает зависимость между напряжением, током и сопротивлением в простой электрической цепи. В простейшем виде записывается уравнением U = I × R. Здесь U – напряжение в вольтах, I – ток в амперах и R – сопротивление в омах. Таким образом, если известны I и R, можно вычислить U. При необходимости формулу можно изменять методами алгебры. Например, если известны U и R и нужно найти I, то следует использовать уравнение I = U / R. Или, если даны U и I и необходимо вычислить R, то применяется выражение R = U / I.

Важность Закона Ома заключается в том, что если значение двух переменных в уравнении известно, то можно определить третье. Любую из этих физических величин можно измерить с помощью вольтметра. Большинство вольтметров или мультиметров измеряют U, I, R постоянного и переменного электрического тока.

Вычисление U, I, R

Электрическое напряжение постоянного тока при известных токе и сопротивлении можно найти по формуле U = I × R. Например, если I = 0,2 А и R = 1000 Ом, то U = 0,2 А * 1000 Ом = 200 В.

Если известны напряжение и сопротивление, ток можно вычислить с помощью уравнения I = V / R. Например, если U = 110 В и R = 22000 Ом, то I = 110 В / 22000 Ом = 0,005 А.

Если известны напряжение и ток, то R = V / I. Если V = 220 В и I = 5 А, то R = 220 В / 5 А = 44 Ом.

Таким образом, закон Ома показывает зависимость между напряжением, током и сопротивлением в простой электрической цепи. Он может применяться к цепям как постоянного, так и переменного тока.

Мощность постоянного электрического тока

Заряд, движущийся в цепи (если это не сверхпроводник), расходует энергию. Это может привести к нагреву или вращению двигателя. Электрическая мощность – это скорость, с которой электроэнергия преобразуется в другую форму, такую как механическая энергия, тепло или свет. Она равна произведению тока и напряжения: P = U × I. Измеряется в ваттах. Например, если U = 220 В и I = 0,5 А, то P = 220 В * 0,5 А = 110 Вт.

fb.ru