Формула момент инерции тела – Как рассчитать момент инерции 🚩 как найти момент инерции стержня 🚩 Естественные науки

Содержание

формула. Момент инерции тела :: SYL.ru

Чтобы изменить скорость перемещения тела в пространстве, необходимо приложить некоторое усилие. Этот факт относится ко всем видам механического движения и связан с наличием инерционных свойств у объектов, имеющих массу. В данной статье рассматривается вращение тел и дается понятие об их моменте инерции.

Что такое вращение с точки зрения физики?

Ответ на этот вопрос может дать каждый человек, поскольку этот физический процесс ничем не отличается от его понятия в обиходе. Процесс вращения представляет собой перемещение объекта, обладающего конечной массой, по круговой траектории вокруг некоторой воображаемой оси. Можно привести следующие примеры вращения:

  • Движение колеса автомобиля или велосипеда.
  • Вращение лопастей вертолета или вентилятора.
  • Движение нашей планеты вокруг оси и вокруг Солнца.

Какие физические величины характеризуют процесс вращения?

Перемещение по окружности описывается набором величин в физике, основные из которых перечислены ниже:

  • r - расстояние до оси материальной точки массой m.
  • ω и α - угловая скорость и ускорение, соответственно. Первая величина показывает, на сколько радиан (градусов) поворачивается тело вокруг оси за одну секунду, вторая величина описывает скорость изменения во времени первой.
  • L - момент импульса, который подобен аналогичной характеристике при линейном движении.
  • I - момент инерции тела. Эта величина рассматривается ниже в статье подробно.
  • M - момент силы. Он характеризует степень изменения величины L, если приложена внешняя сила.

Перечисленные величины связаны друг с другом следующими формулами вращательного движения:

  1. L = I*ω
  2. M = I*α

Первая формула описывает круговое движение тела в отсутствие действия внешних моментов сил. В приведенном виде она отражает закон сохранения момента импульса L. Второе выражение описывает случай ускорения или замедления вращения тела в результате действия момента силы M. Оба выражения часто используются при решении задач динамики по круговой траектории.

Как видно из этих формул, момент инерции относительно оси (I) в них используется в качестве некоторого коэффициента. Рассмотрим подробнее эту величину.

Откуда появляется величина I?

В этом пункте рассмотрим самый простой пример вращения: круговое перемещение материальной точки массой m, дистанция которой от оси вращения составляет r. Эта ситуация приведена на рисунке.

Согласно определению, момент импульса L записывается, как произведение плеча r на линейный импульс p точки:

L = r*p = r*m*v, поскольку p = m*v

Учитывая, что линейная и угловая скорость связаны друг с другом через расстояние r, это равенство можно переписать так:

v = ω*r => L = m*r2

Произведение массы материальной точки на квадрат расстояния до оси вращения принято называть моментом инерции. Формула выше перепишется в таком случае следующим образом:

I = m*r2 => L = I*ω

То есть мы получили выражение, которое было приведено в предыдущем пункте, и ввели в использование величину I.

Общая формула для величины I тела

Выражение для момента инерции массой m материальной точки является базовым, то есть оно позволяет рассчитать эту величину для любого тела, имеющего произвольную форму и неоднородное распределение массы в нем. Для этого необходимо разбить рассматриваемый объект на маленькие элементы массой mi (целое число i - номер элемента), затем, умножить каждый из них на квадрат расстояния ri2 до оси, вокруг которой рассматривают вращение, и сложить полученные результаты. Описанную методику нахождения величины I можно записать математически так:

I = ∑i(mi*ri2)

Если тело разбито таким образом, что i->∞, тогда приведенная сумма заменяется интегралом по массе тела m:

I = ∫m(ri2*dm)

Этот интеграл эквивалентен другому интегралу по объему тела V, поскольку dV=ρ*dm:

I = ρ*∫V(ri2*dV)

Все три формулы используются для вычисления момента инерции тела. При этом в случае дискретного распределения масс в системе предпочтительнее пользоваться 1-м выражением. При непрерывном распределении массы применяют 3-е выражение.

Свойства величины I и ее физический смысл

Описанная процедура получения общего выражения для I позволяет сделать некоторые выводы о свойствах этой физической величины:

  • она является аддитивной, то есть полный момент инерции системы можно представить, как сумму моментов отдельных ее частей;
  • она зависит от распределения массы внутри системы, а также от расстояния до оси вращения, чем больше последнее, тем больше I;
  • она не зависит от действующих на систему моментов сил M и от скорости вращения ω.

Физический смысл I заключается в том, насколько сильно система препятствует любому изменению скорости ее вращения, то есть момент инерции характеризует степень "плавности" возникающих ускорений. Например, колесо велосипеда можно легко раскрутить до больших угловых скоростей и также легко его остановить, но чтобы изменить вращение маховика на коленвале автомобиля, понадобится приложить значительное усилие и некоторое время. В первом случае имеет место система с маленьким моментом инерции, во втором - с большим.

Значение I некоторых тел для оси вращения, проходящей через центр масс

Если применить интегрирование по объему для любых тел с произвольным распределением массы, то можно получить для них величину I. В случае однородных объектов, которые имеют идеальную геометрическую форму, эта задача уже решена. Ниже приводятся формулы момента инерции для стержня, диска и шара массой m, в которых составляющее их вещество распределено равномерно:

  • Стержень. Ось вращения проходит перпендикулярно ему. I = m*L2/12, где L - длина стержня.
  • Диск произвольной толщины. Момент инерции с осью вращения, проходящей перпендикулярно его плоскости через центр масс, вычисляется так: I = m*R2/2, где R - радиус диска.
  • Шар. В виду высокой симметрии этой фигуры, для любого положения оси, проходящей через ее центр, I = 2/5*m*R2, здесь R - шара радиус.

Далее приведем два примера решения задач на применение общей формулы для расчета I и на использование свойства аддитивности этой величины.

Задача на расчет значения I для системы с дискретным распределением массы

Представим себе стержень длиною 0,5 метра, который сделан из твердого и легкого материала. Этот стержень закреплен на оси таким образом, что она проходит перпендикулярно ему точно посередине. На этот стержень подвешены 3-и груза следующим образом: с одной стороны оси имеются два груза массами 2 кг и 3 кг, находящиеся на расстояниях 10 см и 20 см от его конца, соответственно; с другой стороны подвешен один груз массой 1,5 кг к концу стержня. Для этой системы необходимо рассчитать момент инерции I и определить, с какой скоростью ω стержень будет вращаться, если к одному из его концов приложить силу 50 Н в течение 10 секунд.

Поскольку массой стержня можно пренебречь, тогда необходимо рассчитать момент I для каждого груза и сложить полученные результаты, чтобы получить полный момент системы. Согласно условию задачи от оси груз массой 2 кг находится на расстоянии 0,15 м (0,25-0,1), груз 3 кг - 0,05 м (0,25-0,20), груз 1,5 кг - 0,25 м. Воспользовавшись формулой для момента I материальной точки, получаем:

I = I1+I2+I3 = m

1*r12 + m2*r22 + m3*r32 = 2*(0,15)2+3*(0,05)2+1,5*(0,25)2 = 0,14 625 кг*м2.

Обратим внимание, что при выполнении вычислений все единицы измерения были переведены в систему СИ.

Чтобы определить угловую скорость вращения стержня после действия силы, следует применить формулу с моментом силы, которая была приведена во втором пункте статьи:

M = I*α

Поскольку α = Δω/Δt и M = r*F, где r - длина плеча, получаем:

r*F = I*Δω/Δt => Δω = r*F*Δt/I

Учитывая, что r = 0,25 м, подставляем числа в формулу, получаем:

Δω = r*F*Δt/I = 0,25*50*10/0,14625 = 854,7 рад/с

Полученная величина является достаточно большой. Чтобы получить привычную частоту вращения, следует поделить Δω на 2*pi радиан:

f = Δω/(2*pi) = 854,7/(2*3,1416) = 136 с-1

Таким образом, приложенная сила F к концу стержня с грузами за 10 секунд раскрутит его до частоты 136 оборотов в секунду.

Расчет значения I для стержня, когда ось проходит через его конец

Пусть имеется однородный стержень массой m и длиной L. Необходимо определить момент инерции, если ось вращения расположена на конце стержня перпендикулярно ему.

Воспользуемся общим выражением для I:

I = ρ*∫V(ri2*dV)

Разбивая рассматриваемый объект на элементарные объемы, заметим, что dV может быть записано, как dr*S, где S - площадь сечения стержня, а dr - толщина элемента разбиения. Подставляя это выражение в формулу, имеем:

I = ρ*S*∫L(r2*dr)

Этот интеграл вычислить достаточно просто, получаем:

I = ρ*S* (r3/3)∣0L => I = ρ*S*L3/3

Поскольку объем стержня равен S*L, а масса - ρ*S*L, то получаем конечную формулу:

Любопытно отметить, что момент инерции для того же стержня, когда ось проходит через его центр масс, в 4 раза меньше полученной величины (m*L2/3/(m*L2/12)=4).

www.syl.ru

Момент инерции: формула. Момент инерции тела

Чтобы изменить скорость перемещения тела в пространстве, необходимо приложить некоторое усилие. Этот факт относится ко всем видам механического движения и связан с наличием инерционных свойств у объектов, имеющих массу. В данной статье рассматривается вращение тел и дается понятие об их моменте инерции.

Что такое вращение с точки зрения физики?

Ответ на этот вопрос может дать каждый человек, поскольку этот физический процесс ничем не отличается от его понятия в обиходе. Процесс вращения представляет собой перемещение объекта, обладающего конечной массой, по круговой траектории вокруг некоторой воображаемой оси. Можно привести следующие примеры вращения:

  • Движение колеса автомобиля или велосипеда.
  • Вращение лопастей вертолета или вентилятора.
  • Движение нашей планеты вокруг оси и вокруг Солнца.

Какие физические величины характеризуют процесс вращения?

Перемещение по окружности описывается набором величин в физике, основные из которых перечислены ниже:

  • r - расстояние до оси материальной точки массой m.
  • ω и α - угловая скорость и ускорение, соответственно. Первая величина показывает, на сколько радиан (градусов) поворачивается тело вокруг оси за одну секунду, вторая величина описывает скорость изменения во времени первой.
  • L - момент импульса, который подобен аналогичной характеристике при линейном движении.
  • I - момент инерции тела. Эта величина рассматривается ниже в статье подробно.
  • M - момент силы. Он характеризует степень изменения величины L, если приложена внешняя сила.

Перечисленные величины связаны друг с другом следующими формулами вращательного движения:

  1. L = I*ω
  2. M = I*α

Первая формула описывает круговое движение тела в отсутствие действия внешних моментов сил. В приведенном виде она отражает закон сохранения момента импульса L. Второе выражение описывает случай ускорения или замедления вращения тела в результате действия момента силы M. Оба выражения часто используются при решении задач динамики по круговой траектории.

Как видно из этих формул, момент инерции относительно оси (I) в них используется в качестве некоторого коэффициента. Рассмотрим подробнее эту величину.

Откуда появляется величина I?

В этом пункте рассмотрим самый простой пример вращения: круговое перемещение материальной точки массой m, дистанция которой от оси вращения составляет r. Эта ситуация приведена на рисунке.

Согласно определению, момент импульса L записывается, как произведение плеча r на линейный импульс p точки:

L = r*p = r*m*v, поскольку p = m*v

Учитывая, что линейная и угловая скорость связаны друг с другом через расстояние r, это равенство можно переписать так:

v = ω*r => L = m*r2*ω

Произведение массы материальной точки на квадрат расстояния до оси вращения принято называть моментом инерции. Формула выше перепишется в таком случае следующим образом:

I = m*r2 => L = I*ω

То есть мы получили выражение, которое было приведено в предыдущем пункте, и ввели в использование величину I.

Общая формула для величины I тела

Выражение для момента инерции массой m материальной точки является базовым, то есть оно позволяет рассчитать эту величину для любого тела, имеющего произвольную форму и неоднородное распределение массы в нем. Для этого необходимо разбить рассматриваемый объект на маленькие элементы массой mi (целое число i - номер элемента), затем, умножить каждый из них на квадрат расстояния ri2 до оси, вокруг которой рассматривают вращение, и сложить полученные результаты. Описанную методику нахождения величины I можно записать математически так:

I = ∑i(mi*ri2)

Если тело разбито таким образом, что i->∞, тогда приведенная сумма заменяется интегралом по массе тела m:

I = ∫m(ri2*dm)

Этот интеграл эквивалентен другому интегралу по объему тела V, поскольку dV=ρ*dm:

I = ρ*∫V(ri2*dV)

Все три формулы используются для вычисления момента инерции тела. При этом в случае дискретного распределения масс в системе предпочтительнее пользоваться 1-м выражением. При непрерывном распределении массы применяют 3-е выражение.

Свойства величины I и ее физический смысл

Описанная процедура получения общего выражения для I позволяет сделать некоторые выводы о свойствах этой физической величины:

  • она является аддитивной, то есть полный момент инерции системы можно представить, как сумму моментов отдельных ее частей;
  • она зависит от распределения массы внутри системы, а также от расстояния до оси вращения, чем больше последнее, тем больше I;
  • она не зависит от действующих на систему моментов сил M и от скорости вращения ω.

Физический смысл I заключается в том, насколько сильно система препятствует любому изменению скорости ее вращения, то есть момент инерции характеризует степень "плавности" возникающих ускорений. Например, колесо велосипеда можно легко раскрутить до больших угловых скоростей и также легко его остановить, но чтобы изменить вращение маховика на коленвале автомобиля, понадобится приложить значительное усилие и некоторое время. В первом случае имеет место система с маленьким моментом инерции, во втором - с большим.

Значение I некоторых тел для оси вращения, проходящей через центр масс

Если применить интегрирование по объему для любых тел с произвольным распределением массы, то можно получить для них величину I. В случае однородных объектов, которые имеют идеальную геометрическую форму, эта задача уже решена. Ниже приводятся формулы момента инерции для стержня, диска и шара массой m, в которых составляющее их вещество распределено равномерно:

  • Стержень. Ось вращения проходит перпендикулярно ему. I = m*L2/12, где L - длина стержня.
  • Диск произвольной толщины. Момент инерции с осью вращения, проходящей перпендикулярно его плоскости через центр масс, вычисляется так: I = m*R2/2, где R - радиус диска.
  • Шар. В виду высокой симметрии этой фигуры, для любого положения оси, проходящей через ее центр, I = 2/5*m*R2, здесь R - шара радиус.

Далее приведем два примера решения задач на применение общей формулы для расчета I и на использование свойства аддитивности этой величины.

Задача на расчет значения I для системы с дискретным распределением массы

Представим себе стержень длиною 0,5 метра, который сделан из твердого и легкого материала. Этот стержень закреплен на оси таким образом, что она проходит перпендикулярно ему точно посередине. На этот стержень подвешены 3-и груза следующим образом: с одной стороны оси имеются два груза массами 2 кг и 3 кг, находящиеся на расстояниях 10 см и 20 см от его конца, соответственно; с другой стороны подвешен один груз массой 1,5 кг к концу стержня. Для этой системы необходимо рассчитать момент инерции I и определить, с какой скоростью ω стержень будет вращаться, если к одному из его концов приложить силу 50 Н в течение 10 секунд.

Поскольку массой стержня можно пренебречь, тогда необходимо рассчитать момент I для каждого груза и сложить полученные результаты, чтобы получить полный момент системы. Согласно условию задачи от оси груз массой 2 кг находится на расстоянии 0,15 м (0,25-0,1), груз 3 кг - 0,05 м (0,25-0,20), груз 1,5 кг - 0,25 м. Воспользовавшись формулой для момента I материальной точки, получаем:

I = I1+I2+I3 = m1*r12 + m2*r22 + m3*r32 = 2*(0,15)2+3*(0,05)2+1,5*(0,25)2 = 0,14 625 кг*м2.

Обратим внимание, что при выполнении вычислений все единицы измерения были переведены в систему СИ.

Чтобы определить угловую скорость вращения стержня после действия силы, следует применить формулу с моментом силы, которая была приведена во втором пункте статьи:

M = I*α

Поскольку α = Δω/Δt и M = r*F, где r - длина плеча, получаем:

r*F = I*Δω/Δt => Δω = r*F*Δt/I

Учитывая, что r = 0,25 м, подставляем числа в формулу, получаем:

Δω = r*F*Δt/I = 0,25*50*10/0,14625 = 854,7 рад/с

Полученная величина является достаточно большой. Чтобы получить привычную частоту вращения, следует поделить Δω на 2*pi радиан:

f = Δω/(2*pi) = 854,7/(2*3,1416) = 136 с-1

Таким образом, приложенная сила F к концу стержня с грузами за 10 секунд раскрутит его до частоты 136 оборотов в секунду.

Расчет значения I для стержня, когда ось проходит через его конец

Пусть имеется однородный стержень массой m и длиной L. Необходимо определить момент инерции, если ось вращения расположена на конце стержня перпендикулярно ему.

Воспользуемся общим выражением для I:

I = ρ*∫V(ri2*dV)

Разбивая рассматриваемый объект на элементарные объемы, заметим, что dV может быть записано, как dr*S, где S - площадь сечения стержня, а dr - толщина элемента разбиения. Подставляя это выражение в формулу, имеем:

I = ρ*S*∫L(r2*dr)

Этот интеграл вычислить достаточно просто, получаем:

I = ρ*S* (r3/3)∣0L => I = ρ*S*L3/3

Поскольку объем стержня равен S*L, а масса - ρ*S*L, то получаем конечную формулу:

Любопытно отметить, что момент инерции для того же стержня, когда ось проходит через его центр масс, в 4 раза меньше полученной величины (m*L2/3/(m*L2/12)=4).

www.nastroy.net

Момент инерции твердого тела. Теорема Штейнера


⇐ ПредыдущаяСтр 6 из 8Следующая ⇒

Основные понятия

Момент инерции твердого тела относительно неподвижной оси вращения – физическая величина, численно равная сумме произведений масс n материальных точек системы на квадраты их расстояний до рассматриваемой оси.

Теорема Штейнера – момент инерции тела относительно любой оси вращения равен моменту инерции относительно параллельной оси, проходящей через центр масс тела, сложенному с произведением массы тела на квадрат расстояния между осями.

Момент силы относительно неподвижной точки – физическая величина, численно равная векторному произведению радиус-вектора данной точки, к которой приложен вектор силы, и вектора силы.

Момент силы относительно неподвижной оси – скалярная величина, равная проекции на ось вектора момента силы, определенного относительно точки, лежащей на данной оси.

Основные формулы

Примеры решения задач

Задача 3.1

К ободу однородного сплошного диска массой 10 кг, насаженного на ось, приложена постоянная касательная сила 30 Н. Определить кинетическую энергию тела через 4 с после начала действия силы.

 

К диску приложена постоянная касательная сила.

Момент этой силы, исходя из основного закона динамики вращения твердого тела, равен

. (2)

Но момент силы можно определить, зная плечо этой силы:

. (3)

Приравнивая формулы (2) и (3), получаем выражение для нахождения угловой скорости вращения диска:

;

.

Подставляем момент инерции диска и угловую скорость в формулу (1):

После подстановки данных получаем

Ответ:

Задача 3.2

Шар радиусом 10 см и массой 5 кг вращается вокруг оси симметрии согласно уравнению , рад. Определить момент сил через 3 с после начала вращения.

 

Дано: Шар Найти Решение Основной закон динамики вращения твердого тела позволяет найти момент сил: . (1) Момент инерции шара: . (2)

 

 

Угловое ускорение – это вторая производная угла поворота по времени:

(3)

Подставляем формулы (2) и (3) в уравнение (1):

.

Найдем значение момента сил:

.

Ответ:

Задача 3.3

Через блок, имеющий форму диска, перекинут шнур. К концам шнура привязаны грузики массой 100 г и 110 г. С каким ускорением будут двигаться грузики, если масса блока 400 г? Трением пренебречь.

Дано: Найти Решение Сделаем рисунок к данной задаче, учитывая, что блок в виде диска может вращаться вокруг оси.  
Рис.3.2 Составляем уравнения по второму закону Ньютона для двух грузиков, движущихся поступательно и уравнение по основному закону динамики вращения твердого тела для блока:  
     

Делаем проекции первых двух уравнений системы на координатную ось Оy:

(1)

Так как шнур нерастяжимый, то грузы будут двигаться с одинаковым ускорением, т.е. , также, в соответствие с третьим законом Ньютона, будут равны силы натяжения шнуров:

Момент сил, приложенных к блоку:

Приравниваем правые части полученных уравнений:

(2)

Силы натяжения шнуров выразим из системы (1) и подставляем в уравнение (2):

Перегруппировав полученное выражение, можно выразить ускорение:

Ответ:

Задача 3.4

Шар катится без скольжения по горизонтальной поверхности. Полная кинетическая энергия шара 14 Дж. Определить кинетическую энергию поступательного и вращательного движения шара.

Дано: . Найти Решение Шар, катясь по горизонтальной поверхности, совершает одновременно поступательное и вращательное движение, следовательно, его полная кинетическая энергия складывается из двух составляющих:

, (1)

где – момент инерции шара, относительно оси, проходящей через центр его масс, а – угловая скорость вращения шара.

 

Подставляем формулы момента инерции и угловой скорости в уравнение (1):

(2)

Из полученного выражения (2) выделяем произведение , которое позволяет найти долю кинетической энергии, приходящейся на поступательное движение шара:

(3)

Зная кинетическую энергию поступательного движения, найти долю кинетической энергии вращательного движения легко:

(4)

Подставляем исходные значения в формулы (3) и (4):

Ответ:

Задача 3.5

Найти момент инерции однородного тела, имеющего форму диска, в котором сделан квадратный вырез. Одна из вершин выреза совпадает с центром диска. Радиус диска 20 см, сторона квадрата 10 см, масса тела 5 кг. Имеется в виду момент инерции относительно оси, перпендикулярной к диску и проходящей через его центр.

Формула (1) с учетом записанных моментов инерции приобретает вид:

.

Учтем, что b – это половина диагонали квадрата, т.е. :

. (2)

В условии задана масса изделия, т.е. диска с вырезом:

Выразим из полученной формулы общую для диска и параллелепипеда высоту:

. (3)

Определяем массы диска и квадратного параллелепипеда через заданную массу изделия, подставляя вместо высоты выражение (3):

 

Подставляем полученные массы в формулу (2):

.

Полученное выражение позволяет найти момент инерции изделия:

Ответ: .

Задачи для самостоятельного решения

1. Диаметр диска 20 см, масса 800 г. Определить момент инерции диска, относительно оси, проходящей через середину одного из радиусов перпендикулярно плоскости диска ( ).

2. Вычислить момент инерции проволочного прямоугольника со сторонами 12 см и 16 см относительно оси, лежащей в плоскости прямоугольника и проходящей через середины малых сторон. Масса равномерно распределена по всей длине проволоки с линейной плотностью 0,1 кг/м (0,144 ).

3. Два тела массами 0,25 кг и 0,15 кг связаны тонкой нитью, переброшенной через блок. Блок укреплен на краю стола, по поверхности которого скользит тело массой 0,25 кг. С каким ускорением движутся тела, если коэффициент трения тела о поверхность стола равен 0,2? Масса блока 0,1 кг и ее можно считать равномерно распределенной по ободу. Массой нити и трением в подшипниках оси блока пренебречь (1,96 ).

4. Рассчитать момент инерции тонкого диска радиусом 10 см с вырезом радиусом 5 см относительно оси z, указанной на рис 3.4. Масса изделия 1 кг.

Рис. 3.4

Контрольные вопросы

1. Сколько значений момента инерции может иметь данное тело?

2. На тело с моментом инерции 2 действует вращающий момент 8 . С каким угловым ускорением вращается тело?

3. Во сколько раз момент инерции диска относительно оси симметрии, перпендикулярной основанию, меньше его момента инерции относительно оси, проходящей через край диска перпендикулярно основанию?

4. На какую высоту вкатится по наклонной плоскости шар, если у основании этой плоскости скорость его поступательного движения 4 м/с?


Рекомендуемые страницы:

lektsia.com

Момент инерции. Некоторые подробности механики твердого тела

Одним из основных физических принципов взаимодействия твердых тел является закон инерции, сформулированный еще великим Исааком Ньютоном. С этим понятием мы сталкиваемся практически постоянно, так как оно оказывает чрезвычайно большое влияние на все материальные предметы нашего мира, в том числе и на человека. В свою очередь, такая физическая величина, как момент инерции, неразрывно связана с упомянутым выше законом, определяя силу и продолжительность его воздействия на твердые тела.

С точки зрения механики любой материальный объект можно описать как неизменную и четко структурированную (идеализированную) систему точек, взаимные расстояния между которыми не изменяются в зависимости от характера их движения. Такой подход позволяет точно вычислять по специальным формулам момент инерции практически всех твердых тел. Еще одним интересным нюансом здесь является то, что любое сложное, имеющее самую замысловатую траекторию, движение можно представить в виде совокупности простых перемещений в пространстве: вращательного и поступательного. Это тоже значительно облегчает жизнь физикам при вычислении данной физической величины.

Понять, что же такое момент инерции и каково его влияние на окружающий нас мир, легче всего на примере резкого изменения скорости пассажирского транспортного средства (торможения). В этом случае ноги стоящего пассажира трение о пол увлечет за собой. Но при этом на туловище и голову никакого воздействия оказано не будет, вследствие чего они какое-то время будут продолжать движение с прежней заданной скоростью. В итоге пассажир наклонится вперед или упадет. Иными словами, момент инерции ног, погашенный силой трения о пол, будет значительно меньше, чем остальных точек тела. Противоположная картина будет наблюдаться при резком увеличении скорости автобуса или трамвайного вагона.

Момент инерции можно сформулировать как физическую величину, равную сумме произведений элементарных масс (тех самых отдельных точек твердого тела) на квадрат их удаленности от оси вращения. Из данного определения следует, что эта характеристика является величиной аддитивной. Проще говоря, момент инерции материального тела равен сумме аналогичных показателей его частей: J = J1 + J2 + J3 +

Данный показатель для тел сложной геометрии находится экспериментальным путем. Приходится учитывать слишком много различных физических параметров, включая плотность объекта, которая может быть неоднородной в разных его точках, что создает так называемую разницу масс в различных сегментах тела. Соответственно, и стандартные формулы здесь не подходят. Например, момент инерции кольца с определенным радиусом и однородной плотностью, имеющего ось вращения, которая проходит через его центр, можно рассчитать по следующей формуле: J = mR2. Но таким способом не получится вычислить данную величину для обруча, все части которого изготовлены из разных материалов.

А момент инерции шара сплошной и однородной структуры можно рассчитать по формуле: J = 2/5mR2. При вычислении данного показателя для тел относительно двух параллельных осей вращения в формулу вводится дополнительный параметр – расстояние между осями, обозначаемое литерой а. Вторая ось вращения обозначается при этом буквой L. Например, формула может иметь следующий вид: J = L + ma2.

Тщательные опыты по изучению инерционного движения тел и характера их взаимодействия впервые были произведены Галилео Галилеем на стыке шестнадцатого и семнадцатого веков. Они позволили великому ученому, опередившему свое время, установить основной закон о сохранении физическими телами состояния покоя или прямолинейного движения относительно Земли при отсутствии воздействия на них других тел. Закон инерции стал первым шагом в установлении основных физических принципов механики, в то время еще совершенно смутных, невнятных и неясных. Впоследствии Ньютон, формулируя общие законы движения тел, включил в их число и закон инерции.

fb.ru

Момент инерции — Википедия РУ

Моме́нт ине́рции — скалярная (в общем случае — тензорная) физическая величина, мера инертности во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).

Единица измерения в Международной системе единиц (СИ): кг·м².

Обозначение: I или J.

Различают несколько моментов инерции — в зависимости от типа базового множества до которого отсчитываются расстояния от элементарных масс.

Осевой момент инерции

  Осевые моменты инерции некоторых тел

Моментом инерции механической системы относительно неподвижной оси («осевой момент инерции») называется величина Ja, равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси[1]:

Ja=∑i=1nmiri2,{\displaystyle J_{a}=\sum _{i=1}^{n}m_{i}r_{i}^{2},} 

где:

  • mi — масса i-й точки,
  • ri — расстояние от i-й точки до оси.

Осевой момент инерции тела Ja является мерой инертности тела во вращательном движении вокруг оси подобно тому, как масса тела является мерой его инертности в поступательном движении.

Ja=∫(m)r2dm=∫(V)ρr2dV,{\displaystyle J_{a}=\int \limits _{(m)}r^{2}dm=\int \limits _{(V)}\rho r^{2}dV,} 

где:

dm = ρ dV — масса малого элемента объёма тела dV,
ρ — плотность,
r — расстояние от элемента dV до оси a.

Если тело однородно, то есть его плотность всюду одинакова, то

Ja=ρ∫(V)r2dV.{\displaystyle J_{a}=\rho \int \limits _{(V)}r^{2}dV.} 

Теорема Гюйгенса — Штейнера

Момент инерции твёрдого тела относительно какой-либо оси зависит от массы, формы и размеров тела, а также и от положения тела по отношению к этой оси. Согласно теореме Гюйгенса — Штейнера, момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела Jc относительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, и произведения массы тела m на квадрат расстояния d между осями[1]:

J=Jc+md2,{\displaystyle J=J_{c}+md^{2},} 

где m — полная масса тела.

Например, момент инерции стержня относительно оси, проходящей через его конец, равен:

J=Jc+md2=112ml2+m(l2)2=13ml2.{\displaystyle J=J_{c}+md^{2}={\frac {1}{12}}ml^{2}+m\left({\frac {l}{2}}\right)^{2}={\frac {1}{3}}ml^{2}.} 

Осевые моменты инерции некоторых тел

Вывод формул

Тонкостенный цилиндр (кольцо, обруч)

Вывод формулы

Момент инерции тела равен сумме моментов инерции составляющих его частей. Разобьём тонкостенный цилиндр на элементы с массой dm и моментами инерции dJi. Тогда

J=∑dJi=∑Ri2dm.(1).{\displaystyle J=\sum dJ_{i}=\sum R_{i}^{2}dm.\qquad (1).} 

Поскольку все элементы тонкостенного цилиндра находятся на одинаковом расстоянии от оси вращения, формула (1) преобразуется к виду

J=∑R2dm=R2∑dm=mR2.{\displaystyle J=\sum R^{2}dm=R^{2}\sum dm=mR^{2}.} 

Толстостенный цилиндр (кольцо, обруч)

Вывод формулы

Однородный диск (сплошной цилиндр)

Вывод формулы

Рассматривая цилиндр (диск) как кольцо с нулевым внутренним радиусом (R1 = 0), получим формулу для момента инерции цилиндра (диска):

J=12mR2.{\displaystyle J={\frac {1}{2}}mR^{2}.} 

Сплошной конус

Вывод формулы

Разобьём конус на тонкие диски толщиной dh, перпендикулярные оси конуса. Радиус такого диска равен

r=RhH,{\displaystyle r={\frac {Rh}{H}},} 

где R – радиус основания конуса, H – высота конуса, h – расстояние от вершины конуса до диска. Масса и момент инерции такого диска составят

dm=ρdV=ρ⋅πr2dh;{\displaystyle dm=\rho dV=\rho \cdot \pi r^{2}dh;} 
dJ=12r2dm=12πρr4dh=12πρ(RhH)4dh;{\displaystyle dJ={\frac {1}{2}}r^{2}dm={\frac {1}{2}}\pi \rho r^{4}dh={\frac {1}{2}}\pi \rho \left({\frac {Rh}{H}}\right)^{4}dh;} 

Интегрируя, получим

J=∫0HdJ=12πρ(RH)4∫0Hh5dh=12πρ(RH)4h55|0H==110πρR4H=(ρ⋅13πR2H)310R2=310mR2.{\displaystyle {\begin{aligned}J=\int _{0}^{H}dJ={\frac {1}{2}}\pi \rho \left({\frac {R}{H}}\right)^{4}\int _{0}^{H}h^{4}dh={\frac {1}{2}}\pi \rho \left({\frac {R}{H}}\right)^{4}\left.{\frac {h^{5}}{5}}\right|_{0}^{H}=={\frac {1}{10}}\pi \rho R^{4}H=\left(\rho \cdot {\frac {1}{3}}\pi R^{2}H\right){\frac {3}{10}}R^{2}={\frac {3}{10}}mR^{2}.\end{aligned}}} 

Сплошной однородный шар

Вывод формулы

Разобьём шар на тонкие диски толщиной dh, перпендикулярные оси вращения. Радиус такого диска, расположенного на высоте h от центра сферы, найдём по формуле

r=R2−h3.{\displaystyle r={\sqrt {R^{2}-h^{2}}}.} 

Масса и момент инерции такого диска составят

dm=ρdV=ρ⋅πr2dh;{\displaystyle dm=\rho dV=\rho \cdot \pi r^{2}dh;} 
dJ=12r2dm=12πρr4dh=12πρ(R2−h3)2dh=12πρ(R4−2R2h3+h5)dh.{\displaystyle dJ={\frac {1}{2}}r^{2}dm={\frac {1}{2}}\pi \rho r^{4}dh={\frac {1}{2}}\pi \rho \left(R^{2}-h^{2}\right)^{2}dh={\frac {1}{2}}\pi \rho \left(R^{4}-2R^{2}h^{2}+h^{4}\right)dh.} 

Момент инерции шара найдём интегрированием:

J=∫−RRdJ=2∫0RdJ=πρ∫0R(R4−2R2h3+h5)dh==πρ(R4h−23R2h4+15h5)|0R=πρ(R5−23R5+15R5)=815πρR5==(43πR3ρ)⋅25R2=25mR2.{\displaystyle {\begin{aligned}J&=\int _{-R}^{R}dJ=2\int _{0}^{R}dJ=\pi \rho \int _{0}^{R}\left(R^{4}-2R^{2}h^{2}+h^{4}\right)dh=\\&=\pi \rho \left.\left(R^{4}h-{\frac {2}{3}}R^{2}h^{3}+{\frac {1}{5}}h^{5}\right)\right|_{0}^{R}=\pi \rho \left(R^{5}-{\frac {2}{3}}R^{5}+{\frac {1}{5}}R^{5}\right)={\frac {8}{15}}\pi \rho R^{5}=\\&=\left({\frac {4}{3}}\pi R^{3}\rho \right)\cdot {\frac {2}{5}}R^{2}={\frac {2}{5}}mR^{2}.\end{aligned}}} 

Тонкостенная сфера

Вывод формулы

Для вывода воспользуемся формулой момента инерции однородного шара радиуса R:

J0=25MR2=815πρR5.{\displaystyle J_{0}={\frac {2}{5}}MR^{2}={\frac {8}{15}}\pi \rho R^{5}.} 

Вычислим, насколько изменится момент инерции шара, если при неизменной плотности ρ его радиус увеличится на бесконечно малую величину dR.

J=dJ0dRdR=ddR(815πρR5)dR==83πρR4dR=(ρ⋅4πR2dR)23R2=23mR2.{\displaystyle {\begin{aligned}J&={\frac {dJ_{0}}{dR}}dR={\frac {d}{dR}}\left({\frac {8}{15}}\pi \rho R^{5}\right)dR=\\&={\frac {8}{3}}\pi \rho R^{4}dR=\left(\rho \cdot 4\pi R^{2}dR\right){\frac {2}{3}}R^{2}={\frac {2}{3}}mR^{2}.\end{aligned}}} 

Тонкий стержень (ось проходит через центр)

Вывод формулы

Разобьём стержень на малые фрагменты длиной dr. Масса и момент инерции такого фрагмента равна

dm=mdrl;dJ=r2dm=mr2drl.{\displaystyle dm={\frac {mdr}{l}};\qquad dJ=r^{2}dm={\frac {mr^{2}dr}{l}}.} 

Интегрируя, получим

J=∫−l/2l/2dJ=2∫0l/2dJ=2ml∫0l/2r2dr=2mlr33|0l/2=2mll324=112ml2.{\displaystyle J=\int _{-l/2}^{l/2}dJ=2\int _{0}^{l/2}dJ={\frac {2m}{l}}\int _{0}^{l/2}r^{2}dr={\frac {2m}{l}}\left.{\frac {r^{3}}{3}}\right|_{0}^{l/2}={\frac {2m}{l}}{\frac {l^{3}}{24}}={\frac {1}{12}}ml^{2}.} 

Тонкий стержень (ось проходит через конец)

Вывод формулы

При перемещении оси вращения из середины стержня на его конец, центр тяжести стержня перемещается относительно оси на расстояние l2. По теореме Штейнера новый момент инерции будет равен

J=J0+mr2=J0+m(l2)2=112ml2+14ml2=13ml2.{\displaystyle J=J_{0}+mr^{2}=J_{0}+m\left({\frac {l}{2}}\right)^{2}={\frac {1}{12}}ml^{2}+{\frac {1}{4}}ml^{2}={\frac {1}{3}}ml^{2}.} 
Безразмерные моменты инерции планет и их спутников[2][3][4]  

Безразмерные моменты инерции планет и спутников

Большое значение для исследований внутренней структуры планет и их спутников имеют их безразмерные моменты инерции. Безразмерный момент инерции тела радиуса r и массы m равен отношению его момента инерции относительно оси вращения к моменту инерции материальной точки той же массы относительно неподвижной оси вращения, расположенной на расстоянии r (равному mr2). Эта величина отражает распределение массы по глубине. Одним из методов её измерения у планет и спутников является определение доплеровского смещения радиосигнала, передаваемого АМС, пролетающей около данной планеты или спутника. Для тонкостенной сферы безразмерный момент инерции равен 2/3 (~0,67), для однородного шара — 0,4, и вообще тем меньше, чем большая масса тела сосредоточена у его центра. Например, у Луны безразмерный момент инерции близок к 0,4 (равен 0,391), поэтому предполагают, что она относительно однородна, её плотность с глубиной меняется мало. Безразмерный момент инерции Земли меньше, чем у однородного шара (равен 0,335), что является аргументом в пользу существования у неё плотного ядра[5][6].

Центробежный момент инерции

Центробежными моментами инерции тела по отношению к осям прямоугольной декартовой системы координат называются следующие величины[1][7]:

Jxy=∫(m)xydm=∫(V)xyρdV,{\displaystyle J_{xy}=\int \limits _{(m)}xydm=\int \limits _{(V)}xy\rho dV,} 
Jxz=∫(m)xzdm=∫(V)xzρdV,{\displaystyle J_{xz}=\int \limits _{(m)}xzdm=\int \limits _{(V)}xz\rho dV,} 
Jyz=∫(m)yzdm=∫(V)yzρdV,{\displaystyle J_{yz}=\int \limits _{(m)}yzdm=\int \limits _{(V)}yz\rho dV,} 

где x, y и z — координаты малого элемента тела объёмом dV, плотностью ρ и массой dm.

Ось OX называется главной осью инерции тела, если центробежные моменты инерции Jxy и Jxz одновременно равны нулю. Через каждую точку тела можно провести три главные оси инерции. Эти оси взаимно перпендикулярны друг другу. Моменты инерции тела относительно трёх главных осей инерции, проведённых в произвольной точке O тела, называются главными моментами инерции данного тела[7].

Главные оси инерции, проходящие через центр масс тела, называются главными центральными осями инерции тела, а моменты инерции относительно этих осей — его главными центральными моментами инерции. Ось симметрии однородного тела всегда является одной из его главных центральных осей инерции[7].

Геометрические моменты инерции

Геометрический момент инерции объёма относительно оси — геометрическая характеристика тела, выражаемая формулой[8]:

JVa=∫(V)r2dV,{\displaystyle J_{Va}=\int \limits _{(V)}r^{2}dV,} 

где, как и ранее r — расстояние от элемента dV до оси a.

Размерность JVa — длина в пятой степени (dimJVa=L5{\displaystyle \mathrm {dim} J_{Va}=\mathrm {L^{5}} } ), соответственно единица измерения СИ — м5.

Геометрический момент инерции площади относительно оси — геометрическая характеристика тела, выражаемая формулой[8]:

JSa=∫(S)r2dS,{\displaystyle J_{Sa}=\int \limits _{(S)}r^{2}dS,} 

где интегрирование выполняется по поверхности S, а dS — элемент этой поверхности.

Размерность JSa — длина в четвёртой степени (dimJSa=L4{\displaystyle \mathrm {dim} J_{Sa}=\mathrm {L^{4}} } ), соответственно единица измерения СИ — м4. В строительных расчетах, литературе и сортаментах металлопроката часто указывается в см4.

Через геометрический момент инерции площади выражается момент сопротивления сечения:

W=JSarmax.{\displaystyle W={\frac {J_{Sa}}{r_{max}}}.} 

Здесь rmax — максимальное расстояние от поверхности до оси.

Момент инерции относительно плоскости

Моментом инерции твёрдого тела относительно некоторой плоскости называют скалярную величину, равную сумме произведений массы каждой точки тела на квадрат расстояния от этой точки до рассматриваемой плоскости[9].

Если через произвольную точку O{\displaystyle O}  провести координатные оси x,y,z{\displaystyle x,y,z} , то моменты инерции относительно координатных плоскостей xOy{\displaystyle xOy} , yOz{\displaystyle yOz}  и zOx{\displaystyle zOx}  будут выражаться формулами:

JxOy=∑i=1nmizi2 ,{\displaystyle J_{xOy}=\sum _{i=1}^{n}m_{i}z_{i}^{2}\ ,} 
JyOz=∑i=1nmixi2 ,{\displaystyle J_{yOz}=\sum _{i=1}^{n}m_{i}x_{i}^{2}\ ,} 
JzOx=∑i=1nmiyi2 .{\displaystyle J_{zOx}=\sum _{i=1}^{n}m_{i}y_{i}^{2}\ .} 

В случае сплошного тела суммирование заменяется интегрированием.

Центральный момент инерции

Центральный момент инерции (момент инерции относительно точки O, момент инерции относительно полюса, полярный момент инерции) JO{\displaystyle J_{O}}   — это величина, определяемая выражением[9]:

Ja=∫(m)r2dm=∫(V)ρr2dV,{\displaystyle J_{a}=\int \limits _{(m)}r^{2}dm=\int \limits _{(V)}\rho r^{2}dV,} 

где:

Центральный момент инерции можно выразить через главные осевые моменты инерции, а также через моменты инерции относительно плоскостей[9]:

JO=12(Jx+Jy+Jz),{\displaystyle J_{O}={\frac {1}{2}}\left(J_{x}+J_{y}+J_{z}\right),} 
JO=JxOy+JyOz+JxOz.{\displaystyle J_{O}=J_{xOy}+J_{yOz}+J_{xOz}.} 

Момент инерции тела относительно произвольной оси, проходящей через центр масс и имеющей направление, заданное единичным вектором s→=‖sx,sy,sz‖T,|s→|=1{\displaystyle {\vec {s}}=\left\Vert s_{x},s_{y},s_{z}\right\Vert ^{T},\left\vert {\vec {s}}\right\vert =1} , можно представить в виде квадратичной (билинейной) формы:

Is=s→T⋅J^⋅s→,{\displaystyle I_{s}={\vec {s}}^{T}\cdot {\hat {J}}\cdot {\vec {s}},\qquad }  (1)

где J^{\displaystyle {\hat {J}}}  — тензор инерции. Матрица тензора инерции симметрична, имеет размеры 3×3{\displaystyle 3\times 3}  и состоит из компонент центробежных моментов:

J^=‖Jxx−Jxy−Jxz−JyxJyy−Jyz−Jzx−JzyJzz‖,{\displaystyle {\hat {J}}=\left\Vert {\begin{array}{ccc}J_{xx}&-J_{xy}&-J_{xz}\\-J_{yx}&J_{yy}&-J_{yz}\\-J_{zx}&-J_{zy}&J_{zz}\end{array}}\right\Vert ,} 
Jxy=Jyx,Jxz=Jzx,Jzy=Jyz,{\displaystyle J_{xy}=J_{yx},\quad J_{xz}=J_{zx},\quad J_{zy}=J_{yz},\quad } Jxx=∫(m)(y2+z2)dm,Jyy=∫(m)(x2+z2)dm,Jzz=∫(m)(x2+y2)dm.{\displaystyle J_{xx}=\int \limits _{(m)}(y^{2}+z^{2})dm,\quad J_{yy}=\int \limits _{(m)}(x^{2}+z^{2})dm,\quad J_{zz}=\int \limits _{(m)}(x^{2}+y^{2})dm.} 

Выбором соответствующей системы координат матрица тензора инерции может быть приведена к диагональному виду. Для этого нужно решить задачу о собственных значениях для матрицы тензора J^{\displaystyle {\hat {J}}} 

http-wikipediya.ru

Момент инерции

момент инерции, момент инерции материальной точки
L2M У этого термина существуют и другие значения, см. Момент.

Моме́нт ине́рции — скалярная (в общем случае — тензорная) физическая величина, мера инертности во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).

Единица измерения в Международной системе единиц (СИ): кг·м².

Обозначение: I или J.

Различают несколько моментов инерции — в зависимости от многообразия, от которого отсчитывается расстояние точек.

Содержание

  • 1 Осевой момент инерции
    • 1.1 Теорема Гюйгенса — Штейнера
    • 1.2 Осевые моменты инерции некоторых тел
    • 1.3 Вывод формул
    • 1.4 Безразмерные моменты инерции планет и спутников
  • 2 Центробежный момент инерции
  • 3 Геометрический момент инерции
  • 4 Центральный момент инерции
  • 5 Тензор инерции и эллипсоид инерции
  • 6 См. также
  • 7 Комментарии
  • 8 Примечания
  • 9 Литература
  • 10 Ссылки

Осевой момент инерции

Осевые моменты инерции некоторых тел

Моментом инерции механической системы относительно неподвижной оси («осевой момент инерции») называется величина Ja, равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси:

,

где:

  • mi — масса i-й точки,
  • ri — расстояние от i-й точки до оси.

Осевой момент инерции тела Ja является мерой инертности тела во вращательном движении вокруг оси подобно тому, как масса тела является мерой его инертности в поступательном движении.

,

где:

dm = ρ dV — масса малого элемента объёма тела dV, ρ — плотность, r — расстояние от элемента dV до оси a.

Если тело однородно, то есть его плотность всюду одинакова, то

Теорема Гюйгенса — Штейнера

Основная статья: Теорема Гюйгенса — Штейнера

Момент инерции твёрдого тела относительно какой-либо оси зависит от массы, формы и размеров тела, а также и от положения тела по отношению к этой оси. Согласно теореме Штейнера (теореме Гюйгенса-Штейнера), момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела Jc относительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, и произведения массы тела m на квадрат расстояния d между осями:

где m — полная масса тела.

Например, момент инерции стержня относительно оси, проходящей через его конец, равен:

Осевые моменты инерции некоторых тел

Единицы измерения
СИ

кг·м²

СГС

г·см²

Моменты инерции однородных тел простейшей формы относительно некоторых осей вращения
Тело Описание Положение оси a Момент инерции Ja
Материальная точка массы m На расстоянии r от точки, неподвижная
Полый тонкостенный цилиндр или кольцо радиуса r и массы m Ось цилиндра
Сплошной цилиндр или диск радиуса r и массы m Ось цилиндра
Полый толстостенный цилиндр массы m с внешним радиусом r2 и внутренним радиусом r1 Ось цилиндра
Сплошной цилиндр длины l, радиуса r и массы m Ось перпендикулярна к цилиндру и проходит через его центр масс
Полый тонкостенный цилиндр (кольцо) длины l, радиуса r и массы m Ось перпендикулярна к цилиндру и проходит через его центр масс
Прямой тонкий стержень длины l и массы m Ось перпендикулярна к стержню и проходит через его центр масс
Прямой тонкий стержень длины l и массы m Ось перпендикулярна к стержню и проходит через его конец
Тонкостенная сфера радиуса r и массы m Ось проходит через центр сферы
Шар радиуса r и массы m Ось проходит через центр шара
Конус радиуса r и массы m Ось конуса
Равнобедренный треугольник с высотой h, основанием a и массой m Ось перпендикулярна плоскости треугольника и проходит через вершину
Правильный треугольник со стороной a и массой m Ось перпендикулярна плоскости треугольника и проходит через центр масс
Квадрат со стороной a и массой m Ось перпендикулярна плоскости квадрата и проходит через центр масс
Прямоугольник со сторонами a и b и массой m Ось перпендикулярна плоскости прямоугольника и проходит через центр масс
Правильный n-угольник радиуса r и массой m Ось перпендикулярна плоскости и проходит через центр масс

Вывод формул

Тонкостенный цилиндр (кольцо, обруч)

Вывод формулы  

Момент инерции тела равен сумме моментов инерции составляющих его частей. Разобьём тонкостенный цилиндр на элементы с массой dm и моментами инерции dJi. Тогда

Поскольку все элементы тонкостенного цилиндра находятся на одинаковом расстоянии от оси вращения, формула (1) преобразуется к виду

Толстостенный цилиндр (кольцо, обруч)

Вывод формулы  

Пусть имеется однородное кольцо с внешним радиусом R, внутренним радиусом R1, толщиной h и плотностью ρ. Разобьём его на тонкие кольца толщиной dr. Масса и момент инерции тонкого кольца радиуса r составит

Момент инерции толстого кольца найдём как интеграл

Поскольку объём и масса кольца равны

получаем окончательную формулу для момента инерции кольца

Однородный диск (сплошной цилиндр)

Вывод формулы  

Рассматривая цилиндр (диск) как кольцо с нулевым внутренним радиусом (R1 = 0), получим формулу для момента инерции цилиндра (диска):

Сплошной конус

Вывод формулы  

Разобьём конус на тонкие диски толщиной dh, перепендикулярные оси конуса. Радиус такого диска равен

где R – радиус основания конуса, H – высота конуса, h – расстояние от вершины конуса до диска. Масса и момент инерции такого диска составят

Интегрируя, получим

Сплошной однородный шар

Вывод формулы  

Разобъём шар на тонкие диски толщиной dh, перпендикулярные оси вращения. Радиус такого диска, расположенного на высоте h от центра сферы, найдём по формуле

Масса и момент инерции такого диска составят

Момент инерции шара найдём интегрированием:

Тонкостенная сфера

Вывод формулы  

Для вывода воспользуемся формулой момента инерции однородного шара радиуса R:

Вычислим, насколько изменится момент инерции шара, если при неизменной плотности ρ его радиус увеличится на бесконечно малую величину dR.

Тонкий стержень (ось проходит через центр)

Вывод формулы  

Разобъём стержень на малые фрагменты длиной dr. Масса и момент инерции такого фрагмента равна

Интегрируя, получим

Тонкий стержень (ось проходит через конец)

Вывод формулы  

При перемещении оси вращения из середины стержня на его конец, центр тяжести стержня перемещается относительно оси на расстояние l⁄2. По теореме Штейнера новый момент инерции будет равен

Безразмерные моменты инерции планет и их спутников

Безразмерные моменты инерции планет и спутников

Большое значение для исследований внутренней структуры планет и их спутников имеют их безразмерные моменты инерции. Безразмерный момент инерции тела радиуса r и массы m равен отношению его момента инерции относительно оси вращения к моменту инерции материальной точки той же массы относительно неподвижной оси вращения, расположенной на расстоянии r (равному mr2). Эта величина отражает распределение массы по глубине. Одним из методов её измерения у планет и спутников является определение допплеровского смещения радиосигнала, передаваемого АМС, пролетающей около данной планеты или спутника. Для тонкостенной сферы безразмерный момент инерции равен 2/3 (~0,67), для однородного шара — 0,4, и вообще тем меньше, чем большая масса тела сосредоточена у его центра. Например, у Луны безразмерный момент инерции близок к 0,4 (равен 0,391), поэтому предполагают, что она относительно однородна, её плотность с глубиной меняется мало. Безразмерный момент инерции Земли меньше, чем у однородного шара (равен 0,335), что является аргументом в пользу существования у неё плотного ядра.

Центробежный момент инерции

Центробежными моментами инерции тела по отношению к осям прямоугольной декартовой системы координат называются следующие величины:

где x, y и z — координаты малого элемента тела объёмом dV, плотностью ρ и массой dm.

Ось OX называется главной осью инерции тела, если центробежные моменты инерции Jxy и Jxz одновременно равны нулю. Через каждую точку тела можно провести три главные оси инерции. Эти оси взаимно перпендикулярны друг другу. Моменты инерции тела относительно трёх главных осей инерции, проведённых в произвольной точке O тела, называются главными моментами инерции данного тела.

Главные оси инерции, проходящие через центр масс тела, называются главными центральными осями инерции тела, а моменты инерции относительно этих осей — его главными центральными моментами инерции. Ось симметрии однородного тела всегда является одной из его главных центральных осей инерции.

Геометрический момент инерции

Геометрический момент инерции — геометрическая характеристика сечения вида

где  — расстояние от центральной оси до любой элементарной площадки относительно нейтральной оси.

Геометрический момент инерции не связан с движением материала, он лишь отражает степень жесткости сечения. Используется для вычисления радиуса инерции, прогиба балки, подбора сечения балок, колонн и др.

Единица измерения СИ — м4. В строительных расчетах, литературе и сортаментах металлопроката в частности указывается в см4.

Из него выражается момент сопротивления сечения:

.
Геометрические моменты инерции некоторых фигур
Прямоугольника высотой и шириной :
Прямоугольного коробчатого сечения высотой и шириной по внешним контурам и , а по внутренним и соответственно
Круга диаметром

Центральный момент инерции

Центральный момент инерции (или момент инерции относительно точки O) — это величина

,

где:

  •  — масса малого элемента объёма тела ,
  •  — плотность,
  •  — расстояние от элемента до точки O.

Центральный момент инерции можно выразить через главные осевые моменты инерции: .

Тензор инерции и эллипсоид инерции

Момент инерции тела относительно произвольной оси, проходящей через центр масс и имеющей направление, заданное единичным вектором , можно представить в виде квадратичной (билинейной) формы:

(1),

где  — тензор инерции. Матрица тензора инерции симметрична, имеет размеры и состоит из компонент центробежных моментов:

,
.

Выбором соответствующей системы координат матрица тензора инерции может быть приведена к диагональному виду. Для этого нужно решить задачу о собственных значениях для матрицы тензора :
,
где  — ортогональная матрица перехода в собственный базис тензора инерции. В собственном базисе координатные оси направлены вдоль главных осей тензора инерции, а также совпадают с главными полуосями эллипсоида тензора инерции. Величины  — главные моменты инерции. Выражение (1) в собственной системе координат имеет вид:

,

откуда получается уравнение эллипсоида в собственных координатах. Разделив обе части уравнения на

и произведя замены:

,

получаем канонический вид уравнения эллипсоида в координатах :

Расстояние от центра эллипсоида до некоторой его точки связано со значением момента инерции тела вдоль прямой, проходящей через центр эллипсоида и эту точку:

См. также

  • Движение твёрдого тела
  • Метод главных компонент
  • Сопротивление материалов
  • Теорема Штейнера
  • Теорема Кёнига (механика)
  • Механические приложения тройного интеграла
  • Механические приложения двойного интеграла
  • Полярный момент инерции
  • Список моментов инерции
  • Момент силы
  • Момент импульса

Комментарии

  1. В правильности использования знака «+» в этой формуле можно убедиться, если сравнить моменты инерции полого толстостенного и сплошного цилиндров с одинаковыми массами. Действительно, у первого из этих цилиндров масса в среднем сосредоточена дальше от оси, чем у второго, поэтому и момент инерции этого цилиндра должен быть больше, чем у сплошного. Именно такое соотношение моментов инерции и обеспечивает знак «+». С другой стороны, в пределе при стремлении r1 к r2 формула для полого толстостенного цилиндра должна приобрести тот же вид, что и формула для полого тонкостенного цилиндра. Очевидно, что такой переход происходит только при использовании формулы со знаком «+».

Примечания

  1. Planetary Fact Sheet
  2. Showman, Adam P.; Malhotra, Renu (1999). «The Galilean Satellites» (PDF). Science 286 (5437): 77–84. DOI:10.1126/science.286.5437.77. PMID 10506564.
  3. Галкин И.Н. Внеземная сейсмология. — М.: Наука, 1988. — С. 42-73. — 195 с. — (Планета Земля и Вселенная). — 15 000 экз. — ISBN 502005951X.
  4. Пантелеев В. Л. Физика Земли и планет. Гл. 3.4 — Гравитационное поле планеты

Литература

  • Матвеев. А. Н. Механика и теория относительности. М.: Высшая школа, 1986. (3-е изд. М.: ОНИКС 21 век: Мир и Образование, 2003. — 432с.)
  • Трофимова Т. И. Курс физики. — 7-е изд. — М.: Высшая школа, 2001. — 542 с.
  • Алешкевич В. А., Деденко Л. Г., Караваев В. А.Механика твердого тела. Лекции. Издательство Физического факультета МГУ, 1997.
  • Павленко Ю. Г. Лекции по теоретической механике. М.: ФИЗМАТЛИТ, 2002. — 392с.
  • Яворский Б. М., Детлаф А. А. Физика для школьников старших классов и поступающих в вузы: учебное пособие — М.: Дрофа, 2002, 800с. ISBN 5-7107-5956-3
  • Сивухин Д. В. Общий курс физики. В 5 т. Том I. Механика. 4-е изд. М.: ФИЗМАТЛИТ; Изд-во МФТИ, 2005. — 560 с.
  • Беляев Н. М., Сопротивление материалов. Главная редакция физико-математической литературы изд-ва «Наука», 1976. — 608 с.

Ссылки

  • Определение момента инерции тел простой формы
  • Осевые моменты инерции, моменты сопротивления и радиусы инерции плоских фигур
  • Online Калькулятор осевых моментов инерции, моментов сопротивления и радиусов инерции плоских фигур

момент инерции, момент инерции кольца, момент инерции куба, момент инерции материальной точки, момент инерции обруча, момент инерции прямоугольника, момент инерции стержня, момент инерции тела, момент инерции формула, момент инерции цилиндра


Момент инерции Информацию О




Момент инерции Комментарии

Момент инерции
Момент инерции
Момент инерции Вы просматриваете субъект

Момент инерции что, Момент инерции кто, Момент инерции описание

There are excerpts from wikipedia on this article and video

www.turkaramamotoru.com

Расчет моментов инерции некоторых простых тел. Теорема Штейнера

       Формула
Момент инерции тела:

для момента инерции не всегда удобна для рассчета тел произвольной формы.
       Наиболее легко эта задача решается для тел простых форм, вращающихся вокруг оси, проходящей через центр инерции тела  С. В этом случае, для вычисления  Ic  можно модифицировать формулу (6.2.1),
Момент инерции частицы:

вводя коэффициент k:

Ic = kmR2.

       Моменты инерции шара, диска и стержня приведены на рис. 6.6.        При вычислении момента инерции тела, вращающегося вокруг оси, не проходящей через центр инерции (рис. 6.7), следует пользоваться теоремой о параллельном переносе осей, или теоремой Штейнера
Якоб Штейнер, швейцарский геометр, 1796–1863 гг.
основным уравнением динамики поступательного движения
   (6.3.1)  
       Момент инерции тела относительно любой оси вращения равен моменту его инерции относительно параллельной оси, проходящей через центр масс С тела, плюс произведение массы тела на квадрат расстояния между осями.
       Например: стержень массой m длиной  l  вращается вокруг оси, проходящей через конец стержня (рис. 6.8). ,
.
Рис. 6.7 Рис. 6.8

ens.tpu.ru