Физика период это – Период колебаний в физике это — что такое период колебаний (физика).. — 22 ответа

Содержание

Период колебаний — Википедия РУ

Период колеба́ний — наименьший промежуток времени, за который осциллятор совершает одно полное колебание (то есть возвращается в то же состояние[1], в котором он находился в первоначальный момент, выбранный произвольно).

В принципе совпадает с математическим понятием периода функции, но имея в виду под функцией зависимость физической величины, совершающей колебания, от времени.

Это понятие в таком виде применимо как к гармоническим, так и к ангармоническим строго периодическими колебаниям (а приближенно — с тем или иным успехом — и непериодическим колебаниям, по крайней мере к близким к периодичности).

В случае, когда речь идет о колебаниях гармонического осциллятора с затуханием, под периодом понимается период его осциллирующей составляющей (игнорируя затухание), который совпадает с удвоенным временным промежутком между ближайшими прохождениями колеблющейся величины через ноль. В принципе, это определение может быть с большей или меньшей точностью и пользой распространено в некотором обобщении и на затухающие колебания с другими свойствами.

Обозначения: обычное стандартное обозначение периода колебаний: T{\displaystyle T} (хотя могут применяться и другие, наиболее часто это τ{\displaystyle \tau }, иногда Θ{\displaystyle \Theta } и т. д.).

Единицы измерения: секунда и, в принципе, вообще единицы измерения времени.

Период колебаний связан соотношением взаимной обратности с частотой:

T=1ν,   ν=1T.{\displaystyle T={\frac {1}{\nu }},\ \ \ \nu ={\frac {1}{T}}.}

Для волновых процессов период связан кроме того очевидным образом с длиной волны λ{\displaystyle \lambda }

v=λν,   T=λv,{\displaystyle v=\lambda \nu ,\ \ \ T={\frac {\lambda }{v}},}

где v{\displaystyle v} — скорость распространения волны (точнее[2] — фазовая скорость).

В квантовой физике период колебаний прямо связан с энергией (поскольку в квантовой физике энергия объекта — например, частицы — есть частота

[3] колебаний его волновой функции).

Теоретическое нахождение периода колебаний той или иной физической системы сводится, как правило, к нахождению решения динамических уравнений (уравнения), описывающего эту систему. Для категории линейных систем (а приближенно — и для линеаризуемых систем в линейном приближении, которое зачастую является очень хорошим) существуют стандартные сравнительно простые математические методы, позволяющие это сделать (если известны сами физические уравнения, описывающие систему).

Для экспериментального определения периода используются часы, секундомеры, частотомеры, стробоскопы, строботахометры, осциллографы. Также применяются биения, метод гетеродинирования в разных видах, используется принцип резонанса. Для волн можно померить период косвенно — через длину волны, для чего применяются интерферометры, дифракционные решётки итп. Иногда требуются и изощренные методы, специально разработанные для конкретного трудного случая (трудность могут представлять как само измерение времени, особенно если речь идет о предельно малых или наоборот очень больших временах, так и трудности наблюдения колеблющейся величины).

Периоды колебаний в природе

Представление о периодах колебаний различных физических процессов дает статья Частотные интервалы (учитывая то, что период в секундах есть обратная величина частоты в герцах).

Некоторое представление о величинах периодов различных физических процессов также может дать шкала частот элетромагнитных колебаний (см. Электромагнитный спектр) .

Периоды колебаний слышимого человеком звука находятся в диапазоне

от 5·10−5с до 0,2с

(четкие границы его несколько условны).

Периоды электромагнитных колебаний, соответствующих разным цветам видимого света — в диапазоне

от 1,1·10−15с до 2,3·10−15
с.

Поскольку при экстремально больших и экстремально маленьких периодах колебаний методы измерения имеют тенденцию становятся всё более косвенными (вплоть до плавного перетекания в теоретические экстраполяции), трудно назвать четкую верхнюю и нижнюю границы для периода колебаний, измеренного непосредственно. Какую-то оценку для верхней границы может дать время существования современной науки (сотни лет), а для нижней — период колебаний волновой функции самой тяжелой из известных сейчас частиц ().

В любом случае границей снизу может служить планковское время, которое столь мало, что по современным представлениям не только вряд ли может быть вообще как-то физически измерено[4], но и вряд ли в более-менее обозримом будущем представляется возможность приблизиться к измерению величин даже намного порядков больших, а границей сверху — время существования Вселенной — более десяти миллиардов лет.

Периоды колебаний простейших физических систем

Примечания

  1. ↑ Состояние механической системы характеризуется положениями и скоростями всех её материальных точек (строже говоря — координатами и скоростями, соответствующими всем степеням свободы данной системы), для немеханической — их формальными аналогами (которые также можно назвать координатами и скоростями в смысле абстрактного описания динамической системы — в количестве, также равном количеству её степеней свободы).
  2. ↑ Для монохроматических волн это уточнение самоочевидно, для близких к монохроматическим — интуитивно очевидно по аналогии со строго монохроматическими, для существенно немонохроматических — наиболее ясный случай сводится к тому, что фазовые скорости всех монохроматических компонент совпадают друг с другом, поэтому комментируемое утверждение также верно.
  3. ↑ С точностью до единиц измерения: в традиционных (обычных) системах физических единиц частота и энергия измеряются в разных единицах (поскольку до появления квантовой теории совпадение энергии и частоты было неизвестно, и, естественно, для каждой из величин была выбрана своя независимая единица измерения), поэтому при измерении их в обычных (разных) единицах, например, джоулях и герцах требуется переводной коэффициент (так называемая константа Планка). Однако можно выбрать систему единиц измерения так, чтобы в ней константа Планка стала равной 1 и пропала из формул; в такой системе единиц энергия любой частицы просто равна частоте колебания её волновой функции (а значит обратна периоду этого колебания).
  4. ↑ Имеется в виду, конечно же, невозможность экспериментального измерения времен конкретных процессов или периодов колебаний такого порядка, а не просто вычисление некоторого числа.
  5. ↑ Лучше, чем 0,5 %, если взять метрологическое или принятое техническое значение ускорения свободного падения; И с разбросом ~0.53 % для максимального и минимального значений ускорения свободного падения, наблюдаемых на земле.

Ссылки

http-wikipediya.ru

Период – это… Что такое Период?

  • Период — (греч. periodos «обход», «окружность») термин, введенный Аристотелем для обозначения «речи, имеющей в себе самой начало и конец и легко обнимаемой умом». Под П. следует понимать так. обр. большую синтаксическую единицу, сложное предложение или… …   Литературная энциклопедия

  • ПЕРИОД — периода, м. [греч. periodos] (книжн.). 1. Промежуток времени, в течение к–рого заканчивается какой–н. повторяющийся процесс (науч.). Синодический период обращения планеты (время, в течение к–рого планета совершает один полный оборот вокруг… …   Толковый словарь Ушакова

  • Период —     ПЕРИОД (Περιοδος обход, окружность). Этим словом в древней Греции называлась та замкнутая, кольцевая дорога, на которой происходили игры и состязания во время олимпийских празднеств. Этим термином Аристотель стал обозначать особый вид… …   Словарь литературных терминов

  • ПЕРИОД — (греч. periodos путь кругом). 1) промежуток времени между двумя важными историческими событиями. 2) в астрономии то же, что цикл; в арифметике: число цифр, повторяющихся, в том же порядке, бесчисленное множество раз. 3) особенно развитое сложное… …   Словарь иностранных слов русского языка

  • период — а, м. période f. <лат. periodus<гр. periodos обход, круговращение, орбита небесного тела. 1. Промежуток времени, в который протекает та или иная часть общего процесса. БАС 1. Бывают в жизни его периоды во время которых выступает он из… …   Исторический словарь галлицизмов русского языка

  • ПЕРИОД — муж. срок или промежуток времени, продолжительность; время от одного события до другого. История делится на периоды, сроки. Период первозданный период осадочный, сроки образованья земной толщи. | Длительность самого события, действия, состоянья;… …   Толковый словарь Даля

  • ПЕРИОД — (1) промежуток времени, в течение которого начинается, развивается и заканчивается какой либо процесс; наименьший интервал времени, по истечении которого произвольно выбранные мгновенные значения периодической величины повторяются; (2) П. в… …   Большая политехническая энциклопедия

  • Период С — Студийный а …   Википедия

  • ПЕРИОД — срок протекания экономического процесса, действия, плана, договора, гарантии, уплаты долгов, внесения налогов, выполнения работ (гарантийный период, плановый период, период обложения, период окупаемости). Райзберг Б.А., Лозовский Л.Ш.,… …   Экономический словарь

  • период — См …   Словарь синонимов

  • ПЕРИОД — колебаний, наименьший промежуток времени, через который совершающая колебания система возвращается в то же состояние, в котором она находилась в начальный момент, выбранный произвольно. Период величина, обратная частоте колебаний. Понятие период… …   Современная энциклопедия

  • dic.academic.ru

    период движения – это… Что такое период движения?

    
    период движения
    мат. cycle of motions

    Большой англо-русский и русско-английский словарь. 2001.

    • период высоких вод
    • период депрессии

    Смотреть что такое “период движения” в других словарях:

    • период движения — period of motion Наименьший промежуток времени или другой независимой переменной, после которого движение повторяется. Шифр IFToMM: 2.2.46 Раздел: СТРУКТУРА МЕХАНИЗМОВ …   Теория механизмов и машин

    • ПЕРИОД — (греч. periodos путь кругом). 1) промежуток времени между двумя важными историческими событиями. 2) в астрономии то же, что цикл; в арифметике: число цифр, повторяющихся, в том же порядке, бесчисленное множество раз. 3) особенно развитое сложное… …   Словарь иностранных слов русского языка

    • ДВИЖЕНИЯ — ДВИЖЕНИЯ. Содержание: Геометрия Д………………..452 Кинематика Д……………….456 Динамика Д………………..461 Двигательные механизмы…………465 Методы изучения Д. человека………471 Патология Д. человека …………. 474… …   Большая медицинская энциклопедия

    • ПЕРИОД — периода, м. [греч. periodos] (книжн.). 1. Промежуток времени, в течение к–рого заканчивается какой–н. повторяющийся процесс (науч.). Синодический период обращения планеты (время, в течение к–рого планета совершает один полный оборот вокруг… …   Толковый словарь Ушакова

    • период — а, м. période f. <лат. periodus<гр. periodos обход, круговращение, орбита небесного тела. 1. Промежуток времени, в который протекает та или иная часть общего процесса. БАС 1. Бывают в жизни его периоды во время которых выступает он из… …   Исторический словарь галлицизмов русского языка

    • ДВИЖЕНИЯ ТЕКТОНИЧЕСКИЕ — механические (в основном) перемещения в земной коре и в верхней мантии (тектоносфере), вызывающие изменение структуры геол. теч. Д. т. обычно отражаются в рельефе земной поверхности. Они связаны с физико хим. процессами, происходящими на разных… …   Геологическая энциклопедия

    • Период (определ. круг времени) — Период (от греч. períodos обход, круговращение, определённый круг времени), 1) промежуток времени, в течение которого совершается какой либо процесс. 2) Этап общественного развития, общественного движения. См. также Период в музыке, Период в… …   Большая советская энциклопедия

    • период форсирования — Период выстрела из стрелкового оружия от начала движения метаемого элемента до полного врезания его в нарезы канала ствола. [ГОСТ 28653 90] Тематики оружие стрелковое …   Справочник технического переводчика

    • ПЕРИОД — (от греческого periodos обход, круговращение, определенный круг времени), 1) промежуток времени, охватывающий какой либо законченный процесс. 2) Этап общественного развития, общественного движения …   Современная энциклопедия

    • ПЕРИОД — (от греч. periodos обход круговращение, определенный круг времени), 1) промежуток времени, охватывающий какой либо законченный процесс.2) Этап общественного развития, общественного движения …   Большой Энциклопедический словарь

    • ПЕРИОД ГРАФИКА — время занятия перегона парой поездов или группой чередующихся поездов, характерной для разных типов графика (парного, непарного, пачечного, пакетного). П. г. однопутной линии (фиг. 1) состоит из суммы времени занятия перегона в обоих направлениях …   Технический железнодорожный словарь


    dic.academic.ru

    Период современной физики

    Поиск Лекций

    Период современной физики начинается с 1905 г – года создания А. Эйнштейном специальной теории относительности и превращения гипотезы квантов М. Планка в теорию квантов света. Это продемонстрировало отход от классических представлений и понятий и положило начало созданию новой физической картины мира – квантово-релятивистской. Переход от классической физики к современной характеризовался не только возникновением новых идей, открытием новых неожиданных фактов и явлений, но и преобразованием ее духа в целом, возникновением нового способа физического мышления, глубоким изменением методологических принципов. В этом периоде целесообразно выделить три этапа:

    1. Первый этап (1905…1931 гг.) – характеризуется широким использованием идей релятивизма и квантов и завершается становлением квантовой механики.

    2. Второй этап – этап субатомной физики (1932…1954 гг.), физики проникли в мир атомного ядра.

    3. Третий этап – этап субъядерной физики и физики космоса, отличительной особенностью которого является изучение явлений в новых пространственно-временных масштабах. При этом за начало отсчета условно можно взять 1955 г., когда физики проникли в мир нуклона, в мир элементарной частицы.

    v 1905 г. А. Пуанкаре и А. Эйнштейн установили ковариантность уравнений Максвелла относительно «группы Лоренца». А. Эйнштейн выдвинул гипотезу о квантовом характере светового излучения (фотонная теория света). Он открыл закон взаимосвязи массы и энергии, предложил специальный принцип относительности, принцип постоянства скорости света и на их основе создал специальную теорию относительности, содержащую новые пространственно-временные представления. Совместно с квантовой теорией она составила фундамент физики XX в. Обнаружен эффект Доплера в каналовых лучах. Объяснение А. Эйнштейном законов фотоэффекта на основании существования квантов света, или фотонов. Разработка П. Ланжевеном классической теории диа- и парамагнетизма. Э. Швейдлер установил статистический характер закона превращения химических элементов, подтвержденный экспериментально в 1906 г.

    v 1905…1906 гг. А. Эйнштейн и М. Смолуховский дали последовательное объяснение броуновского движения на основе молекулярно-кинетической теории.

    v 1906 г. Изобретен триод (Л. Форест). М. Планк вывел уравнения релятивистской динамики, получив выражения для энергии и импульса электрона, ввел термин «теория относительности». Открыт 71-й элемент – лютеций (Д. Урбен). Открыта односторонняя проводимость у некоторых полупроводников и создан кристаллический детектор (К. Браун). Т. Лайман открыл спектральную серию атома водорода (серия Лаймана). Установление В. Нернстом третьего начала термодинамики (теорема Нернста). Предсказание им эффекта «вырождения газа». Ч. Варила открыл характеристические рентгеновские лучи. Э. Резерфорд обнаружил рассеяние альфа-частиц.

    v 1907 г. А. Эйнштейн ввел принцип эквивалентности гравитации и инерции, являющийся фундаментом общей теории относительности, и, исходя из него, вычислил красное смещение света в поле тяготения Солнца. Б. Л. Розинг изобрел первую электронную систему получения телевизионного изображения при помощи электроннолучевой трубки (в 1911 г. продемонстрировал прием простых геометрических фигур). Выдвинута гипотеза о существовании в ферромагнетиках участков самопроизвольной намагниченности и разработана первая статистическая теория ферромагнетизма (П. Вейсс). Подобную идею высказал еще в 1892 г. Б. Л. Розинг. Г. Минковский сформулировал точные инвариантные уравнения поля для движущихся тел. Дж. Пирс доказал электрическую природу явления выпрямления. М. Планк и А. Эйнштейн провели обобщение термодинамики в рамках специальной теории относительности. Открытие Э. К.Оттоном и А. Мутоном явления двойного лучепреломления в веществах, помещенных в магнитное поле, при распространении света в направлении, перпендикулярном полю (эффект Коттона – Мутона). Первое определение длины волны рентгеновских лучей (В. Вин). Разработка А. Эйнштейном первой квантовой теории теплоемкости твердых тел.

    v 1908 г. А. Бухерер провел опыт, окончательно подтвердивший справедливость релятивистской формулы Лоренца для зависимости массы от скорости. В. Ритц улучшил предложенные в 1888 г. И. Ридбергом приближенные формулы для частот спектральных серий, установив один из основных принципов систематики атомных спектров – комбинационный принцип (принцип Ридберга – Ритца). Г. Гейгер и Э. Резерфорд сконструировали прибор для регистрации отдельных заряженных частиц. В 1928 г. Гейгер усовершенствовал его с В. Мюллером (счетчик Гейгера – Мюллера). Г. Минковский высказал идею объединения трех измерений пространства и времени в одно четырехмерное пространство (пространство Минковского) и развил современный четырехмерный аппарат теории относительности. Ж. Перрен осуществил эксперименты по исследованию 1913 гг. броуновского движения, окончательно доказавшие реальность существования молекул. М. Смолуховский разработал теорию критической опалесценции. Получение Г. Камерлинг-Оннесом жидкого гелия при температуре 4,2°К. Ф. Пашен обнаружил спектральную серию атома водорода в инфракрасной области (серия Пашена). Э. Грюнейзен установил, что отношение коэффициента теплового расширения к теплоемкости твердого тела не зависит от температуры (закон Грюнейзена).

    v 1909 г. Доказано, что альфа-частицы являются дважды ионизированными атомами гелия (Э. Резерфорд, Т. Ройдс). Разработан новый метод количественного изучения аномальной дисперсии света – «метод крюков» (Д. С. Рождественский).

    v 1910 г. В. де Гааз разработал модель атома, в которой впервые сделана попытка связать квантовый характер излучения со структурой атома. Внедрение фотоэлементов в технику (Ю. Эльстер, Г. Гейтель). Прообразом фотоэлемента была еще установка А. Г. Столетова (1888 г.) по исследованию фотоэффекта. Обнаружение космологического красного смещения в спектрах галактик (В. Слайфер). Это смещение, как было показано со временем, связано с эффектом разбегания галактик. Первое определение энергии бета-частиц по их отклонению в магнитном поле (О. Байер, О. Ган). Получен металлический радий (М. Склодовская-Кюри, А. Дебьерн).

    v 1911 г. А. Зоммерфельд заметил, что постоянная Планка имеет размерность механического действия и предложил произвести квантование действия в ряде задач. А. Эйнштейн доказал искривление световых лучей в поле тяготения Солнца. Г. Гейгер и Дж. Нэттол установили зависимость между временем жизни и энергией распада радиоактивных ядер (закон Гейгера – Нэттола). Дж. Дж. Томсон разработал «метод парабол» для определения относительных масс частиц ионных пучков. Изготовлен первый международный радиевый эталон (М. Склодовская-Кюри, А. Дебьерн). Открытие Г. Камерлинг-Оннесом сверхпроводимости (обнаружил бесконечную проводимость, получив в металлическом кольце незатухающий ток). Постулирование П. Вейссом кванта магнитного момента – магнетона. Независимо от П. Вейсса магнетон предсказал П. Ланжевен и вычислил его величину. Э. Резерфорд дал формулу для эффективного поперечного сечения рассеяния нерелятивистских заряженных точечных частиц, взаимодействующих по закону Кулона (формула Резерфорда). Э. Резерфорд построил теорию рассеяния альфа-частиц в веществе, открыл атомное ядро и создал планетарную модель атома. Экспериментально доказана дискретность электрического заряда и впервые достаточно точно измерена величина заряда электрона (Р. Милликен).

    v 1912 г. А.И. Бачинский установил закон вязкости жидкостей (закон Бачинского). В. Гесс открыл космические лучи. В 1900…1901 гг. к мысли о существовании ионизирующего воздействия, способного проникать через толстые слои грунта, пришел Ч. Вильсон. В 1900 г. неизвестный источник ионов в воздухе заметили также Г. Гейтель и Ю. Эльстер. Дж. Нордстрем предложил теорию гравитации, обобщающую закон тяготения Ньютона в соответствии с требованиями специальной теории относительности и принципом эквивалентности. Л. Брэгг сформулировал условие дифракции падающего на кристалл монохроматического потока рентгеновских лучей. Это же уравнение, связывающее длину волны рентгеновского излучения с периодом решетки кристалла, дал в 1913 г. также Ю.В. Вульф (отсюда и название – формула Брэгга – Вульфа). М. Абрагам предложил теорию гравитации, обобщающую закон Ньютона, но не учитывающую принцип эквивалентности. Открытие П. Дебаем закона зависимости теплоемкости от абсолютной температуры (закон теплоемкости Дебая). Открыто явление дифракции (интерференции) рентгеновских лучей при прохождении их через кристаллы, что окончательно подтвердило их электромагнитную природу (М. Лауэ, В. Фридрих, П. Книппинг). П. Дебай развил упрощенное представление твердого тела в виде изотропной упругой среды (модель твердого тела Дебая). П. Эвальд развил теорию поляризации диэлектрических кристаллов. Построен спектрометр с магнитной фокусировкой (Дж. Даныш). Р. Милликен проверил уравнение Эйнштейна для фотоэффекта и вычислил из него постоянную Планка. Развита теория колебаний кристаллической решетки (П. Дебай, М. Борн, Т. Карман). Разработана теория интерференции рентгеновских лучей на кристаллах и предложено использовать их как своеобразные дифракционные решетки для рентгеновских лучей (М. Лауэ). Установление А. Эйнштейном основного закона фотохимии (закон Эйнштейна). Ф. Пашен и Э. Бак открыли эффект, названный их именем (эффект Пашена – Бака). Ч. Вильсон изобрел прибор для наблюдения следов заряженных частиц (камера Вильсона). В 1923 г. П.Л. Капица и Д.В. Скобельцын впервые поместили камеру в сильное магнитное поле и наблюдали искривление треков частиц. Экспериментальное доказательство периодичности атомной структуры кристаллов, существования кристаллической решетки (Г. и Л. Брэгги).

    v 1913…1914 гг. Г. Мозли установил зависимость между частотой спектральных линий характеристического рентгеновского излучения элемента и его порядковым номером (закон Мозли) и доказал равенство заряда ядра атома порядковому номеру его элемента. Предсказано диффузионное рассеяние рентгеновских лучей колебаниями кристаллической решетки (П. Дебаи, Л. Бриллюэн).

    v 1913 г. А. Эйнштейн и М. Гроссман отождествили гравитационное поле с 10-компонентным метрическим тензором геометрии Римана и предложили теорию тяготения, учитывающую принцип эквивалентности. В.К. Аркадьев дал феноменологическое описание и первую теорию магнитных спектров, заложив основы магнитной спектроскопии. В. К. Аркадьев обнаружил избирательное поглощение радиоволн в ферромагнетиках (эффект Аркадьева), что было по существу открытием ферромагнитного резонанса. Он же разработал общую макроскопическую теорию электромагнитного поля в ферромагнитных металлах. Введено понятие дефекта массы (П. Ланжевен). Г. Брэгг изобрел рентгеновский спектрометр. Г. Ми построил теорию тяготения, основывающуюся на специальной теории относительности, но не удовлетворяющую принцип эквивалентности. Дж. Франк и Г. Герц экспериментально доказали существование дискретных уровней энергии атомов (опыты Франка – Герца). Использование триода для генерирования незатухающих электрических колебаний (А. Мейсснер). Обнаружение Г. Камерлинг-Оннесом разрушения сверх-, проводимости под влиянием сильных магнитных полей и токов. Открытие явления расщепления спектральных линий в электрическом поле. Впервые (1899 г.) обратил внимание на возмущение атомов электрическим полем В. Фогт. Н. Бор, применив идею квантования энергии к теории планетарного атома, сформулировал три квантовых постулата, которые характеризуют особенности движения электронов в атоме и разработал первую квантовую теорию атома водорода (теория атома Бора), ввел главное квантовое число. Положено начало рентгеноструктурному анализу (Г. и Л. Брэгги, Ю.В. Вульф) и рентгеновской спектроскопии. Создан магнитный спектрометр с фокусировкой и фотографической регистрацией (Дж. Даныш, Э. Резерфорд, Г. Робинсон). Сформулировано положение, что заряд ядра атома численно равен порядковому номеру соответствующего элемента в периодической таблице (А. Ван ден Брук). Сформулировано представление об изотопах элементов и введен термин «изотопы» (Ф. Содди). Впервые изотопы были открыты Дж. Дж. Томсоном, который в 1912 г. обнаружил существование атомов неона с массой 20 и 22. Мысль о неодинаковости атомов одного и того же элемента высказал в 1886 г. У. Крукс. Установление И. Ленгмюром закона для термоионного тока (закон Ленгмюра). Установлено, что различные изотопы свинца являются конечным продуктом трех естественных радиоактивных семейств. Ф. Астон предложил метод газовой диффузии для разделения изотопов. Ф. Седди и К. Фаянс независимо друг от друга установили правило смещения при радиоактивном распаде (закон Содди – Фаянса). Это сделал также А. С. Рассел. Ч. Бялобжеский высказал идею о лучистом переносе энергии в звездах. Э. Резерфорд предсказал протон. А. Ван ден Брук выдвинул гипотезу строения атомных ядер из протонов и электронов (протонно-электронная гипотеза). Однако с годами последняя привела ко многим противоречиям. В 1932 г. протонно-электронная гипотеза была заменена протонно-нейтронной.

    v 1914…1915 гг. А. Эйнштейн вывел полевые уравнения для метрического тензора и вычислил гравитационное отклонение света и смещение перигелия Меркурия.

    v 1914 г. В. Коссель объяснил возникновение рентгеновских спектров излучения, исходя из представлений об электронных оболочках атома, которые создают вокруг ядра последовательные слои. Дж. Чэдвик открыл непрерывный спектр энергии бета-излучения. Доказана идентичность рентгеновских спектров изотопов, чем окончательно подтверждено равенство порядковых номеров у изотопов данного элемента (Э. Резерфорд, Э. Андраде). Доказано существование стабильных изотопов свинца (Ф. Содди и др.). Н. Бор дал формулу для уровней энергии атома. Наблюдение слабого ферромагнетизма (Т. Смит). Обнаружено, что ток, циркулирующий в сверхпроводящем кольце, не изменяется по величине в течение нескольких дней без приложения какой-либо внешней э. д. с. С. Барнеттом обнаружено явление возникновения в теле при вращении в отсутствие внешнего магнитного поля намагниченности (эффект Барнетта). Э. Резерфорд выдвинул идею об искусственном превращении атомных ядер. Э. Резерфорд и Э. Андраде экспериментально осуществили дифракцию гамма-лучей на кристалле, доказав их электромагнитную природу. Э. Резерфорд предсказал внутреннюю конверсию.

    v 1915…1916 гг. А. Зоммерфельд усовершенствовал теорию атома Бора, распространив ее с просто периодических на случай многократно периодических систем, разработал квантовую теорию эллиптических орбит (теория Бора – Зоммерфельда), ввел радиальное и азимутальное квантовые числа.

    v 1915 г. А. Зоммерфельд построил теорию тонкой структуры водородного спектра. А. Эйнштейном и В. де Гаазом обнаружено возникновение вращения при намагничивании (эффект Эйнштейна – де Гааза). Разработан метод меченых атомов (Д. Хевеши, Ф. Панет). Разработана теория химической связи в органических соединениях и предложена гипотеза валентных электронов. Установлен коротковолновой предел непрерывного спектра рентгеновских лучей.

    v 1916 г. А. Зоммерфельд и П. Дебай завершили построение квантовой теории эффекта Зеемана. В. Коссель, исходя из теории атома Бора, объяснил химические взаимодействия, в том числе и гетерополярных молекул. Вышла работа А. Эйнштейна «Основы общей теории относительности», которой он завершил создание релятивистской теории гравитации, дав систематическое изложение ее физических основ и математического аппарата. Немецкий ученый К. Шварцшильд получил первое решение уравнения тяготения Эйнштейна, описывающее гравитационное поле сферической массы (решение Шварцшильда). П. Дебай и А. Зоммерфельд показали, что компоненты момента. количества движения в направлении поля также квантуются, и ввели понятие магнитного квантового числа. П. Дебай и П. Шеррер предложили метод исследования структуры поликристаллических материалов при помощи дифракции рентгеновских лучей (метод Дебая – Шеррера). П. Эвальд построил динамическую теорию рассеяния рентгеновских лучей. П. Эренфест выдвинул адиабатический принцип. П.С. Эпштейн я К. Шварцшильд сформулировали общую квантовую теорию многократно периодических систем. Постулирование А. Эйнштейном гравитационных волн. В 1918 г. он вывел формулу для мощности гравитационного излучения. Теоретически прогнозировано индуцированное излучение и введены вероятности спонтанного и вынужденного излучений (А. Эйнштейн).

    v 1917 г. А. Эйнштейн на основе своих уравнений поля развил представление о пространстве с постоянной во времени и пространстве кривизной (модель Вселенной Эйнштейна, знаменующая зарождение космологии), ввел космологическую постоянную. В. де Ситтер выдвинул космологическую модель Вселенной (модель де Ситтера). Изготовлены первые фотосопротивления (Т. Кэйз). Открыт 91-й элемент – протактиний (О. Ган, Л. Мейтнер). Получена первая удачная рентгеноспектрограмма (Э. Вагнер). У. Харкинс нашел, что более стабильны ядра с четным значением атомного числа и встречаются чаще, чем с нечетным.

    v 1918…1919 гг. Г. Вейль предложил первый вариант единой теории поля, основанный на обобщении римановой геометрии.

    v 1918 г. А. Демпстер построил первый масс-спектрометр. Бор сформулировал принцип соответствия (начал разрабатывать еще в 1914…1915 гг.). Выдвинута идея объединенного описания всех полей и всего вообще вещества на базе геометризированной картины мира – единая теория толя (Г. Вейль, Э. Картан, А. Эддингтон, А. Эйнштейн и др.). Доказан факт существования изотопов среди продуктов радиоактивного распада (Дж. Дж. Томсон). Обнаружено явление инерции электронов в металлах (Р. Толмен, Т. Стюарт). Первая правильная интерпретация явления дана в 1936 г. Ч. Дарвином. Открыты изобары (Стюарт). П. Вейсс и Г. Пикар открыли магнетокалорический эффект. Э. Нетер открыла связь свойств симметрии с физическими законами сохранения (теорема Нетер).

    v 1919 г. В. Коссель и А. Зоммерфельд установили спектроскопический закон смещения. Введение А. Зоммерфельдом внутреннего квантового числа и основанных на нем правил отбора для дублетных и триплетных спектров. Впервые проведено непосредственное измерение скорости молекул (О. Штерн). Выдвинуто предположение, объясняющее энергию Солнца и звезд реакциями превращения водорода в гелий (А. Эддингтон). Г. Баркгаузен открыл явление скачкообразного изменения намагниченности ферромагнетиков при непрерывном изменении поля (эффект Баркгаузена). М. Саха вывел формулу, определяющую степень термической ионизации в газе (формула Саха). М. Сигбаи впервые изучил сателлиты в рентгеновских спектрах. Объяснение отличия массы водорода от целого числа (Ф. Астон). Объяснено происхождение линейчатого, спектра бета-излучения. Первая экспериментальная проверка отклонения света звезды в поле тяготения Солнца, предсказанного общей теорией относительности (А. Эддингтон). Получено первое значение размеров ядра. Ф. Астон построил масс-спектрограф с достаточно высокой разрешающей способностью. Принцип действия масс-спектрографа предложил в 1907 г. Дж. Дж. Томсон. Ф. Астон предложил электромагнитный метод разделения изотопов. Э. Резерфорд осуществил первую искусственную ядерную реакцию, превратив азот в кислород, а также первый непосредственно доказал наличие в ядрах элементов протонов.

    v 1920 г. Э. Резерфорд выдвинул гипотезу о существовании нейтрона. К идее нейтрона пришел также в этом же году и У. Харкинс.

    v 1921 г. А. Ланде построил теорию аномального эффекта Зеемана. О. Ган открыл явление изомерии атомных ядер (на примере протактиния-234). На существование ядерной изомерии указывал еще в 1918 г. Ст. Мейер. Получен первый советский радий (В.Г. Хлопин).

    v 1922…1925 гг. Разработка А. Ланде, Ф. Хундом и Г. Расселом система-тики сложных спектров.

    v 1922 г. А. Ланде ввел g-фактор (множитель Ланде). А.А. Фридман нашел нестационарные решения гравитационного уравнения Эйнштейна и предсказал расширение Вселенной (нестационарная космологическая модель), подтвержденное в 1929 г. открытием явления разбегания галактик. Г. Буш выдвинул идею электронного микроскопа. Дж. Лилиенфельд открыл явление холодной электронной эмиссии при воздействии сильного электрического поля. Объяснение этого явления на основе электронного туннелирования дали в 1928 г. Р. Фаулер и Л. Нордгейм. Испанский физик М. Каталан ввел понятие мультиплетов. О. Штерн и В. Горлах экспериментально доказали, что магнитный момент электрона в атоме приобретает лишь дискретные значения (пространственное квантование), дав первые экспериментальные методы измерения атомных и молекулярных моментов. О.В. Лосев предложил использовать кристаллические детекторы для усиления и генерирования электромагнитных колебаний. Предсказание Л. Бриллюэном рассеяния света в кристаллах (аналогичные результаты в 1926 г. получены и Л.И. Мандельштамом). Отсюда название – эффект Бриллюэна – Мандельштама. Экспериментально обнаружен в 1930 г. Е.Ф. Гроссом. Ф. Брэкетт открыл спектральную серию атома водорода в инфракрасной области (серия Брэкетта).

    v 1923…1924 гг. Луи де Бройль высказал идею о волновых свойствах материи (волны де Бройля). Эта идея Л. де Бройля о всеобщности корпускулярно-волнового дуализма легла в основу квантовой механики Шредингера.

    v 1923 г. А. Комптон открыл явление рассеяния коротковолнового излучения на свободном или слабо связанном электроне (эффект Комптона), чем экспериментально доказал существование фотона, постулированного в 1905 г. А. Эйнштейном. В 1923 г. Комптон и П. Дебай дали теоретическую интерпретацию этому явлению. А. Эйнштейн предложил вариант единой теории поля, разработкой которой он занимался всю последующую жизнь. Д. Хевеши впервые применил метод меченых атомов к биологическим проблемам (исследование поглощения растениями свинца из раствора). Д. Хевеши и Д. Костер открыли рентгеноскопическим методом 72-й элемент – гафний. Н. Бор пришел к представлению об оболочечной структуре атома, основанному на классификации электронных орбит по главному и азимутальному квантовым числам. Объяснение Н. Бором особенностей периодической системы химических элементов (вариант периодической таблицы по Бору), Начало разработки теории периодической системы Н. Бором относится к 1921 г. П.Л. Капица и Д.В. Скобельцын поместили камеру Вильсона в сильное магнитное поле, наблюдая искривление треков альфа-частиц. Предсказание комбинационного рассеяния света (А. Смекал). С.И. Вавилов и В.Л. Левшин обнаружили первый нелинейный эффект в оптике – уменьшение поглощения света урановым стеклом с ростом интенсивности света. Создан купроксный выпрямитель (Грондаль).

    v 1924…1925 гг. В. Паули сформулировал один из важнейших принципов современной теоретической физики (принцип Паули).

    v 1924…1925 гг. Ш. Бозе и А. Эйнштейн разработали квантовую статистику частиц с целым спином (статистика Бозе – Эйнштейна). Гипотеза Нернста о существовании вырождения газа превратилась в обоснованное теоретическое утверждение.

    v 1924 г. В. Кеезом провел термодинамическое рассмотрение сверхпроводящего перехода и получил связь между электронной теплоемкостью и критическим полем (в 1933 г. это сделал также К. Гортер). В. Паули для объяснения сверхтонкой структуры спектральных линий предположил гипотезу ядерного спина. В. Ханле открыл явление, названное его именем (эффект Ханле). В. Шоттки создал первую теорию явлений в ионизированном газе. Г. Каммерлинг-Оннес показал возможность создания незатухающего тока в кольце, состоящем из двух различных сверхпроводников, находящихся в контакте. О. Лапорт сформулировал закон сохранения пространственной четности применительно к процессу испускания света атомами. Открытие галактик американским астрономом Э. Хабблом. Передана первая фоторадиограмма из Лондона в Нью-Йорк. Разработан метод совпадений (В. Боте). Разработка П.Л. Капицей методики и получения кратковременных магнитных полей напряженностью до 500 тысяч эрстед. Создан первый полупроводниковый выпрямитель, состоящий из закиси меди и двух электродов с униполярной проводимостью (Ф. Гейгер). Х. Крамере открыл существование отрицательных дисперсионных членов для атомов в возбужденных состояниях.

    v 1925…1926 гг. Дж. Франк сформулировал в физической химии принцип, квантовомеханическую трактовку которому в 1928 г. дал Э. Кондон (принцип Франка – Кондона).

    v 1925 г. Американские ученые Г. Рассел и Ф. Саундерс открыли тип взаимодействия электронов в атоме (связь Рассела – Саундерса).В. М. Эльзассер предложил использовать кристалл для наблюдения дифракции электронов и доказательства их волновой природы. Г. А. Изинг предложил идею линейного резонансного ускорителя. В 1928 г. первый успешный эксперимент с таким ускорителем провел Р. Видероэ. Записаны формулы для интенсивностей мультиплетных линий (А. Зоммерфельд, Р. Крониг и др.). Открытие супругами Ноддак 75-го элемента – рения. П. Оже открыл эффект, названный его именем (эффект Оже). Разработан метод толстослойных ядерных фотоэмульсий (Л. В. Мысовский и др.). Разработка В. Гейзенбергом матричной механики. Разработка В.Л. Левшиным теории поляризованной люминесценции, установление формулы Левшина – Перрена. С. Гаудсмит и Дж. Уленбек постулировали существование внутреннего механического и магнитного моментов у электрона (спиновая гипотеза). Спиновая гипотеза (понятие спина) сразу же разъяснила много трудных вопросов и получила всеобщее признание (к идее спина в 1921 г. пришел также А. Комптон). Созданы первые советские электронные лампы (Н. Д. Папалекси). Х. Крамерс и В. Гейзенберг с помощью принципа соответствия получили полную формулу дисперсии, включающую комбинационное рассеяние (формула дисперсии Крамерса – Гейзенберга). Э. Изинг предложил модель ферромагнетизма (модель Изинга). Э. Стонер ввел подразделение электронных оболочек атома на подоболочки. Эгучи открыл электреты. Впервые получена фотография следа протона и расщепления ядра азота альфа-частицами, первое наблюдение ядер отдачи (П. Блэкетт). Доказана справедливость законов сохранения энергии и импульса при рассеянии гамма-квантов на электронах для каждого элементарного акта рассеяния (В. Боте, Г. Гейгер).

    v 1926…1927 гг. Открыт и теоретически объяснен обменный эффект электростатического взаимодействия электронов в оболочке атомов и молекул и установлена его непосредственная связь с магнитными свойствами электронных систем.

    v 1926…1927 гг. П. Дирак разработал теорию преобразований. Х. Крамере и Р. Крониг сформулировали дисперсионные соотношения (соотношения Крамерса – Кронига).

    v 1926 г. В. Гейзенберг объяснил наличие двух систем термов для пара- и ортогелия: паратермы соответствуют симметричным, а ортотермы – антисимметричным решениям волнового уравнения. Дж. Ван Флек разработал квантовомеханическую теорию диамагнетизма (в 1927 г. это сделал также Л. Полинг). Записано простейшее релятивистское волновое уравнение для частиц со спином 0 – уравнение Клейна – Фока – Гордона (О. Клейн, В.А. Фок. В. Гордон). Л. Бриллюэн, Г. Вентцель, Х. Крамере разработали метод нахождения приближенных собственных значений и собственных функций одномерного уравнения Шредингера, устанавливающий связь со старыми правилами квантования Бора и Зоммерфельда (метод БВК). М. Борн дал вероятностную интерпретацию волн де Бройля. М. Борн и Н. Винер установили общий принцип, согласно которому физической величине соответствует некоторый оператор. М. Борн развил приближенный метод решения задачи о рассеянии частиц силовым центром (борновское рассеяние). П. Дебай и У. Джиок независимо друг от друга предложили метод получения низких температур при помощи парамагнетиков (в 1933…1934 гг. В. де Гаазом, У. Джиоком, Ф. Саймоном были проведены первые экспериментальные исследования этим методом). Развитие М. Борном с учениками формализма матричной механики. Разработана квантовая статистика для частиц с полуцелым спином – статистика Ферми – Дирака (Э. Ферми, П. Дирак). Э. Шредингер построил волновую механику и сформулировал ее основное уравнение, названное его именем (уравнение Шредингера). Из уравнения Шредингера возникло общее представление о туннельном эффекте, – Э. Шредингер доказал математическую эквивалентность матричной механики В. Гейзенберга и волновой механики. Я.И. Френкель ввел понятие о подвижных дырках (дырочная проводимость). Я.И. Френкель разработал кинетическую теорию жидкостей.

    v 1927…1928 гг. Выдвинута идея о существовании в металлах энергетических зон (М. Стрэгг). Первые определения моментов ядер. Р. Крониг впервые рассмотрел квантовомеханическую теорию магнетооптических явлений для двухатомных молекул (в 1929 г. это сделал Л. Розенфельд для атомов, в 1930 г. X. Крамерс для парамагнитных ионов).

    v 1927 г. В. Гейзенберг сформулировал фундаментальное положение квантовой механики – принцип неопределенности. В. Паули ввел матрицы для описания спина электрона (спиновые матрицы Паули). В. А. Фок дал теорию теплового электрического пробоя диэлектриков. Введение понятия упаковочного коэффициента и построение первой кривой зависимости упаковочных коэффициентов от массовых чисел, характеризующей энергию связи атомных ядер (Ф. Астон). Г. Леметр предложил космологическую модель (модель Леметра). Д. Деннисон доказал существование спина протона. Д. В. Скобельцын впервые наблюдал следы заряженных частиц высоких энергий в камере Вильсона, помещенной в магнитное поле. Дж. Битти и О. Бриджмен предложили эмпирическое уравнение состояния для описания поведения реальных газов в широкой области температур (от –252 до+400°С) и давлений (до 200 атм.). Заложены основы теории валентных связей, положившей начало квантовой химии (Ф. Лондон, В. Гайтлер). Кельнер впервые применил вариационный метод в квантовой механике для расчета нормального состояния гелия (получения энергетических уровней атома). Л. де Бройль предложил концепцию волны-пилота с целью интерпретации квантовой механики. Л. Томас предложил приближенную схему описания и расчета основного состояния многоэлектронных атомов, развитую в 1928 г. Э. Ферми (модель атома Томаса – Ферми). М. Борн и Р. Оппенгеймер разработали теорию строения двухатомных молекул. Н. Бор, В. Гейзенберг, Э. Шредингер, М. Борн, В. Паули, П. Дирак выдвинули индетерминистскую концепцию элементарных процессов (копенгагенская интерпретация квантовой механики). Н. Бором сформулирован принцип дополнительности. Открытие дифракции электронов (К. Дэвиссон, Л. Джермер, Дж. П. Томсон). Открытие С.И. Вавиловым зависимости квантового выхода люминесценции от длины волны возбуждающего излучения (закон Вавилова). Открытие спинов атомных ядер. Открытие Ю. Вигнером зеркальной симметрии и формулировка закона сохранения четности (введение представления о четности волновой функции). П. Дирак применил принципы квантовой теории к максвелловскому полю и получил первую модель квантованного поля. Получено прямое доказательство, что при абсолютном нуле энергия кристалла проявляется как колебания атомов (Р. Джеймс, Э. Ферс). Разработан метод вторичного квантования (П. Дирак и др.). В 1932 г. этот метод получил дальнейшее развитие в трудах В. А. Фока. Разработка В. Паули теории парамагнетизма электронного газа (парамагнетизм Паули). Создание квантовой теории излучения, предсказание тождественности квантов вынужденного и первичного излучений, лежащей в основе квантовой электроники (П. Дирак). У. Хаустон дал точное значение массы протона. Установление Ф. Хундом двух эмпирических правил, которые определяют последовательность расположения атомных уровней в мультиплетах (правила Хунда). Ф. Астон экспериментально показал, измеряя атомные веса, что масса ядра не равна сумме масс входящих в ядро частиц, а меньше этой величины на несколько десятых процента. Э. Эпплтон открыл верхний отражающий слой в ионосфере (слой Эпплтона). Ю. Вигнер впервые использовал в квантовой механике теорию групп. Ю. Вигнер и др. построили аппарат, эквивалентный волновой механике в конфигурационном пространстве с антисимметричными волновыми функциями. Я. Клей открыл широтный эффект космических лучей.

    v 1928 г. А. Зоммерфельд разработал первую квантовую теорию металлов. В. Паули выдвинул требование лоренц-инвариантности и при квантовании. Дж. Хартри ввел математическое определение количества информации и разработал приближенный метод решения задач квантовой механики многих тел – метод самосогласованного поля, развитый в 1930 г. В. А. Фоком (метод Хартри – Фока). Объяснение сверхтонкой структуры спектров (В. Паули). Открытие сверхтонкой структуры спектральных линий атомных спектров (А. Н. Теренин, Л. Н. Добрецов, Г. Шюллер). Открыто комбинационное рассеяние света (Л. И. Мандельштам и Г. С. Ландсберг; Ч. Раман и К. Кришиан) Открыты гелий 1 и гелий II (В. Кеезом, М. Вольфке). П. Дирак и В. Гейзенберг открыли обменное взаимодействие, введя обменные силы. П. Дирак соединил квантовую механику с теорией относительности и установил квантовомеханическое уравнение, описывающее релятивистский электрон, создав релятивистскую квантовую механику. П. Дирак теоретически открыл античастицы (позитрон), предсказал возможность рождения и аннигиляции электронно-позитронных пар. Построена квантовая теория оптической активности паров (Л. Розенфельд). Разработка теории альфа-распада как туннельного процесса (Г. Гамов, Э. Кондон, Р. Герни). Разработка Ф. Блохом и Л. Бриллюэном основ зонной теории 1930 гг. твердых тел (в 1930 г. Л. Бриллюэн ввел понятие запрещенных зон). С. Я. Соколов положил начало звуковидению и разработал первый дефектоскоп. Созданы первые квантовомеханические теории ферромагнетизма, основанные на обменном взаимодействии электронами: коллективизированная модель (Я. И. Френкель) и модель локализованных спинов (В. Гейзенберг). Ф. Блох и Р. Пайерлс разработали теорию движения отдельных электронов в кристаллической решетке. Ф. Блох предложил метод линейной комбинации атомных орбит, развил приближение сильной связи. Э. Ладенбург доказал существование отрицательной дисперсии, предсказанной в 1924 г. X. Крамерсом. Ю. Вигнер провел квантование электронного поля.

    v 1929…1930 гг. В. Гейзенберг и В. Паули предприняли первую попытку формулировки квантовой электродинамики, введя общую схему квантования полей. Э. Ферми и Харгревс дали первую количественную теорию взаимодействия ядерного магнитного момента с электронной оболочкой. Э. Ферми предпринял попытку построения квантовой электродинамики (подход, отличный от схемы В. Гейзенберга и В. Паули), разработав канонические правила квантования поля.

    v 1929 г. В. Боте и В. Кольхерстер применили метод совпадений для исследования космических лучей (опыты Боте – Кольхерстера) и пришли к выводу, что первичное космическое излучение состоит из заряженных частиц. В. Гайтлер и Г. Герцберг определили статистику ядра азота (в 1930 г. это сделал и Ф. Разетти), найдя, что оно подчиняется статистике Бозе – Эйнштейна. Это оказалось решающим доводом против протонно-электронной гипотезы строения ядер. Введение понятия плазмы и плазменных колебаний (И. Ленгмюр, Л. Тонко). Дж. Слэтер показал, что детерминант, составленный из отдельных электронных волновых функций, можно использовать как многоэлектронную волновую функцию, удобную для вариационных расчетов в задачах по электронной структуре атомов и молекул (детерминанты Слэтера). Н. Мотт в первом порядке в теории возмущений рассмотрел рассеяние на бесконечно тяжелой бесструктурной точечной мишени (формула Мотта). Он же указал на возможность поляризации электронного пучка при рассеянии. О. Штерн открыл дифракцию атомов и молекул. Разработка Х. Бете теории кристаллического поля. Создана квантовая теория эффекта Комптона (О. Клейн, И. Нишина), сформулировано уравнение, описывающее рассеяние электронов в этом эффекте (уравнение Клейна – Нишины). Х. Крамерс сформулировал теорему, имеющую важное значение для проблемы магнетизма кристаллов (теорема Крамерса). Э. Меррит обнаружил полупроводниковые свойства у германия.


    Рекомендуемые страницы:

    poisk-ru.ru

    Периоды и этапы развития физики

    История физики хранит немало событий и фактов, оказавших большое влияние на ход развития этой древней науки и составивших золотой фонд ее памяти. Размещенные в строгой временной последовательности, эти факты дают возможность проследить генезис основных физических идей и теорий, их взаимосвязь, преемственность и эволюцию, тенденции развития, а некоторые из них, в силу своей фундаментальной роли, открывают новые страницы в летописи физики, изменяя или пополняя научную картину природы.

    Приведенный ниже перечень основных физических фактов и открытий подается в рамках определенной схемы периодизации физики, дающей возможность более отчетливо представить структурные особенности и динамику развития физики. ее идей и принципов, иными словами – ее внутреннюю логику развития. Используемая схема составлена с учетом тех факторов, которые определяют состояние и облик любой науки и являются ускорителями ее прогресса.

    ОСНОВНЫЕ ПЕРИОДЫ И ЭТАПЫ В РАЗВИТИИ ФИЗИКИ

    ПРЕДЫСТОРИЯ ФИЗИКИ (от древнейших времен до ХVII в.)

    • Эпоха античности (VI в. до н. э.– V в. н. э.).
    • Средние века (VI – ХIV вв.).
    • Эпоха Возрождения (ХV – ХVI вв.).

    ПЕРИОД СТАНОВЛЕНИЯ ФИЗИКИ КАК НАУКИ

    • Начало ХVII в.– 80-е гг. ХVII в.

    ПЕРИОД КЛАССИЧЕСКОЙ ФИЗИКИ (конец XVII в.– начало ХХ в.)

    • Первый этап (конец ХVII в. – 60-е гг. ХIХ в.).
    • Второй этап (60-е гг. ХIХ в.– 1894 г.).
    • Третий этап (1895 – 1904).

    ПЕРИОД СОВРЕМЕННОЙ ФИЗИКИ (с 1905)

    • Первый этап (1905 – 1931).
    • Второй этап (1932-1954).
    • Третий этап (с 1955).

    Период от древнейших времен до начала ХVII в. – это предыстория физики, период накопления физических знаний об отдельных явлениях природы, возникновения отдельных учений. В соответствии с этапами развития общества в нем выделяют эпоху античности, средние века, эпоху Возрождения.

    Физика как наука берет начало от Г. Галилея – основоположника точного естествознания. Период от Г. Галилея до И. Ньютона представляет начальную фазу физики, период ее становления.

    Последующий период начинается И. Ньютоном, заложившим основы той совокупности законов природы, которая дает возможность понять закономерности большого круга явлений. И. Ньютон построил первую физическую картину мира (механическую картину природы) как завершенную систему механики. Возведенная И. Ньютоном и его последователями, Л. Эйлером, Ж. Даламбером, Ж. Лагранжем, П. Лапласом и другими, грандиозная система классической физики просуществовала незыблемо два века и только в конце ХIХ в. начала рушиться под напором новых фактов, не укладывающихся в ее рамки. Правда, первый ощутимый удар по физике Ньютона нанесла еще в 60-х годах ХIХ в. теория электромагнитного поля Максвелла – вторая после ньютоновской механики великая физическая теория, дальнейшее развитие которой углубило ее противоречия с классической механикой и привело к революционным изменениям в физике. Поэтому период классической физики в принятой схеме делится на три этапа: от И. Ньютона до Дж. Максвелла (1687 – 1859), от Дж. Максвелла до В. Рентгена (1860 – 1894) и от В. Рентгена до А. Эйнштейна (1895 – 1904).

    Первый этап проходит под знаком полного господства механики Ньютона, его механическая картина мира совершенствуется и уточняется, физика представляется уже целостной наукой. Второй этап начинается с создания в 1860 – 1865 гг. Дж. Максвеллом общей строгой теории электромагнитных процессов. Используя концепцию поля М. Фарадея, он дал точные пространственно-временные законы электромагнитных явлений в виде системы известных уравнений – уравнений Максвелла для электромагнитного поля. Теория Максвелла получила дальнейшее развитие в трудах Г. Герца и Х. Лоренца, в результате чего была создана электродинамическая картина мира.

    Этап с 1895 по 1904 гг. является периодом революционных открытий и изменений в физике, когда последняя переживала процесс своего преобразования, обновления, периодом перехода к новой, современной физике, фундамент которой заложили специальная теория относительности и квантовая теория. Начало ее целесообразно отнести к 1905 г. – году создания А. Эйнштейном специальной теории относительности и превращения идеи кванта М. Планка в теорию квантов света, которые ярко продемонстрировали отход от классических представлений и понятий и положили начало созданию новой физической картины мира – квантово-релятивистской. При этом переход от классической физики к современной характеризовался не только возникновением новых идей, открытием новых неожиданных фактов и явлений, но и преобразованием ее духа в целом, возникновением нового способа физического мышления, глубоким изменением методологических принципов физики.

    В периоде современной физики целесообразно выделить три этапа: первый этап (1905 – 1931), который характеризуется широким использованием идей релятивизма и квантов и завершается созданием и становлением квантовой механики – четвертой после И. Ньютона фундаментальной физической теории; второй этап – этап субатомной физики (1932 – 1954), когда физики проникли на новый уровень материи, в мир атомного ядра, и, наконец, третий этап – этап субъядерной физики и физики космоса, – отличительной особенностью которого является изучение явлений в новых пространственно-временных масштабах. При этом за начало отсчета условно можно взять 1955 г., когда физики начали исследовать структуру нуклона, что знаменовало проникновение в новую область пространственно-временных масштабов, на субъядерный уровень. Этот этап совпал во времени с развернувшейся научно-технической революцией, начало ему дали новый уровень производительных сил, новые условия развития человеческого общества.

    Приведенная схема периодизации физики в какой-то степени является условной, однако дает возможность в сочетании с хронологией открытий и фактов более четко представить ход развития физики, ее точки роста, проследить генезис новых идей, возникновение новых направлений, эволюцию физических знаний.

    www.ckofr.com

    Физика – это… Что такое Физика?

    Примеры разнообразных физических явлений

    Фи́зика (от др.-греч. φύσις — природа) — область естествознания, наука, изучающая наиболее общие и фундаментальные закономерности, определяющие структуру и эволюцию материального мира. Законы физики лежат в основе всего естествознания.[1]

    Термин «физика» впервые появился в сочинениях одного из величайших мыслителей древности — Аристотеля, жившего в IV веке до нашей эры. Первоначально термины «физика» и «философия» были синонимичны, поскольку обе дисциплины пытаются объяснить законы функционирования Вселенной. Однако в результате научной революции XVI века физика выделилась в отдельное научное направление.

    В русский язык слово «физика» было введено Михаилом Васильевичем Ломоносовым, когда он издал первый в России учебник физики в переводе с немецкого языка. Первый русский учебник под названием «Краткое начертание физики» был написан первым русским академиком П. И. Страховым.

    В современном мире значение физики чрезвычайно велико. Всё то, чем отличается современное общество от общества прошлых веков, появилось в результате применения на практике физических открытий. Так, исследования в области электромагнетизма привели к появлению телефонов и позже мобильных телефонов, открытия в термодинамике позволили создать автомобиль, развитие электроники привело к появлению компьютеров.

    Физическое понимание процессов, происходящих в природе, постоянно развивается. Большинство новых открытий вскоре получают применение в технике и промышленности. Однако новые исследования постоянно поднимают новые загадки и обнаруживают явления, для объяснения которых требуются новые физические теории. Несмотря на огромный объём накопленных знаний, современная физика ещё очень далека от того, чтобы объяснить все явления природы.

    Общенаучные основы физических методов разрабатываются в теории познания и методологии науки.

    Предмет физики

    Физика — это наука о природе (естествознание) в самом общем смысле (часть природоведения). Она изучает различные субстанции бытия (материю, вещество, поля) и наиболее простые и вместе с тем наиболее общие формы её движения, а также фундаментальные взаимодействия природы, управляющие движением материи.

    Некоторые закономерности являются общими для всех материальных систем, например, сохранение энергии, — их называют физическими законами. Физику иногда называют «фундаментальной наукой», поскольку другие естественные науки (биология, геология, химия и др.) описывают только некоторый класс материальных систем, подчиняющихся законам физики. Например, химия изучает атомы, образованные из них вещества и превращения одного вещества в другое. Химические же свойства вещества однозначно определяются физическими свойствами атомов и молекул, описываемыми в таких разделах физики, как термодинамика, электромагнетизм и квантовая физика.

    Физика тесно связана с математикой: математика предоставляет аппарат, с помощью которого физические законы могут быть точно сформулированы. Физические теории почти всегда формулируются в виде математических выражений, причём используются более сложные разделы математики, чем обычно в других науках. И наоборот, развитие многих областей математики стимулировалось потребностями физических теорий (см. математическая физика).

    Научный метод

    Физика — естественная наука. В ее основе лежит экспериментальное исследование явлений природы, а ее задача — формулировка законов, которыми объясняются эти явления. Физика сосредоточивается на изучении фундаментальных и простейших явлений и на ответах на простые вопросы: из чего состоит материя, каким образом частицы материи взаимодействуют между собой, по каким правилам и законам осуществляется движение частиц и т. д. В основе физических исследований лежат наблюдения. Обобщение наблюдений позволяет физикам формулировать гипотезы о совместных общих черт этих явлений, по которым велись наблюдения. Гипотезы проверяются с помощью продуманного эксперимента, в котором явление проявлялось бы в как можно более чистом виде и не осложнялось бы другими явлениями. Анализ данных совокупности экспериментов позволяет сформулировать закономерность. На первых этапах исследований закономерности носят преимущественно эмпирический, феноменологический характер, то есть явление описывается количественно с помощью определенных параметров, характерных для исследуемых тел и веществ. Анализируя закономерности и параметры, физики строят физические теории, которые позволяют объяснить изучаемые явления на основе представлений о строении тел и веществ и взаимодействие между их составными частями. Физические теории, в свою очередь, создают предпосылки для постановки точных экспериментов, в ходе которых в основном определяются рамки их применения. Общие физические теории позволяют формулировки физических законов, которые считаются общими истинами, пока накопления новых экспериментальных результатов не потребует их уточнения.

    Так, например, Стивен Грей заметил, что электричество можно передавать на довольно значительное расстояние с помощью увлажненных нитей и начал исследовать это явление. Георг Ом сумел найти для него количественную закономерность — ток в проводнике пропорционален напряжению (закон Ома). При этом, конечно, эксперименты Ома опирались на новые источники питания и на новые способы измерять действие электрического тока, что позволило количественно охарактеризовать его. По результатам дальнейших исследований удалось абстрагироваться от формы и длины проводников и ввести такие феноменологические характеристики, как удельное сопротивление проводника и внутреннее сопротивление источника питания. Закон Ома и поныне основа электротехники, однако исследования установили также рамки его применения — открыли элементы электрической цепи с нелинейными вольт-амперными характеристиками а также вещества, не имеющие электрического сопротивления — сверхпроводники. После открытия заряженных микроскопических частиц — электронов, была сформулирована микроскопическая теория электропроводности, объясняющая зависимости сопротивления от температуры посредством рассеяния электронов на колебаниях кристаллической решетки, примесях и т. д.

    В. И. Ленин писал: «Одним словом, сегодняшний «физический» идеализм точно так же, как вчерашний «физиологический» идеализм, означает только то, что одна школа естествоиспытателей в одной отрасли естествознания скатилась к реакционной философии, не сумев прямо и сразу подняться от метафизического материализма к диалектическому материализму. Этот шаг делает и сделает современная физика, но она идет к единственно верному методу и единственно верной философии естествознания не прямо, а зигзагами, не сознательно, а стихийно, не видя ясно своей «конечной цели», а приближаясь к ней ощупью, шатаясь, иногда даже задом».( Ленин В. И. Материализм и эмпириокритицизм. — Полн. собр. соч., т. 18, с. 327. )

    Количественный характер физики

    Физика — количественная наука. Физический эксперимент опирается на измерения, то есть сравнение характеристик исследуемых явлений с определенными эталонами. С этой целью физика развила совокупность физических единиц и измерительных приборов. Отдельные физические единицы объединяются в системы физических единиц. Так, на современном этапе развития науки стандартом является Международная система СИ.

    Полученные экспериментально количественные зависимости позволяют использовать для своей обработки математические методы и строить теоретические, то есть математические модели изучаемых явлений.

    С изменением представлений о природе тех или иных явлений меняются также физические единицы, в которых измеряются физические величины. Так, например, для измерения температуры сначала были предложены произвольные температурные шкалы, которые делили промежуток температур между характерными явлениями (например, замерзанием и кипением воды) на определенное количество меньших промежутков, которые получили название градусов температуры. Для измерения количества теплоты была введена единица — калория, которая определяла количество теплоты, необходимой для нагрева грамма воды на один градус. Однако со временем физики установили соответствие между механической и тепловой формой энергии. Таким образом, оказалось, что предложенная ранее единица количества теплоты, калория, является излишней, как единица измерения температуры. И количество теплоты и температуру можно измерять в единицах механической энергии. В современную эпоху калория и градус не вышли из практического употребления, но между этими величинами и единицей энергии Джоулем существует точное числовое соотношение. Градус, как единица измерения температуры входит в систему СИ, а коэффициент перехода от температурной к энергетическим величинам, постоянная Больцмана, считается физической постоянной.

    История физики

    Физика — это наука о материи, ее свойствах и движении. Она является одной из наиболее древних научных дисциплин. Люди пытались понять свойства материи из древнейших времен: почему тела падают на землю, почему разные вещества имеют различные свойства и т. д. Интересовали людей также вопрос о строении мира, о природе Солнца и Луны. Сначала ответы на эти вопросы пытались искать в философии. В основном философские теории, которые пытались дать ответы на такие вопросы не проверялись на практике. Однако, несмотря на то, что нередко философские теории неправильно описывали наблюдения, еще в древние времена человечество добилось значительных успехов в астрономии, а греческий мудрец Архимед даже сумел дать точные количественные формулировки многих законов механики и гидростатики.

    Некоторые теории древних мыслителей, как, например, идеи о атомах, которые были сформулированы в древних Греции и Индии, опережали время. Постепенно от общей философии начало отделяться естествознание, как и его часть, которая описывает окружающий мир. Одна из основных книг Аристотеля называется «Физика». Несмотря на некоторые неправильные утверждения, физика Аристотеля на протяжении веков оставалась основой знаний о природе.

    См. также: Природное явление

    Период до научной революции

    Свойство человечества сомневаться и пересматривать положения, которые раньше считались единственно истинными, в поисках ответов на новые вопросы в итоге привела к эпохе великих научных открытий, которую сегодня называют научной революцией, начавшейся примерно со второй половины 16-го века. Предпосылки к этим коренным изменениям сложились благодаря достоянию древних мыслителей, наследие которых можно проследить до Индии и Персии. Сюда входят эллиптические модели планетарных орбит, опиравшиеся на гелиоцентрическую модель Солнечной системы, которую разработал индийский математик и астроном Ариабхата I, базовые положения атомизма, предложенные индусскими и джайнистськимы философами, теория о том, что свет эквивалентно энергетическим частицам буддистских мыслителей Дигнагы и Дхармакирти, оптическая теория арабского ученого Альхазена, изобретение персом Могаммадом аль Фазари астролябии. Персидский ученый Насир аль Дин ат Туси указал на значительные недостатки птолемеевской системы.

    Средневековая Европа на какое-то время потеряла знания античных времен, но под влиянием Арабского халифата сохраненные арабами сочинения Аристотеля вернулись. В 12-13 веках нашли свой ​​путь в Европу также произведения индийских и персидских ученых. В Средние века начал складываться научный метод, в котором основная роль отводилась экспериментам и математическому описанию. Ибн аль-Хайсам (Альхазен) считается основоположником научного метода. В своей «Книге о оптике», написанной в 1021 году, он описывал эксперименты, поставленные для того, чтобы доказать справедливость своей теории зрения, которая утверждала, что глаз воспринимает свет, излучаемый другими объектами, а не сам глаз излучает свет, как считали раньше Евклид и Птолемей. В экспериментах Альхазена использовалась камера обскура. С помощью этого прибора он проверял свои гипотезы относительно свойств света: или свет распространяется по прямой, или смешиваются в воздухе различные лучи света.

    Научная революция

    Период научной революции характеризуется утверждением научного метода исследований, вычленением физики из массы натурфилософии в отдельную область и развитием отдельных разделов физики: механики, оптики, термодинамики и т. д.

    Большинство историков придерживаются мнения о том, что научная революция началась в 1543 году, когда Копернику привезли из Нюрнберга впервые напечатанный экземпляр его книги «Об обращении небесных сфер».

    На протяжении века с тех пор знания человечество обогатилось работами таких исследователей, как Галилео Галилея, Христиана Гюйгенса, Иоганна Кеплера и Блеза Паскаля. Галилей первым начал последовательно применять научный метод, проводя эксперименты, чтобы подтвердить свои предположения и теории. Он сформулировал некоторые законы динамики и кинематики, в частности закон инерции, и проверил их опытным путем. В 1687 году Ньютон опубликовал книгу «Principia», в которой в подробностях описал две основополагающие физические теории: законы движения тел, известные под названием законы Ньютона, и законы тяготения. Обе теории прекрасно согласовывались с экспериментом. Книга также приводила теории движения жидкостей. Впоследствии классическая механика была переформулирована и расширенная Леонардом Эйлером, Жозефом-Луи Лагранжем, Уильямом Гамильтоном и другими. Законы гравитации заложили основу тому, что позже стало астрофизикой, которая использует физические теории для описания и объяснения астрономических наблюдений.

    После установления законов механики Ньютоном, следующим исследовательским полем стало электричество. Основы создания теории электричества заложили наблюдения и опыты таких ученых 17-го века, как Роберт Бойль, Стивен Грей, Бенджамин Франклин. Сложились основные понятия — электрический заряд и электрический ток. В 1831 году английский физик Майкл Фарадей объединил электричество и магнетизм, продемонстрировав, что движущийся магнит индуцирует в электрической цепи ток. Опираясь на эту концепцию, Джеймс Клерк Максвелл построил теорию электромагнитного поля. Кроме электромагнитных явлений уравнения Максвелла описывают свет. Подтверждение этому нашел Генрих Герц, открыв радиоволны.

    С построением теории электромагнитного поля и электромагнитных волн победой волновой теории света, основанной Гюйгенсом, над корпускулярной теорией Ньютона, завершилось построение классической оптики. На этом пути оптика обогатилась пониманием дифракции и интерференции света, достигнутым благодаря трудам Френеля и Янга.

    В 18-м и начале 19-го века были открыты основные законы поведения газов, а со временем тепловых машин сформировалась наука термодинамика. В 19-ом веке Джоуль установил эквивалентность механической и тепловой энергий, что привело к формулировке закона сохранения энергии. Благодаря Клаузиусу был сформулирован второй закон термодинамики, Гиббс заложил основы статистической физики, Людвиг Больцман предложил статистическую интерпретацию понятия энтропии.

    Под конец девятнадцатого века физики подошли к значительному открытию — экспериментальному подтверждению существования атома.

    В конце девятнадцатого века изменилась роль физики в обществе. Возникновение новой техники: электричества, радио, автомобиля и т. д., требовало большого объема прикладных исследований. Занятия наукой стало профессией. Фирма General Electric первой открыла собственные исследовательские лаборатории. Такие же лаборатории стали появляться в других фирмах.

    Смена парадигм

    Конец девятнадцатого, начало двадцатого века был временем, когда под давлением новых экспериментальных данных физикам пришлось пересмотреть старые теории и заменить их новыми, заглядывая все глубже в строение материи. Эксперимент Майкельсона — Морли выбил основу из-под ног электромагнетизма, поставив под сомнение существование эфира. Были открыты новые явления, такие как рентгеновские лучи и радиоактивность. Не успели физики доказать существование атома, как появились доказательства существования электрона, эксперименты с фотоэффекта и измерения спектра теплового излучения давали результаты, которые невозможно было объяснить, исходя из принципов классической физики. В прессе этот период назывался кризисом физики, но одновременно он стал периодом триумфа физики, сумевшей выработать новые революционные теории, которые не только объяснили непонятные явления, но и многие другие, открыв путь к новому пониманию природы.

    В 1905 году Альберт Эйнштейн построил специальную теорию относительности, которая продемонстрировала, что понятие эфира не требуется при объяснении электромагнитных явлений. При этом пришлось изменить классическую механику Ньютона, дав ей новую формулировку, справедливую при больших скоростях. Коренным образом изменились также представления о природе пространства и времени. Эйнштейн развил свою теорию в общую теорию относительности, опубликованную в 1916 году. Новая теория включала в себя описание гравитационных явлений и открыла путь к становлению космологии — науки об эволюции Вселенной.

    Рассматривая задачу о тепловом излучении абсолютно черного тела Макс Планк в 1900 году предложил невероятную идею, что электромагнитные волны излучаются порциями, энергия которых пропорциональна частоте. Эти порции получили название квантов, а сама идея начала построение новой физической теории — квантовой механики, которая еще больше изменила классическую ньютоновскую механику, на этот раз при очень малых размерах физической системы. В том же 1905-м году Альберт Эйнштейн применил идею Планка для успешного объяснения экспериментов с фотоэффектом, предположив, что электромагнитные волны не только излучаются, но и поглощаются квантами. Корпускулярная теория света, которая, казалось, потерпела сокрушительное поражение в борьбе с волновой теорией, вновь получила поддержку.

    Спор между корпускулярной и волновой теорией нашел свое решение в корпускулярно-волновом дуализме, гипотезе, сформулированной Луи де Бройлем. По этой гипотезе не только квант света, а любая другая частица проявляет одновременно свойства, присущие как корпускул, так и волны. Гипотеза Луи де Бройля подтвердилась в экспериментах с дифракции электронов.

    В 1911 году Эрнест Резерфорд предложил планетарную теорию атома, а в 1913 году Нильс Бор построил модель атома, в которой постулировал квантовый характер движения электронов. Благодаря работам Вернера Гайзенберга, Эрвина Шредингера, Вольфганга Паули, Поля Дирака и многих других квантовая механика нашла свое точную математическую формулировку, подтвердждённую многочисленными экспериментами. В 1927 году была произведена копенгагенская интерпретация, которая открывала путь для понимания законов квантового движения на качественном уровне.

    Физика современности

    С открытием радиоактивности Анри Беккерелем началось развитие ядерной физики, которая привела к появлению новых источников энергии: атомной энергии и энергии ядерного синтеза. Открытые при исследованиях ядерных реакции новые частицы: нейтрон, протон, нейтрино, дали начало физике элементарных частиц. Эти новые открытия на субатомном уровне оказались очень важными для физики на уровне Вселенной и позволили сформулировать теорию её эволюции — теорию Большого взрыва.

    Сложилось окончательное разделение труда между физиками-теоретиками и физиками-экспериментаторами. Энрико Ферми был, пожалуй, последним выдающимся физиком, успешным как в теории, так и в экспериментальной работе.

    Передний край физики переместился в область исследования фундаментальных законов, ставя перед собой цель создать теорию, которая объясняла бы Вселенную, объединив теории фундаментальных взаимодействий. На этом пути физика получила частичные успехи в виде теории электрослабого взаимодействия и теории кварков, обобщённой в так называемой стандартной модели. Однако, квантовая теория гравитации до сих пор не построена. Определенные надежды связываются с теорией струн.

    Начиная с создания квантовой механики, быстрыми темпами развивается физика твердого тела, открытия которой привели к возникновению и развитию электроники, а с ней и информатики, которые внесли коренные изменения в культуру человеческого общества.

    Теоретическая и экспериментальная физика

    В основе своей физика — экспериментальная наука: все её законы и теории основываются и опираются на опытные данные. Однако зачастую именно новые теории являются причиной проведения экспериментов и, как результат, лежат в основе новых открытий. Поэтому принято различать экспериментальную и теоретическую физику.

    Экспериментальная физика исследует явления природы в заранее подготовленных условиях. В её задачи входит обнаружение ранее неизвестных явлений, подтверждение или опровержение физических теорий. Многие достижения в физике были сделаны благодаря экспериментальному обнаружению явлений, не описываемых существующими теориями. Например, экспериментальное изучение фотоэффекта послужило одной из посылок к созданию квантовой механики (хотя рождением квантовой механики считается появление гипотезы Планка, выдвинутой им для разрешения ультрафиолетовой катастрофы — парадокса классической теоретической физики излучения).

    В задачи теоретической физики входит формулирование общих законов природы и объяснение на основе этих законов различных явлений, а также предсказание до сих пор неизвестных явлений. Верность любой физической теории проверяется экспериментально: если результаты эксперимента совпадают с предсказаниями теории, она считается адекватной (достаточно точно описывающей данное явление).

    При изучении любого явления экспериментальные и теоретические аспекты одинаково важны.

    Прикладная физика

    От своего зарождения физика всегда имела большое прикладное значение и развивалась вместе с машинами и механизмами, которые человечество использовало для своих нужд. Физика широко используется в инженерных науках, немало физиков были одновременно изобретателями и, наоборот. Механика, как часть физики, тесно связана с теоретической механикой и сопротивлением материалов, как инженерными науками. Термодинамика связана с теплотехникой и конструированием тепловых двигателей. Электричество связано с электротехникой и электроникой, для становления и развития которой очень важны исследования в области физики твердого тела. Достижения ядерной физики обусловили появление ядерной энергетики, и тому подобное.

    Физика также имеет широкие междисциплинарные связи. На границе физики, химии и инженерных наук возникла и быстро развивается такая отрасль науки как материаловедение. Методы и инструменты используются химией, что привело к становлению двух направлений исследований: физической химии и химической физики. Все мощнее становится биофизика — область исследований на границе между биологией и физикой, в которой биологические процессы изучаются исходя из атомарного структуры органических веществ. Геофизика изучает физическую природу геологических явлений. Медицина использует методы, такие как рентгеновские и ультразвуковые исследования, ядерный магнитный резонанс — для диагностики, лазеры — для лечения болезней глаз, ядерное облучение — в онкологии, и тому подобное.

    Основные теории

    Хотя физика имеет дело с разнообразными системами, некоторые физические теории применимы в больших областях физики. Такие теории считаются в целом верными при дополнительных ограничениях. Например, классическая механика верна, если размеры исследуемых объектов намного больше размеров атомов, скорости существенно меньше скорости света, и гравитационные силы малы. Эти теории всё ещё активно исследуются; например, такой аспект классической механики, как теория хаоса был открыт только в XX веке. Они составляют основу для всех физических исследований.

    Разделы физики

    Макроскопическая физика

    Микроскопическая физика

    Разделы физики на стыке наук

    Справка

    Важнейшие журналы

    Российские

    Зарубежные

    • Nature Physics
    • Журналы Американского физического общества
      • Physics — короткие обзорные статьи по результатам, опубликованным в других журналах общества.
      • Reviews of Modern Physics (RMP) Публикует обзорные статьи по большим разделам физики
      • Physical Review Letters (PRL) Наиболее престижный (после Nature и Science) журнал: короткие статьи по новейшим исследованиям
      • Physical Review (A,B,C,D,E) Статьи разного формата, более подробные, но менее оперативно публикуемые, чем в Phys. Rev. Lett.
      • Annals of Physics
    • Журналы Американского института физики
    • Европейские журналы
      • Journal of Physics (A, B, C …)
      • New Journal of Physics
      • Physica (A, B, C …)
      • Physics Letters A
      • Europhysics Letters
      • Zeitschrift für Physik Именно в этом журнале публиковались Эйнштейн, Гейзенберг, Планк…
      • Nuovo cimento (A, B, C …)
      • Foundations of Physics
    • Научно-популярные журналы

    А также архив препринтов arXiv.org, на котором статьи появляются гораздо раньше их появления в журналах и доступны для свободного скачивания.

    См. также

    Ссылки

    Коды в системах классификации знаний

    Примечания

    Литература

    • Иванов Б. Н. Законы физики. Изд.3, М.:URSS, 2010 г., 368 с

    med.academic.ru