Формула пи – Полезные формулы расчетов – Геометрия – Математика – Каталог статей

Содержание

Число Пи – значение, история, кто придумал

Все окружности похожи

Если сравнить окружности отличных друг от друга размеров, то можно заметить следующее: размеры разных окружностей пропорциональны. А это значит, что при увеличении диаметра окружности в некоторое количество раз, увеличивается и длина этой окружности в такое же количество раз. Математически это записать можно так:

C1 C2 

=
 
d1 d2(1)

где C1 и С2 – длины двух разных окружностей, а d1 и d2 – их диаметры.
Это соотношение работает при наличии коэффициента пропорциональности – уже знакомой нам константы π. Из отношения (1) можно сделать вывод: длина окружности C равна произведению диаметра этой окружности на независящий от окружности коэффициент пропорциональности π:

C = πd.

Также эту формулу можно записать в ином виде, выразив диаметр d через радиус R данной окружности:

С = 2πR.

Как раз эта формула и является проводником в мир окружностей для семиклассников.

Еще с древности люди пытались установить значение этой константы. Так, например, жители Месопотамии вычисляли площадь круга по формуле:

  C2 
S=
,
  12 

где S – площадь круга, C – длина окружности (круга). Если в эту формулу подставить уже знакомые школьнику выражения площади круга S = πr2 и длины окружности С = 2 πR, то мы получим:

  (2πR)2
πR2=
  12

, откуда π = 3.

В древнем Египте значение для π было точнее. В 2000-1700 годах до нашей эры писец, именуемый Ахмесом, составил папирус, в котором мы находим рецепты разрешения различных практических задач. Так, например, для нахождения площади круга он использует формулу:

   8  2
S=(
d) 
   9 
 
 

Из каких соображений он получил эту формулу? – Неизвестно. Вероятно, на основе своих наблюдений, впрочем, как это делали и другие древние философы.

По стопам Архимеда

– Какое из двух числе больше 22/7 или 3.14 ?
– Они равны.
– Почему ?
– Каждое из них равно π.
А. А. Власов. Из Экзаменационного билета.

Некоторы полагают, что дробь 22/7 и чисо π тождественно равны. Но это является заблуждением. Помимо вышеприведенного неверного ответа на экзамене (см. эпиграф) к этой группе можно также добавить одну весьма занимательную головоломку. Задание гласит: “переложите одну спичку так, чтобы равенство стало верным”.

Решение будет таковым: нужно образовать “крышу” для двух вертикальных спичек слева, используя одну из вертикальных спичек в знаменателе справа. Получится визуальное изображение буквы π.

Многие знают, что приближение π = 22/7 определил древнегреческий математик Архимед. В честь этого часто такое приближение называют “Архимедовым” числом. Архимеду удалось не только установить приближенное значение для π, но также найти точность этого приближения, а именно – найти узкий числовой промежуток, которому принадлежит значение π. В одной из своих работ Архимед доказывает цепь неравенств, которая на современный лад выглядела бы так:

 10 6336   14688  1
3
<

<π<
<3
 71  1    1  7
   2017
   4673
   
    4    2   

можно записать проще: 3,140 909 < π < 3,1 428 265…

Как видим из неравенств, Архимед нашел довольно-таки точное значение с точностью до 0,002. Самое удивительно то, что он нашел два первых знака после  запятой: 3,14… Именно такое значение чаще всего мы используем в несложных расчетах.

Практическое применение

Едут двое в поезде:
− Вот смотри, рельсы прямые, колеса круглые.
Откуда же стук?
− Как откуда? Колеса-то круглые, а площадь
круга пи эр квадрат, вот квадрат-то и стучит!

Как правило, знакомятся с этим удивительным числом в 6-7 классе, но более основательно им занимаются к концу 8-го класса. В этой части статьи мы приведем основные и самые важные формулы, которые пригодятся вам в решении геометрических задач, только для начала условимся принимать π за 3,14 для удобства подсчета.

Пожалуй, самая известная формула среди школьников, в которой используется π, это – формула длины и площади окружности. Первая – формула площади круга – записывается так:

где S – площадь окружности, R – ее радиус, D – диаметр окружности.

Длина окружности, или, как ее иногда называют, периметр окружности, вычисляют по формуле:

С = 2 πR = πd,

где C – длина окружности, R – радиус, d – диаметр окружности.

Понятно, что диаметр d равен двум радиусам R.

Из формулы длины окружности можно легко найти радиус окружности:

 C 
C
R=
=
 2π d

Обозначения для этих формул остаются те же.

Диаметр окружности можно найти по формуле:

где  D – диаметр, С – длина окружности, R – радиус окружности.

Это базовые формулы, знать которые должен каждый ученик. Также иногда приходится вычислять площадь не всей окружности, а только ее части – сектора. Поэтому представляем вам её – формулу для вычисления площади сектора окружности. Выглядит она так:

  
 
α
S=πR2
   360˚

где S – площадь сектора, R – радиус окружности, α – центральный угол в градусах.

Такое загадочное 3,14

И правда, оно загадочно. Потому что в честь этих магических цифр устраивают праздники, снимают фильмы, проводят общественные акции, пишут стихи и многое другое.

Например, в 1998 году вышел фильм американского режиссера Даррена Аронофски под названием “Пи”. Фильм получил множество наград.

Каждый год 14 марта в 1:59:26 люди, интересующиеся математикой, празднуют “День числа Пи”. К празднику люди подготавливают круглый торт, усаживаются за круглый стол и обсуждают число Пи, решают задачи и головоломки, связанные с Пи.

Вниманием это удивительное число не обошли и поэты, неизвестный написал:
Надо только постараться и запомнить всё как есть – три, четырнадцать, пятнадцать, девяносто два и шесть.

Давайте развлечемся!

Вашему вниманию предлагаются интересные ребусы с числом Пи. Разгадайте слова, какие зашифрованы ниже.

1. π р

2. π L

3. π k

Ответы: 1. Пир; 2. Надпил; 3. Писк.

Число Пи – справочные материалы

Чему равно число Пи

Как запомнить число Пи

Число Пи в Excel

Число Пи на клавиатуре и в Word

Фотографии числа Пи

www.calculator888.ru

Чему равно число ПИ? История открытия, тайны и загадки

Чему равно число Пи мы знаем и помним со школы. Оно равно 3.1415926 и так далее… Обычному человеку достаточно знать, что это число получается, если разделить длину окружности на ее диаметр. Но многим известно, что число Пи возникает в неожиданных областях не только математики и геометрии, но и в физике. Ну а если вникнуть в подробности природы этого числа, то можно заметить много удивительного среди бесконечного ряда цифр. Возможно ли, что Пи скрывает самые сокровенные тайны Вселенной?

Бесконечное число

Само число Пи возникает в нашем мире как длина окружности, диаметр которой равен единице. Но, несмотря на то, что отрезок равный Пи вполне себе конечен, число Пи начинается, как 3.1415926 и уходит в бесконечность рядами цифр, которые никогда не повторяются. Первый удивительный факт состоит в том, что это число, используемое в геометрии, нельзя выразить в виде дроби из целых чисел. Иначе говоря, вы не сможете его записать отношением двух чисел a/b. Кроме этого число Пи трансцендентное. Это означает, что нет такого уравнения (многочлена) с целыми коэффициентами, решением которого было бы число Пи.

То, что число Пи трансцендентно, доказал в 1882 году немецкий математик фон Линдеман. Именно это доказательство стало ответом на вопрос, можно ли с помощью циркуля и линейки нарисовать квадрат, у которого площадь равна площади заданного круга. Эта задача известна как поиск квадратуры круга, волновавший человечество с древнейших времен. Казалось, что эта задача имеет простое решение и вот-вот будет раскрыта. Но именно непостижимое свойство числа Пи показало, что у задачи квадратуры круга решения не существует.

В течение как минимум четырех с половиной тысячелетий человечество пыталось получить все более точное значение числа Пи. Например, В Библии в Третьей Книги Царств (7:23) число Пи принимается равным 3.

Замечательное по точности значение Пи можно обнаружить в пирамидах Гизы: соотношение периметра и высоты пирамид составляет 22/7. Эта дробь дает приближенное значение Пи, равное 3.142… Если, конечно, египтяне не задали такое соотношение случайно. Это же значение уже применительно к расчету числа Пи получил в III веке до нашей эры великий Архимед.

В папирусе Ахмеса, древнеегипетском учебнике по математике, который датируется 1650 годом до нашей эры, число Пи рассчитано как 3.160493827.

В древнеиндийских текстах примерно IX века до нашей эры наиболее точное значение было выражено числом 339/108, которое равнялось 3,1388…

После Архимеда почти две тысячи лет люди пытались найти способы рассчитать число Пи. Среди них были как известные, так и неизвестные математики. Например, римский архитектор Марк Витрувий Поллион, египетский астроном Клавдий Птолемей, китайский математик Лю Хуэй, индийский мудрец Ариабхата, средневековый математик Леонардо Пизанский, известный как Фибоначчи, арабский ученый Аль-Хорезми, от чьего имени появилось слово «алгоритм». Все они и множество других людей искали наиболее точные методики расчета Пи, но вплоть до 15 века никогда не получали больше чем 10 цифр после запятой в связи со сложностью расчетов.

Наконец, в 1400 году индийский математик Мадхава из Сангамаграма рассчитал Пи с точностью до 13 знаков (хотя в двух последних все-таки ошибся).

Количество знаков

В 17 веке Лейбниц и Ньютон открыли анализ бесконечно малых величин, который позволил вычислять Пи более прогрессивно – через степенные ряды и интегралы. Сам Ньютон вычислил 16 знаков после запятой, но не упомянул это в своих книгах – об этом стало известно после его смерти. Ньютон утверждал, что занимался расчетом Пи исключительно от скуки.

Примерно в то же время подтянулись и другие менее известные математики, предложившие новые формулы расчета числа Пи через тригонометрические функции.

Например, вот по какой формуле рассчитывал Пи преподаватель астрономии Джон Мэчин в 1706 году: PI / 4 = 4arctg(1/5) – arctg(1/239). С помощью методов анализа Мэчин вывел из этой формулы число Пи с сотней знаков после запятой.

Кстати, в том же 1706 году число Пи получило официальное обозначение в виде греческой буквы: его в своем труде по математике использовал Уильям Джонс, взяв первую букву греческого слова «периферия», что означает «окружность». Родившийся в 1707 великий Леонард Эйлер популяризовал это обозначение, нынче известное любому школьнику.

До эры компьютеров математики занимались тем, чтобы рассчитать как можно больше знаков. В связи с этим порой возникали курьезы. Математик-любитель У. Шенкс в 1875 году рассчитал 707 знаков числа Пи. Эти семь сотен знаков увековечили на стене Дворца Открытий в Париже в 1937 году. Однако спустя девять лет наблюдательными математиками было обнаружено, что правильно вычислены лишь первые 527 знаков. Музею пришлось понести приличные расходы, чтобы исправить ошибку – сейчас все цифры верные.

Когда появились компьютеры, количество цифр числа Пи стало исчисляться совершенно невообразимыми порядками.

Один из первых электронных компьютеров ENIAC, созданный в 1946 году, имевший огромные размеры, и выделявший столько тепла, что помещение прогревалось до 50 градусов по Цельсию, вычислил первые 2037 знаков числа Пи. Этот расчет занял у машины 70 часов.

По мере совершенствования компьютеров наше знание числа Пи все дальше и дальше уходило в бесконечность. В 1958 году было рассчитано 10 тысяч знаков числа. В 1987 году японцы высчитали 10 013 395 знаков. В 2011 японский исследователь Сигеру Хондо превысил рубеж в 10 триллионов знаков.

Где еще можно встретить Пи?

Итак, зачастую наши знания о числе Пи остаются на школьном уровне, и мы точно знаем, что это число незаменимо в первую очередь в геометрии.

Помимо формул длины и площади окружности число Пи используется в формулах эллипсов, сфер, конусов, цилиндров, эллипсоидов и так далее: где-то формулы простые и легко запоминающиеся, а где-то содержат очень сложные интегралы.

Затем мы можем встретить число Пи в математических формулах, там, где, на первый взгляд геометрии и не видно. Например, неопределенный интеграл от 1/(1-x^2) равен Пи.

Пи часто используется в анализе рядов. Для примера приведем простой ряд, который сходится к числу Пи:

1/1 – 1/3 + 1/5 – 1/7 + 1/9 — …. = PI/4

Среди рядов число Пи наиболее неожиданно появляется в известной дзета-функции Римана. Рассказать про нее в двух словах не получится, скажем лишь, что когда-нибудь число Пи поможет найти формулу расчета простых чисел.

И совершенно удивительно: Пи появляется в двух самых красивых «королевских» формулах математики – формуле Стирлинга (которая помогает найти приблизительное значение факториала и гамма-функции) и формуле Эйлера (которая связывает аж целых пять математических констант).

Однако самое неожиданное открытие ожидало математиков в теории вероятности. Там тоже присутствует число Пи.

Например, вероятность того, что два числа окажутся взаимно простыми, равна 6/PI^2.

Пи появляется в задаче Бюффона о бросании иглы, сформулированной в 18 веке: какова вероятность того, что брошенная на расчерченный лист бумаги игла пересечет одну из линий. Если длина иглы L, а расстояние между линиями L, и r > L то мы можем приблизительно рассчитать значение числа Пи по формуле вероятности 2L/rPI. Только представьте – мы можем получить Пи из случайных событий. И между прочим Пи присутствует в нормальном распределении вероятностей, появляется в уравнении знаменитой кривой Гаусса. Значит ли это, что число Пи еще более фундаментально, чем просто отношение длины окружности к диаметру?

Мы можем встретить Пи и в физике. Пи появляется в законе Кулона, который описывает силу взаимодействия между двумя зарядами, в третьем законе Кеплера, который показывает период обращения планеты вокруг Солнца, встречается даже в расположении электронных орбиталей атома водорода. И что опять же самое невероятное – число Пи прячется в формуле принципа неопределенности Гейзенберга – фундаментального закона квантовой физики.

Тайны числа Пи

В романе Карла Сагана «Контакт», по которому снят одноименный фильм, инопланетяне сообщают героине, что среди знаков Пи содержится тайное послание от Бога. С некоторой позиции цифры в числе перестают быть случайными и представляют себе код, в котором записаны все секреты Мироздания.

Этот роман на самом деле отразил загадку, занимающую умы математиков всей планеты: является ли число Пи нормальным числом, в котором цифры разбросаны с одинаковой частотой, или с этим числом что-то не так. И хотя ученые склоняются к первому варианту (но не могут доказать), число Пи выглядит очень загадочно. Один японец как то подсчитал, сколько раз встречаются числа от 0 до 9 в первом триллионе знаков Пи. И увидел, что числа 2, 4 и 8 встречаются чаще, чем остальные. Это может быть одним из намеков на то, что Пи не совсем нормальное, и цифры в нем действительно не случайны.

Вспомним всё, что мы прочли выше, и спросим себя, какое еще иррациональное и трансцендентное число так часто встречается в реальном мире?

А в запасе имеются еще странности. Например, сумма первых двадцати цифр Пи равна 20, а сумма первых 144 цифр равна «числу зверя» 666.

Главный герой американского сериала «Подозреваемый» профессор Финч рассказывал студентам, что в силу бесконечности числа Пи в нем могут встретиться любые комбинации цифр, начиная от цифр даты вашего рождения до более сложных чисел. Например, на 762-ой позиции находится последовательность из шести девяток. Эта позиция называется точкой Фейнмана в честь известного физика, который заметил это интересное сочетание.

Нам известно также, что число Пи содержит последовательность 0123456789, но находится она на 17 387 594 880-й цифре.

Все это означает, что в бесконечности числа Пи можно обнаружить не только интересные сочетания цифр, но и закодированный текст «Войны и Мира», Библии и даже Главную Тайну Мироздания, если таковая существует.

Кстати, о Библии. Известный популяризатор математики Мартин Гарднер в 1966 году заявил, что миллионным знаком числа Пи (на тот момент еще неизвестным) будет число 5. Свои расчеты он объяснил тем, что в англоязычной версии Библии, в 3-й книге, 14-й главе, 16-м стихе (3-14-16) седьмое слово содержит пять букв. Миллионную цифру получили спустя восемь лет. Это было число пять.

Стоит ли после этого утверждать, что число Пи случайно?

Похожее

uchitelskaia.ru

Пи (число) | Наука | FANDOM powered by Wikia

Символ константы

Список чисел
Иррациональные числа
ζ(3) (англ.) — √2 (англ.) — √3 (англ.) — √5 (англ.) — φ — α — e — π — δ
Система счисления Оценка числа $ \pi $
Двоичная 11,00100100001111111…
Десятичная 3,141592653589793238462…
Шестнадцатеричная 3,243F6A8885A308D31319…
Рациональное приближение 227,22371, 355113

(в порядке увеличения точности)

Цепная дробь[3; 7, 15, 1, 1, 1, 1, 2, 1,… ]

(Цепная дробь не периодическая. Дана в линейной нотации)

Евклидова геометрия$ \pi $ радиан = 180°

Пи (число) — $ \pi~ $ (произносится «пи») — математическая константа, выражающая отношение длины окружности к длине её диаметра.[1] Обозначается буквой греческого алфавита «пи».

    $ \pi $ — иррациональное число, то есть его значение не может быть точно выражено в виде дроби m/n, где m и n — целые числа. Следовательно, его десятичное представление никогда не заканчивается и не является периодическим. $ \pi $ также не может представлено как конечная последовательность алгебраических операций над целыми числами (возведение в степень, извлечение корня, суммирование и т. д.). Править

    $ \pi $ — трансцендентное число, это означает, что оно не может быть корнем какого-либо многочлена с целыми коэффициентами; доказательство этого Ф. Линдеманом было крупным достижением математики XIX столетия. На всём протяжении истории математики было множество попыток более точно определить и понять природу числа $ \pi $; привлекательность этого числа перекинулась даже на нематематическую культуру. Править

    === Впервые обозначением этого числа греческой буквой $ \pi~ $ воспользовался британский математик Джонс (1706), а общепринятым оно стало после работ Леонарда Эйлера в 1737. Это обозначение происходит от начальной буквы греческих слов περιφέρεια — окружность, периферия и περίμετρος — периметр. ===

    История Править

    Если принять диаметр окружности за единицу, то длина окружности — это число «пи». Править

    История числа $ \pi $ шла параллельно с развитием всей математики. Некоторые авторы разделяют весь процесс на 3 периода: древний период, в течение которого $ \pi $ изучалось с позиции геометрии, классическая эра, последовавшая за развитием математического анализа в Европе в XVII веке, и эра цифровых компьютеров. Править

    ===

    ===
    

    Геометрический период Править

    То, что отношение длины окружности к диаметру одинаково для любой окружности, и то, что это отношение немногим более 3, было известно ещё древнеегипетским, вавилонским, древнеиндийским и древнегреческим геометрам. Самое раннее из известных приближений датируется 1900 годом до н. э.; это 25/8 (Вавилон) и 256/81 (Египет), оба значения отличаются от истинного не более, чем на 1 %. Индийский текст «Шатапатха Брахмана» даёт $ \pi $ как 339/108 ≈ 3,139. По-видимому, в еврейской Библии, в третьей книге Царств, предполагается, что $ \pi $ = 3, что является гораздо более худшей оценкой, чем имевшиеся на момент написания (600 год до н. э.). Править

    Править

    Алгоритм Лю Хуэя вычисления $ \pi $ Править

    Архимед, возможно, первым предложил математический способ вычисления $ \pi $. Для этого он вписывал в окружность и описывал около неё правильные многоугольники. Принимая диаметр окружности за единицу, Архимед рассматривал периметр вписанного многоугольника как нижнюю оценку длины окружности, а периметр описанного многоугольника как верхнюю оценку. Рассматривая правильный 96-угольник, Архимед получил оценку $ 3+\frac{10}{71} < \pi <3+\frac{1}{7} $. Править

    В Индии Арьябхата и Бхаскара использовали приближение 3,1416. Брахмагупта предложил в качестве приближения $ \sqrt{10} $.

    Около 265 года н. э. математик Лю Хуэй из царства Вэй предоставил простой и точный итеративный алгоритм (англ. Liu Hui’s π algorithm) для вычисления $ \pi $ с любой степенью точности. Он самостоятельно провёл вычисление для 3072-угольника и получил приближённое значение для $ \pi $ по следующему принципу:

    $ \pi\approx A_{3072} = {3 \cdot 2^8\cdot \sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+1}}}}}}}}}} \approx 3,14159. $

    Позднее Лю Хуэй придумал быстрый метод вычисления $ \pi $ и получил приближённое значение 3,1416 только лишь с 96-угольником, используя преимущества того факта, что разница в площади следующих друг за другом многоугольников формирует геометрическую прогрессию со знаменателем 4.

    В 480-х годах китайский математик Цзу Чунчжи (англ. Zu Chongzhi) продемонстрировал, что $ \pi $ ≈ 355/113, и показал, что 3,1415926 < $ \pi $ < 3,1415927, используя алгоритм Лю Хуэя применительно к 12288-угольнику. Это значение оставалось самым точным приближением числа $ \pi $ в течение последующих 900 лет.

    Классический период Править

    До 2-го тысячелетия было известно не более 10 цифр $ \pi $. Дальнейшие крупные достижения в изучении $ \pi $ связаны с развитием математического анализа, в особенности с открытием рядов, позволяющих вычислить $ \pi $ с любой точностью, суммируя подходящее количество членов ряда. В 1400-х годах Мадхава из Сангамаграма (англ. Madhava of Sangamagrama) нашёл первый из таких рядов:

    $ {\pi} = \frac{4}{1} – \frac{4}{3} + \frac{4}{5} – \frac{4}{7} + \cdots\! $

    Этот результат известен как ряд Мадхавы-Лейбница (англ. Leibniz formula for pi) или ряд Грегори-Лейбница (после того как он был заново обнаружен Джеймсом Грегори и Готфридом Лейбницем в XVII веке). К сожалению, этот ряд сходится к $ \pi $ очень медленно, что приводит к сложности вычисления многих цифр числа на практике — необходимо сложить около 4000 членов ряда, чтобы улучшить оценку Архимеда. Однако преобразованием этого ряда в

    $ \pi = \sqrt{12} \, \left(1-\frac{1}{3 \cdot 3} + \frac{1}{5 \cdot 3^2} – \frac{1}{7 \cdot 3^3} + \cdots\right)\! $

    Мадхава (англ. Madhava of Sangamagrama) смог вычислить $ \pi $ как 3,14159265359, верно определив 11 цифр в записи числа. Этот рекорд был побит в 1424 году персидским математиком Джамшидом ал-Каши, который в своём труде под названием «Трактат об окружности» привёл 17 цифр числа $ \pi $, из которых 16 верные.

    Первым крупным европейским вкладом со времён Архимеда был вклад голландского математика Лудольфа ван Цейлена (1540—1610), затратившего десять лет на вычисление числа $ \pi $ с 20-ю десятичными цифрами (этот результат был опубликован в 1596 году). Применив метод Архимеда, он довёл удвоение до n-угольника, где n = 60·229. Изложив свои результаты в сочинении «Об окружности» («Van den Circkel»), Лудольф закончил его словами: «У кого есть охота, пусть идёт дальше». После смерти в его рукописях были обнаружены ещё 15 точных цифр числа $ \pi $. Лудольф завещал, чтобы найденные им знаки были высечены на его надгробном камне. В честь него число $ \pi $ иногда называли «лудольфовым числом», или «константой Лудольфа».

    Примерно в это же время в Европе начали развиваться методы анализа и определения бесконечных рядов. Первым таким представлением была формула Виета (англ. Viète’s formula)

    $ \frac2\pi = \frac{\sqrt2}2 \cdot \frac{\sqrt{2+\sqrt2}}2 \cdot \frac{\sqrt{2+\sqrt{2+\sqrt2}}}2 \cdot \cdots\! $

    найденная Франсуа Виетом в 1593 году. Другим известным результатом стала Формула Валлиса (англ. Wallis product),

    $ \frac{\pi}{2} = \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \frac{8}{7} \cdot \frac{8}{9} \cdots\! $

    выведенная Джоном Валлисом в 1655 году.

    В Новое время для вычисления $ \pi $ используются аналитические методы, основанные на тождествах. Перечисленные выше формулы малопригодны для вычислительных целей, поскольку либо используют медленно сходящиеся ряды, либо требуют сложной операции извлечения квадратного корня.

    Первую эффективную формулу нашёл в 1706 году Джон Мэчин (John Machin):

    $ \frac{\pi}{4} = 4\,\mathrm{arctg}\frac{1}{5} – \mathrm{arctg}\frac{1}{239} $

    Разложив арктангенс в ряд Тейлора

    $ \arctan \, x = x – \frac{x^3}{3} + \frac{x^5}{5} – \frac{x^7}{7} + \cdots\! $,

    можно получить быстро сходящийся ряд, пригодный для вычисления числа $ \pi $ с большой точностью. Эйлер, автор обозначения $ \pi $, получил 153 верных знака.

    Формулы такого типа, в настоящее время известные как Формулы Мэчина (англ. Machin-like formula), использовались для установки нескольких последовательных рекордов и остались наилучшими из известных методов для быстрого вычисления $ \pi $ в эпоху компьютеров. Выдающийся рекорд был поставлен феноменальным счетчиком Иоганном Захариусом Дазе (англ. Zacharias Dase), который в 1844 году по распоряжению Гаусса применил формулу Мэчина для вычисления 200 цифр $ \pi $ в уме. Наилучший результат к концу XIX века был получен англичанином Вильямом Шенксом (англ. William Shanks), у которого ушло 15 лет для того, чтобы вычислить 707 цифр, хотя из-за ошибки только первые 527 были верными. (Чтобы избежать подобных ошибок, современные вычисления подобного рода проводятся дважды. Если результаты совпадают, то они с высокой вероятностью верные.) Ошибку Шенкса обнаружил один из первых компьютеров в 1948 году; он же за несколько часов подсчитал 808 знаков $ \pi $.

    Теоретические достижения в XVIII веке привели к постижению природы числа $ \pi $, чего нельзя было достичь лишь только с помощью одного численного вычисления. Иоганн Генрих Ламберт доказал иррациональность $ \pi $ в 1761 году, а Адриен Мари Лежандр в 1774 году доказал иррациональность $ \pi^2 $. В 1735 году была установлена связь между простыми числами и $ \pi $, когда Леонард Эйлер решил знаменитую Базельскую проблему (англ. Basel problem) — проблему нахождения точного значения

    $ \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots\! $,

    которое составляет $ \frac{\pi^2}{6} $. И Лежандр, и Эйлер предполагали, что $ \pi $ может быть трансцендентным, что было в конечном итоге доказано в 1882 году Фердинандом фон Линдеманом.

    Считается, что книга Уильяма Джонса Новое введение в математику c 1706 года первая ввела в использование греческую букву $ \pi $ для обозначения этой константы, но эта запись стала особенно популярной после того, как Леонард Эйлер принял её в 1737 году. Он писал:

    Существует множество других способов отыскания длин или площадей соответствующей кривой или плоской фигуры, что может существенно облегчить практику; например, в круге диаметр относится к длине окружности как 1 к $ (\frac{16}{5}-\frac{4}{239})-\frac{1}{3} \cdot (\frac{16}{5^3}-\frac{4}{239^3})+\cdots = 3.14159 \cdots = \pi $

    Эра компьютерных вычислений Править

    Эпоха цифровой техники в XX веке привела к увеличению скорости появления вычислительных рекордов. Джон фон Нейман и др. использовали в 1949 году ЭНИАК для вычисления 2037 цифр $ \pi $, которое заняло 70 часов. Ещё одна тысяча цифр была получена в последующие десятилетия, а отметка в миллион была пройдена в 1973 году. Такой прогресс имел место не только благодаря более быстрому аппаратному обеспечению, но и благодаря алгоритмам. Одним из самых значительных результатов было открытие в 1960-м году быстрого преобразования Фурье (БПФ), что позволило быстро осуществлять арифметические операции над очень большими числами.

    В начале 20-го столетия индийский математик Сриниваса Рамануджан обнаружил множество новых формул для $ \pi $, некоторые из которых стали знаменитыми из-за своей элегантности и математической глубины. Одна из этих формул — это ряд

    $ \frac{1}{\pi} = \frac{2 \sqrt 2}{9801} \sum_{k=0}^\infty \frac{(4k)!(1103+26390k)}{(k!)^4 396^{4k}}\! $,

    и похожая на неё, найденная братьями Чудновскими (англ.) в 1987,

    $ \frac{426880 \sqrt{10005}}{\pi} = \sum_{k=0}^\infty \frac{(6k)! (13591409 + 545140134k)}{(3k)!(k!)^3 (-640320)^{3k}}\! $,

    который вычисляет по 14 цифр за ход. Чудновские использовали эту формулу для того, чтобы установить несколько рекордов в вычислении $ \pi $ в конце 1980-х, включая то, в результате которого было получено более миллиарда (1,011,196,691) цифр десятичного разложения (1989 год). Эта формула используется в программах, вычисляющих $ \pi $ на персональных компьютерах, в отличие от суперкомпьютеров, которые устанавливают современные рекорды.

    В то время как последовательность обычно повышает точность на фиксированную величину с каждым следующим членом, существуют итеративные алгоритмы, которые на каждом шагу умножают количество правильных цифр, требуя, правда, высоких вычислительных затрат на каждом из таких шагов. Прорыв в этом отношении был сделан в 1975 году, когда Ричард Брент (англ.) и Юджин Саламин (англ.) независимо друг от друга открыли алгоритм Брента — Саламина (англ.), который, используя лишь арифметику, на каждом шагу удваивает количество известных знаков.[2] Алгоритм состоит из установки начальных значений

    $ a_0 = 1 \quad \quad \quad b_0 = \frac{1}{\sqrt 2} \quad \quad \quad t_0 = \frac{1}{4} \quad \quad \quad p_0 = 1\! $

    и итераций:

    $ a_{n+1} = \frac{a_n+b_n}{2} \quad \quad \quad b_{n+1} = \sqrt{a_n b_n}\! $
    $ t_{n+1} = t_n – p_n (a_n-a_{n+1})^2 \quad \quad \quad p_{n+1} = 2 p_n\! $

    пока an и bn не станут достаточно близки. Тогда оценка $ \pi $ даётся формулой

    $ \pi \approx \frac{(a_n + b_n)^2}{4 t_n}.\! $

    При использовании этой схемы 25 итераций достаточно для получения 45 миллионов десятичных знаков. Похожий алгоритм, увеличивающий на каждом шаге точность в четыре раза, был найден Джонатаном Боруэйном (Jonathan Borwein) и Питером Боруэйном (en:Peter Borwein).[3] При помощи этих методов Ясумаса Канада (en:Yasumasa Kanada) и его группа, начиная с 1980 года, установили большинство рекордов вычисления $ \pi $ вплоть до 206,158,430,000 знаков в 1999. Текущий рекорд — 1 241 100 000 000 десятичных знаков, установлен Канадой и его группой в 2002 году. Хотя большинство предыдущих рекордов Канады были установлены при помощи алгоритма Брента-Саламина, вычисление 2002 года использовало две формулы типа мэчиновских, которые работали медленнее, но радикально снижали использование памяти. Вычисление было выполнено на суперкомпьютере Хитачи из 64 узлов с 1 терабайтом оперативной памяти, способном выполнять 2 триллиона операций в секунду.

    Важным развитием недавнего времени стала формула Бэйли—Боруэйна—Плаффа (en:Bailey–Borwein–Plouffe formula) (формула ББП), открытая Саймоном Плаффом (en:Simon Plouffe) и названная по авторам статьи, в которой она впервые была опубликована — David H. Bailey, Peter Borwein, and Plouffe.[4] Эта формула,

    $ \pi = \sum_{k=0}^\infty \frac{1}{16^k} \left( \frac{4}{8k + 1} – \frac{2}{8k + 4} – \frac{1}{8k + 5} – \frac{1}{8k + 6}\right), $

    примечательна тем, что она позволяет извлечь любую конкретную шестнадцатеричную или двоичную цифру числа $ \pi $ без вычисления предыдущих.[4] С 1998 до 2000 года распределённый проект PiHex использовал видоизменённую формулу ББП Фабриса Беллара для вычисления квадриллионного (1 000 000 000 000 000-го) бита числа $ \pi $, который оказался нулём.[5]

    В 2006 году Саймон Плафф, используя en:integer relation algorithm PSLQ, нашёл ряд красивых формул.[6] Пусть q = eπ, тогда

    $ \frac{\pi}{24} = \sum_{n=1}^\infty \frac{1}{n} \left(\frac{3}{q^n-1} – \frac{4}{q^{2n}-1} + \frac{1}{q^{4n}-1}\right) $
    $ \frac{\pi^3}{180} = \sum_{n=1}^\infty \frac{1}{n^3} \left(\frac{4}{q^n-1} – \frac{5}{q^{2n}-1} + \frac{1}{q^{4n}-1}\right) $

    и другие вида

    $ \pi^k = \sum_{n=1}^\infty \frac{1}{n^k} \left(\frac{a}{q^n-1} + \frac{b}{q^{2n}-1} + \frac{c}{q^{4n}-1}\right) $

    где q = eπ, k — нечётное число, и abc — рациональные числа. Если k — вида 4m + 3, то эта формула имеет особенно простой вид:

    $ p\pi^k = \sum_{n=1}^\infty \frac{1}{n^k} \left(\frac{2^{k-1}}{q^n-1} – \frac{2^{k-1}+1}{q^{2n}-1} + \frac{1}{q^{4n}-1}\right) $

    для рационального p у которго знаменатель — число, хорошо разложимое на множители, хотя строгое доказательство ещё не предоставлено.

    В 2009 году учёные из Университата Цукубо (Япония) рассчитали последовательность из 2 576 980 377 524 десятичных разрядов.[7]

    • $ \frac{22}{7} $ (Архимед),
    • $ \frac{377}{120} $ (дана в книге индийского мыслителя и астронома Арьябхаты в V веке н. э.),
    • $ \frac{355}{113} $ (оценка приписывается современнику Арьябхаты древнекитайскому астроному Цзу Чун-цжи).
    • 510 знаков после запятой:
      π ≈ 3,141 592 653 589 793 238 462 643 383 279 502 884 197 169 399 375 105 820 974 944 592 307 816 406 286 208 998 628 034 825 342 117 067 982 148 086 513 282 306 647 093 844 609 550 582 231 725 359 408 128 481 117 450 284 102 701 938 521 105 559 644 622 948 954 930 381 964 428 810 975 665 933 446 128 475 648 233 786 783 165 271 201 909 145 648 566 923 460 348 610 454 326 648 213 393 607 260 249 141 273 724 587 006 606 315 588 174 881 520 920 962 829 254 091 715 364 367 892 590 360 011 330 530 548 820 466 521 384 146 951 941 511 609 433 057 270 365 759 591 953 092 186 117 381 932 611 793 105 118 548 074 462 379 962 749 567 351 885 752 724 891 227 938 183 011 949 129 833 673 362…
    • Двести миллиардов знаков после запятой (2000 ZIP архивов, средний размер файла около 57 мегабайт)

    Соотношения Править

    Известно много формул с числом $ \pi $:

    $ \frac2\pi= \frac{\sqrt{2}}2\cdot \frac{\sqrt{2+\sqrt2}}2\cdot \frac{\sqrt{2+\sqrt{2+\sqrt2}}}2 \cdot \ldots $
    $ \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \frac{8}{7} \cdot \frac{8}{9} \cdots = \frac{\pi}{2} $
    $ \frac{1}{1} – \frac{1}{3} + \frac{1}{5} – \frac{1}{7} + \frac{1}{9} – \cdots = \frac{\pi}{4} $
    $ e^{i \pi} + 1 = 0\; $
    $ \int\limits_{-\infty}^{+\infty}\ e^{-x^2}{dx} = \sqrt{\pi} $
    $ \int\limits_{-\infty }^{+\infty }{\frac{\sin x}{x}dx}=\pi $

    Трансцендентность и иррациональность Править

    Нерешённые проблемы Править

    • Неизвестно, являются ли числа $ \pi $ и $ e $ алгебраически независимыми.
    • Неизвестно, являются ли числа $ \pi + e $, $ \pi – e $, $ \pi e $, $ \pi / e $, $ \pi ^ e $, $ \pi ^ \pi $, $ e ^ e $ трансцендентными.
    • До сих пор ничего не известно о нормальности числа $ \pi $; неизвестно даже, какие из цифр 0—9 встречаются в десятичном представлении числа $ \pi $ бесконечное количество раз.

    История вычисления Править

    В 1997 году Дэйвид Х. Бэйли, Питер Боруэйн и Саймон Плуфф открыли способ быстрого вычисления произвольной двоичной цифры числа $ \pi $ без вычисления предыдущих цифр, основанный на формуле

    $ \pi = \sum_{i=0}^{\infty}\frac{1}{16^i}\left(\frac{4}{8i+1}-\frac{2}{8i+4}-\frac{1}{8i+5}-\frac{1}{8i+6}\right) $

    Метод иглы Бюффона Править

    На разлинованную равноудалёнными прямыми плоскость произвольно бросается игла, длина которой равна расстоянию между соседними прямыми, так что при каждом бросании игла либо не пересекает прямые, либо пересекает ровно одну. Можно доказать, что отношение числа пересечений иглы с какой-нибудь линией к общему числу бросков стремится к $ \frac2\pi $ при увеличении числа бросков до бесконечности. Данный метод иглы базируется на теории вероятностей и лежит в основе метода Монте-Карло.[9]

    Дополнительные факты Править

    Памятник числу «пи» на ступенях перед зданием Музея искусств в Сиэтле

    • Неофициальный праздник «День числа Пи» отмечается 14 марта, которое в американском формате дат (месяц/день) записывается как 3.14, что соответствует приближённому значению числа $ \pi $.
    • Ещё одной датой, связанной с числом $ \pi $, является 22 июля, которое называется «Днём приближённого числа Пи» (англ. Pi Approximation Day), так как в европейском формате дат этот день записывается как 22/7, а значение этой дроби является приближённым значением числа $ \pi $.
    • 17 июня 2009 года украинский нейрохирург, доктор медицинских наук, профессор Андрей Слюсарчук установил мировой рекорд, запомнив 30 миллионов знаков числа Пи, которые были напечатаны в 20 томах текста.[10] С установлением нового рекорда Андрея Слюсарчука официально поздравил Президент Украины Виктор Андреевич Ющенко.[11][12] Поскольку устное перечисление 30 млн цифр $ \pi $ со скоростью одна цифра в секунду заняло бы почти год (347 дней) при непрерывном перечислении 24 часа в сутки, 7 дней в неделю, то был применён следующий подход для проверки рекорда: во время демонстраций г. Слюсарчука просят назвать произвольно выбранные проверяющими последовательности цифр числа Пи, расположенные на произвольно выбранных местах произвольных страниц 20-томной распечатки, группированной в упорядоченные таблицы. Он многократно успешно проходит этот тест. Свидетелями демонстраций были уважаемые учёные, доктора и кандидаты наук, заведующие кафедрами Институтов и Университетов. Книга рекордов Украины перечисляет членов комиссии, участвовавших в демонстрациях. Приведены их научные звания и занимаемые должности. Уникальная память Андрея Слюсарчука основана на эйдетическом восприятии информации.
    • По данным Книги рекордов Украины, в 2006 году Андрей Слюсарчук установил предыдущий мировой рекорд, запомнив 1 миллион знаков числа Пи.[13]
    • Предыдущий мировой рекорд по запоминанию знаков числа $ \pi $ принадлежит японцу Акире Харагути (Akira Haraguchi). Он запомнил число $ \pi $ до 100-тысячного знака после запятой. Ему понадобилось почти 16 часов, чтобы назвать всё число целиком. (на запоминание ушло 10 лет)[14]
    • В штате Индиана (США) в 1897 году был выпущен билль (см.: en:Indiana Pi Bill), законодательно устанавливающий значение числа Пи равным 3,2.[15] Данный билль не стал законом благодаря своевременному вмешательству профессора Университета Пердью (англ. Purdue University), присутствовавшего в законодательном собрании штата во время рассмотрения данного закона.
    • «число Пи для гренландских китов равно 3.14» написано в «Справочнике китобоя» 60-х годов выпуска.[16]
    • Существует художественный фильм, названный в честь числа Пи.
    1. ↑ Это определение пригодно только для евклидовой геометрии. В других геометриях отношение длины окружности к длине её диаметра может быть произвольным. Например, в геометрии Лобачевского это отношение меньше, чем $ \pi~ $.
    2. ↑ Brent, Richard (1975), Traub, J F, ed., “Multiple-precision zero-finding methods and the complexity of elementary function evaluation”, Analytic Computational Complexity (New York: Academic Press): 151–176, http://wwwmaths.anu.edu.au/~brent/pub/pub028.html, retrieved 2007-09-08 
    3. ↑ Borwein, Jonathan M; Borwein, Peter, Berggren, Lennart (2004). Pi: A Source Book. Springer. ISBN 0387205713. 
    4. 4,04,1Bailey, David H., Borwein, Peter B., and Plouffe, Simon (April 1997). “On the Rapid Computation of Various Polylogarithmic Constants” (PDF). Mathematics of Computation 66 (218): 903–913. doi:10.1090/S0025-5718-97-00856-9.  
    5. Bellard, Fabrice A new formula to compute the nth binary digit of pi. Проверено 27 октября 2007.
    6. Plouffe, Simon Indentities inspired by Ramanujan’s Notebooks (part 2). Проверено 10 апреля 2009.
    7. ↑ Установлен новый рекорд точности вычисления числа π
    8. ↑ Доказательство Клейна приложено к работе «Вопросы элементарной и высшей математики», ч. 1, вышедшей в Гёттингене в 1908 году
    9. Г. А. Гальперин. Биллиардная динамическая система для числа пи.
    10. ↑ Профессор Андрей Слюсарчук установил мировой рекорд по возможностям человеческой памяти http://www.mk.ru/health/303812.html?phrase_id=1446233
    11. ↑ Президент поздравил профессора Андрея Слюсарчука с установлением нового мирового рекорда по запоминанию и воспроизведению человеком сверхбольшого объема информации http://www.president.gov.ua/ru/news/14234.html
    12. ↑ Ющенко привітав Слюсарчука зі світовим рекордом із запам’ятовування надвеликого обсягу інформації http://news.liga.net/ukr/news/NU094415.html
    13. ↑ Книга рекордов Украины http://www.book.adamant.ua/akt/2slysar4uk/1.htm
    14. ↑ Japanese man recites pi from memory to 100,000 decimal places, claims world record. The Associated Press (04/10/06). Проверено 22 сентября 2008.
    15. ↑ The Indiana Pi Bill, 1897
    16. ↑ В. И. Арнольд любит приводить этот факт, см. например здесь (ps)

    ru.science.wikia.com

    Число пи – это… Что такое Число пи?

    Если принять диаметр окружности за единицу, то длина окружности — это число «пи».

    Число π (произносится «пи») — математическая константа, выражающая отношение длины окружности к длине её диаметра. Обозначается буквой греческого алфавита «пи».

    Символ константы

    История

    Впервые обозначением этого числа греческой буквой воспользовался британский математик Джонс (1706), а общепринятым оно стало после работ Эйлера. Это обозначение происходит от начальной буквы греческих слов περιφέρεια — окружность, периферия и περίμετρος — периметр.

    Оценки

    • (Архимед),
    • (дана в книге индийского мыслителя и астронома Арьябхаты в V веке н. э.),
    • (оценка приписывается современнику Арьябхаты древнекитайскому астроному Цзу Чун-цжи).
    • 510 знаков после запятой:
      π ≈ 3,141 592 653 589 793 238 462 643 383 279 502 884 197 169 399 375 105 820 974 944 592 307 816 406 286 208 998 628 034 825 342 117 067 982 148 086 513 282 306 647 093 844 609 550 582 231 725 359 408 128 481 117 450 284 102 701 938 521 105 559 644 622 948 954 930 381 964 428 810 975 665 933 446 128 475 648 233 786 783 165 271 201 909 145 648 566 923 460 348 610 454 326 648 213 393 607 260 249 141 273 724 587 006 606 315 588 174 881 520 920 962 829 254 091 715 364 367 892 590 360 011 330 530 548 820 466 521 384 146 951 941 511 609 433 057 270 365 759 591 953 092 186 117 381 932 611 793 105 118 548 074 462 379 962 749 567 351 885 752 724 891 227 938 183 011 949 129 833 673 362…

    Свойства

    Соотношения

    Известно много формул с числом π:

    Трансцендентность и иррациональность

    Нерешенные проблемы

    • Неизвестно, являются ли числа π и e алгебраически независимыми.
    • Неизвестно, являются ли числа π + e, π − e, πe, π / e, πe, ππ, ee трансцендентными.
    • До сих пор ничего не известно о нормальности числа π; неизвестно даже, какие из цифр 0-9 встречаются в десятичном представлении числа π бесконечное количество раз.

    История вычисления

    Архимед, возможно, первым предложил способ вычисления π математическим способом. Для этого он вписывал в окружность и описывал около неё правильные многоугольники. Принимая диаметр окружности за единицу, Архимед рассматривал периметр вписанного многоугольника как нижнюю оценку длины окружности, а периметр описанного многоугольника как верхнюю оценку. Так, для шестиугольника (см. рисунок) получается .

    Рассматривая правильный 96-угольник, Архимед получил оценку .

    В древнекитайских трудах попадаются самые разные оценки, из которых самая точная — это известное китайское число 355/113. Цзу Чунчжи (V век) даже считал это значение точным.

    В Индии Арьябхата и Бхаскара использовали приближение 3,1416

    Заслуживает упоминания результат арабского математика Гиясэддина Джемшид ибн Масуд ал-Каши, завершившего в 1424 году труд под названием «Трактат об окружности», в котором он приводит 17 цифр числа π (из них 16 верных).

    Лудольф ван Цейлен (1536—1610) затратил десять лет на вычисление числа π с 20-ю десятичными цифрами (этот результат был опубликован в 1596 году). Применив метод Архимеда, он довёл удвоение до n-угольника, где n=60·229. Изложив свои результаты в сочинении «Об окружности» («Van den Cirkel»), Лудольф закончил его словами: «У кого есть охота, пусть идёт дальше». После смерти в его рукописях были обнаружены ещё 15 точных цифр числа π. Лудольф завещал, чтобы найденные им знаки были высечены на его надгробном камне. В честь него число π иногда называли «лудольфовым числом», или «константой Лудольфа».

    В Новое время для вычисления π используются аналитические методы, основанные на тождествах. Перечисленные выше формулы малопригодны для вычислительных целей, поскольку либо используют медленно сходящиеся ряды, либо требуют сложной операции извлечения квадратного корня.

    Первую эффективную формулу нашёл в 1706 Джон Мэчин (John Machin):

    Разложив арктангенс в ряд Тейлора, можно получить быстро сходящийся ряд, пригодный для вычисления числа π с большой точностью. Эйлер, автор обозначения π, получил 153 верных знака.

    В 1873 году англичанин В. Шенкс потратил 15 лет и вычислил 707 знаков; правда, начиная с 527-го знака, все они оказались ошибочными. Ошибку Шенкса обнаружил один из первых компьютеров в 1948 году; он же за несколько часов подсчитал 808 знаков π.

    Очень быстро работают вычислительные алгоритмы, основанные на формулах Рамануджана

    и Чудновского

    В 1997 году Дэйвид Х. Бэйли, Питер Боруэйн и Саймон Плуфф открыли способ быстрого вычисления произвольной двоичной цифры числа π без вычисления предыдущих цифр, основанный на формуле

    Метод иглы Бюффона

    На разлинованную равноудалёнными прямыми плоскость произвольно бросается игла, длина которой равна расстоянию между соседними прямыми, так что при каждом бросании игла либо не пересекает прямые, либо пересекает ровно одну. Можно доказать, что отношение числа пересечений иглы с какой-нибудь линией к общему числу бросков стремится к при увеличении числа бросков до бесконечности. Данный метод иглы базируется на теории вероятностей и лежит в основе метода Монте-Карло.[2]

    Мнемонические правила

    1.

    Чтобы нам не ошибаться,
    Надо правильно прочесть:
    Три, четырнадцать, пятнадцать,
    Девяносто два и шесть.
    Надо только постараться
    И запомнить всё как есть:
    Три, четырнадцать, пятнадцать,
    Девяносто два и шесть.
    Три, четырнадцать, пятнадцать,
    Девять, два, шесть, пять, три, пять.
    Чтоб наукой заниматься,
    Это каждый должен знать.
    Можно просто постараться
    И почаще повторять:
    «Три, четырнадцать, пятнадцать,
    Девять, двадцать шесть и пять.»

    2. Подсчитайте количество букв в каждом слове в нижеприведенных фразах (без учета знаков препинания) и запишите эти цифры подряд — не забывая про десятичную запятую после первой цифры «3», разумеется. Получится приближенное число Пи.

    Это я знаю и помню прекрасно: Пи многие знаки мне лишни, напрасны.

    Кто и шутя, и скоро пожелаетъ Пи узнать число — ужъ знаетъ!

    Вот и Миша и Анюта прибежали Пи узнать число они желали.

    (Вторая мнемоническая запись верна (с округлением последнего разряда) только при использовании дореформенной орфографии: при подсчете количества букв в словах необходимо учитывать твердые знаки!)

    Еще один вариант этой мнемонической записи:

    Это я знаю и помню прекрасно:
    Пи многие знаки мне лишни, напрасны.
    Доверимся знаньям громадным
    Тех, пи кто сосчитал, цифр армаду.


    3.

    Раз у Коли и Арины
    Распороли мы перины.
    Белый пух летал, кружился,
    Куражился, замирал,
    Ублажился,
    Нам же дал
    Головную боль старух.
    Ух, опасен пуха дух!

    Если соблюдать стихотворный размер, можно довольно быстро запомнить:

    Три, четырнадцать, пятнадцать, девять два, шесть пять, три пять
    Восемь девять, семь и девять, три два, три восемь, сорок шесть
    Два шесть четыре, три три восемь, три два семь девять, пять ноль два
    Восемь восемь и четыре, девятнадцать, семь, один

    Забавные факты

    • Неофициальный праздник «День числа Пи» отмечается 14 марта, которое в американском формате дат (месяц/день) записывается как 3.14, что соответствует приближённому значению числа π.
    • Ещё одной датой, связанной с числом π, является 22 июля, которое называется «Днём приближённого числа Пи» (англ. Pi Approximation Day), так как в европейском формате дат этот день записывается как 22/7, а значение этой дроби является приближённым значением числа π.
    • Украинец Андрей Слюсарчук установил новый мировой рекорд по запоминанию числа пи. Точное воссоздание в объеме 1 млн.знаков. (28.02.2006, Львов) [3]
    • Предыдущий мировой рекорд по запоминанию знаков числа π принадлежит японцу Акира Харагути (Akira Haraguchi). Он запомнил число π до 100-тысячного знака после запятой. Ему понадобилось почти 16 часов, чтобы назвать всё число целиком. (на запоминание ушло 10 лет)[4]
    • В штате Индиана (США) в 1897 был выпущен билль(см. Indiana Pi Bill), законодательно устанавливающий значение числа Пи равным 3,2[5]. Данный билль не стал законом благодаря своевременному вмешательству профессора Университета Пердью (англ.), присутствовавшего во время рассмотрения принятия данного закона.
    • «число Пи для гренландских китов равно 3.14» написано в «Справочнике китобоя» 60-х годов выпуска.[6]

    Примечания

    • Числовой интервал
    • Числовая мистика

    Смотреть что такое “Число пи” в других словарях:

    • число — Прие моч ное Источник: ГОСТ 111 90: Стекло листовое. Технические условия оригинал документа Смотри также родственные термины: 109.    Число бетатронных колебаний …   Словарь-справочник терминов нормативно-технической документации

    • число — сущ., с., употр. очень часто Морфология: (нет) чего? числа, чему? числу, (вижу) что? число, чем? числом, о чём? о числе; мн. что? числа, (нет) чего? чисел, чему? числам, (вижу) что? числа, чем? числами, о чём? о числах   математика 1. Числом… …   Толковый словарь Дмитриева

    • ЧИСЛО — ЧИСЛО, числа, мн. числа, чисел, числам, ср. 1. Понятие, служащее выражением количества, то, при помощи чего производится счет предметов и явлений (мат.). Целое число. Дробное число. Именованное число. Простое число. (см. простой1 в 1 знач.).… …   Толковый словарь Ушакова

    • ЧИСЛО — абстрактное, лишенное особенного содержания обозначение какоголибо члена некоторого ряда, в котором этому члену предшествует или следует за ним какой нибудь др. определенный член; абстрактный индивидуальный признак, отличающий одно множество от… …   Философская энциклопедия

    • Число — Число  грамматическая категория, выражающая количественные характеристики предметов мысли. Грамматическое число  одно из проявлений более обшей языковой категории количества (см. Категория языковая) наряду с лексическим проявлением («лексическое… …   Лингвистический энциклопедический словарь

    • ЧИСЛО e — Число, приближенно равное 2,718, которое часто встречается в математике и естественных науках. Например, при распаде радиоактивного вещества по истечении времени t от исходного количества вещества остается доля, равная e kt, где k число,… …   Энциклопедия Кольера

    • число — а; мн. числа, сел, слам; ср. 1. Единица счёта, выражающая то или иное количество. Дробное, целое, простое ч. Чётное, нечётное ч. Считать круглыми числами (приблизительно, считая целыми единицами или десятками). Натуральное ч. (целое положительное …   Энциклопедический словарь

    • ЧИСЛО — ср. количество, счетом, на вопрос: сколько? и самый знак, выражающий количество, цифра. Без числа; нет числа, без счету, многое множество. Поставь приборы, по числу гостей. Числа римские, арабские или церковные. Целое число, ·противоп. дробь.… …   Толковый словарь Даля

    • ЧИСЛО — ЧИСЛО, а, мн. числа, сел, слам, ср. 1. Основное понятие математики величина, при помощи к рой производится счёт. Целое ч. Дробное ч. Действительное ч. Комплексное ч. Натуральное ч. (целое положительное число). Простое ч. (натуральное число, не… …   Толковый словарь Ожегова

    • ЧИСЛО Е — ЧИСЛО «Е» (ЕХР), иррациональное число, служащее основанием натуральных ЛОГАРИФМОВ. Это действительное десятичное число, бесконечная дробь, равная 2,7182818284590…., является пределом выражения (1/ ) при п, стремящемся к бесконечности. По сути,… …   Научно-технический энциклопедический словарь

    • число — Количество, наличность, состав, численность, контингент, сумма, цифра; день.. Ср. . См. день, количество . небольшое число, несть числа, расти числом… Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские… …   Словарь синонимов


    dic.academic.ru

    9 удивительных фактов о числе Пи

    Увлеченные математикой люди по всему миру ежегодно съедают по кусочку пирога четырнадцатого марта – ведь это день числа Пи, самого известного иррационального числа. Эта дата напрямую связана с числом, первые цифры которого 3,14. Пи – это соотношение длины окружности к диаметру. Так как оно иррациональное, записать его в виде дроби невозможно. Это бесконечно длинное число. Его обнаружили тысячи лет назад и с тех пор постоянно изучают, но остались ли у Пи какие-нибудь секреты? От древнего происхождения до неопределенного будущего вот несколько наиболее интересных фактов о числе Пи.

    Запоминание Пи

    Рекорд в запоминании цифр после запятой принадлежит Раджвиру Мине из Индии, которому удалось запомнить 70 000 цифр – он поставил рекорд двадцать первого марта 2015 года. До этого рекордсменом был Чао Лу из Китая, которому удалось запомнить 67 890 цифр – этот рекорд был поставлен в 2005-м. Неофициальным рекордсменом является Акира Харагучи, записавший на видео свое повторение 100 000 цифр в 2005-м и не так давно опубликовавший видео, где ему удается вспомнить 117 000 цифр. Официальным рекорд стал бы только в том случае, если бы это видео было записано в присутствии представителя книги рекордов Гиннеса, а без подтверждения он остается лишь впечатляющим фактом, но не считается достижением. Энтузиасты математики любят заучивать цифру Пи. Многие люди используют различные мнемонические техники, к примеру стихи, где количество букв в каждом слове совпадает с цифрами Пи. В каждом языке существуют свои варианты подобных фраз, которые помогают запомнить как первые несколько цифр, так и целую сотню.

    Существует язык Пи

    Увлеченные литературой математики изобрели диалект, в котором число букв во всех словах соответствует цифрам Пи в точном порядке. Писатель Майк Кит даже написал книгу Not a Wake, которая полностью создана на языке Пи. Энтузиасты такого творчества пишут свои произведения в полном соответствии количества букв значению цифр. Это не имеет никакого прикладного применения, но является достаточно распространенным и известным явлением в кругах увлеченных ученых.

    Экспоненциальный рост

    Пи – это бесконечное число, поэтому люди по определению не смогут никогда установить точные цифры этого числа. Однако количество цифр после запятой сильно увеличилось со времен первого использования Пи. Еще вавилоняне им пользовались, но им было достаточно дроби в три целых и одну восьмую. Китайцы и создатели Ветхого Завета и вовсе ограничивались тройкой. К 1665 году сэр Исаак Ньютон вычислил 16 цифр Пи. К 1719 году французский математик Том Фанте де Ланьи вычислил 127 цифр. Появление компьютеров радикальным образом улучшило знания человека о Пи. С 1949 года по 1967-й количество известных человеку цифр стремительно выросло с 2037 до 500 000. Не так давно Петер Труэб, ученый из Швейцарии, смог вычислить 2,24 триллиона цифр Пи! На это потребовалось 105 дней. Разумеется, это не предел. Вполне вероятно, что с развитием технологий будет возможно установить еще более точную цифру – так как Пи бесконечно, предела точности просто не существует, и ограничить ее могут лишь технические особенности вычислительной техники.

    Вычисление Пи вручную

    Если вы хотите найти число самостоятельно, вы можете использовать старомодную технику – вам потребуются линейка, банка и веревка, можно также использовать транспортир и карандаш. Минус использования банки в том, что она должна быть круглой, и точность будет определяться тем, насколько хорошо человек может наматывать веревку вокруг нее. Можно нарисовать окружность транспортиром, но и это требует навыков и точности, так как неровная окружность может серьезно исказить ваши измерения. Более точный метод предполагает использование геометрии. Разделите круг на множество сегментов, как пиццу на кусочки, а потом вычислите длину прямой линии, которая превратила бы каждый сегмент в равнобедренный треугольник. Сумма сторон даст приблизительное число Пи. Чем больше сегментов вы используете, тем более точным получится число. Разумеется, в своих вычислениях вы не сможете приблизиться к результатам компьютера, тем не менее эти простые опыты позволяют более детально понять, что вообще представляет собой число Пи и каким образом оно используется в математике.

    Открытие Пи

    Древние вавилоняне знали о существовании числа Пи уже четыре тысячи лет назад. Вавилонские таблички исчисляют Пи как 3,125, а в египетском математическом папирусе встречается число 3,1605. В Библии число Пи дается в устаревшей длине – в локтях, а греческий математик Архимед использовал для описания Пи теорему Пифагора, геометрическое соотношение длины сторон треугольника и площади фигур внутри и снаружи кругов. Таким образом, можно с уверенностью сказать, что Пи является одним из наиболее древних математических понятий, хоть точное название данного числа и появилось относительно недавно.

    Новый взгляд на Пи

    Еще до того, как число Пи стали соотносить с окружностями, у математиков уже было множество способов даже для наименования этого числа. К примеру, в старинных учебниках по математике можно найти фразу на латыни, которую можно грубо перевести как «количество, которое показывает длину, когда на него умножается диаметр». Иррациональное число прославилось тогда, когда швейцарский ученый Леонард Эйлер использовал его в своих трудах по тригонометрии в 1737 году. Тем не менее греческий символ для Пи все еще не использовали – это произошло только в книге менее известного математика Уильяма Джонса. Он использовал его уже в 1706 году, но это долго оставалось без внимания. Со временем ученые приняли такое наименование, и теперь это наиболее известная версия названия, хотя прежде его называли также лудольфовым числом.

    Нормальное ли число Пи?

    Число Пи определенно странное, но насколько оно подчиняется нормальным математическим законам? Ученые уже разрешили многие вопросы, связанные с этим иррациональным числом, но некоторые загадки остаются. К примеру, неизвестно, насколько часто используются все цифры – цифры от 0 до 9 должны использоваться в равной пропорции. Впрочем, по первым триллионам цифр статистика прослеживается, но из-за того, что число бесконечное, доказать точно ничего невозможно. Есть и другие проблемы, которые пока ускользают от ученых. Вполне возможно, что дальнейшее развитие науки поможет пролить на них свет, но на данный момент это остается за пределами человеческого интеллекта.

    Пи звучит божественно

    Ученые не могут ответить на некоторые вопросы о числе Пи, тем не менее с каждым годом они все лучше понимают его суть. Уже в восемнадцатом веке была доказана иррациональность этого числа. Кроме того, было доказано, что число является трансцендентным. Это означает, что нет определенной формулы, которая позволила бы подсчитать Пи с помощью рациональных чисел.

    Недовольство числом Пи

    Многие математики просто влюблены в Пи, но есть и те, кто считает, что у этих цифр нет особенной значимости. Кроме того, они уверяют, что число Тау, которое в два раза больше Пи, более удобное в использовании как иррациональное. Тау показывает связь длины окружности и радиуса, что, по мнению некоторых, представляет более логичный метод исчисления. Впрочем, однозначно определить что-либо в данном вопросе невозможно, и у одного и у другого числа всегда будут сторонники, оба метода имеют право на жизнь, так что это просто интересный факт, а не повод думать, что пользоваться числом Пи не стоит.

    fb.ru

    ЧИСЛО ПИ – это… Что такое ЧИСЛО ПИ?

  1. число — Прие моч ное Источник: ГОСТ 111 90: Стекло листовое. Технические условия оригинал документа Смотри также родственные термины: 109.    Число бетатронных колебаний …   Словарь-справочник терминов нормативно-технической документации

  2. число — сущ., с., употр. очень часто Морфология: (нет) чего? числа, чему? числу, (вижу) что? число, чем? числом, о чём? о числе; мн. что? числа, (нет) чего? чисел, чему? числам, (вижу) что? числа, чем? числами, о чём? о числах   математика 1. Числом… …   Толковый словарь Дмитриева

  3. ЧИСЛО — ЧИСЛО, числа, мн. числа, чисел, числам, ср. 1. Понятие, служащее выражением количества, то, при помощи чего производится счет предметов и явлений (мат.). Целое число. Дробное число. Именованное число. Простое число. (см. простой1 в 1 знач.).… …   Толковый словарь Ушакова

  4. ЧИСЛО — абстрактное, лишенное особенного содержания обозначение какоголибо члена некоторого ряда, в котором этому члену предшествует или следует за ним какой нибудь др. определенный член; абстрактный индивидуальный признак, отличающий одно множество от… …   Философская энциклопедия

  5. Число — Число  грамматическая категория, выражающая количественные характеристики предметов мысли. Грамматическое число  одно из проявлений более обшей языковой категории количества (см. Категория языковая) наряду с лексическим проявлением («лексическое… …   Лингвистический энциклопедический словарь

  6. ЧИСЛО e — Число, приближенно равное 2,718, которое часто встречается в математике и естественных науках. Например, при распаде радиоактивного вещества по истечении времени t от исходного количества вещества остается доля, равная e kt, где k число,… …   Энциклопедия Кольера

  7. число — а; мн. числа, сел, слам; ср. 1. Единица счёта, выражающая то или иное количество. Дробное, целое, простое ч. Чётное, нечётное ч. Считать круглыми числами (приблизительно, считая целыми единицами или десятками). Натуральное ч. (целое положительное …   Энциклопедический словарь

  8. ЧИСЛО — ср. количество, счетом, на вопрос: сколько? и самый знак, выражающий количество, цифра. Без числа; нет числа, без счету, многое множество. Поставь приборы, по числу гостей. Числа римские, арабские или церковные. Целое число, ·противоп. дробь.… …   Толковый словарь Даля

  9. ЧИСЛО — ЧИСЛО, а, мн. числа, сел, слам, ср. 1. Основное понятие математики величина, при помощи к рой производится счёт. Целое ч. Дробное ч. Действительное ч. Комплексное ч. Натуральное ч. (целое положительное число). Простое ч. (натуральное число, не… …   Толковый словарь Ожегова

  10. ЧИСЛО Е — ЧИСЛО «Е» (ЕХР), иррациональное число, служащее основанием натуральных ЛОГАРИФМОВ. Это действительное десятичное число, бесконечная дробь, равная 2,7182818284590…., является пределом выражения (1/ ) при п, стремящемся к бесконечности. По сути,… …   Научно-технический энциклопедический словарь

  11. число — Количество, наличность, состав, численность, контингент, сумма, цифра; день.. Ср. . См. день, количество . небольшое число, несть числа, расти числом… Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские… …   Словарь синонимов

  12. dic.academic.ru

    Пи (число) – это… Что такое Пи (число)?

    Иррациональные числа
    γ – ζ(3) — √2 — √3 — √5 — φ — α — e — π — δ
    Система счисленияОценка числа
    Двоичная11,00100100001111110110…
    Десятичная3,1415926535897932384626433832795…
    Шестнадцатеричная3,243F6A8885A308D31319…
    Рациональное приближение227, 22371, 355113,103993/33102, …

    (перечислено в порядке увеличения точности)

    Непрерывная дробь[3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, … ]

    (Эта непрерывная дробь не периодическая. Записана в линейной нотации)

    Евклидова геометриярадиан = 180°

    3,1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679 8214808651 3282306647 0938446095 5058223172 5359408128 4811174502 8410270193 8521105559 6446229489 5493038196 4428810975 6659334461 2847564823 3786783165 2712019091 4564856692 3460348610 4543266482 1339360726 0249141273 7245870066 0631558817 4881520920 9628292540 9171536436 7892590360 0113305305 4882046652 1384146951 9415116094 3305727036 5759591953 0921861173 8193261179 3105118548 0744623799 6274956735 1885752724 8912279381 8301194912 9833673362 4406566430 8602139494 6395224737 1907021798 6094370277 0539217176 2931767523 8467481846 7669405132 0005681271 4526356082 7785771342 7577896091 7363717872 1468440901 2249534301 4654958537 1050792279 6892589235 4201995611 2129021960 8640344181 5981362977 4771309960 5187072113 4999999837 2978049951 0597317328 1609631859 5024459455 3469083026 4252230825 3344685035 2619311881 7101000313 7838752886 5875332083 8142061717 7669147303 5982534904 2875546873 1159562863 8823537875 9375195778 1857780532 1712268066 1300192787 6611195909 2164201989


    Первые 1000 знаков после запятой числа π[1] Если принять диаметр окружности за единицу, то длина окружности — это число «пи»

    (произносится «пи») — математическая константа, выражающая отношение длины окружности к длине её диаметра.[2] Обозначается буквой греческого алфавита «пи». Старое название — лудольфово число.

    Свойства

    Трансцендентность и иррациональность

    •  — иррациональное число, то есть его значение не может быть точно выражено в виде дроби m/n, где m и n — целые числа. Следовательно, его десятичное представление никогда не заканчивается и не является периодическим. Иррациональность числа была впервые доказана Иоганном Ламбертом в 1761 году[3] году путём разложения числа в непрерывную дробь. В 1794 году Лежандр привёл более строгое доказательство иррациональности чисел и .
    •  — трансцендентное число, то есть оно не может быть корнем какого-либо многочлена с целыми коэффициентами. Транcцендентность числа была доказана в 1882 году профессором Кёнигсбергского, а позже Мюнхенского университета Линдеманом. Доказательство упростил Феликс Клейн в 1894 году.[4]
    • В 1934 году Гельфонд доказал трансцендентность числа .[5] В 1996 году Юрий Нестеренко доказал, что для любого натурального n числа и алгебраически независимы, откуда, в частности, следует трансцендентность чисел и .[6][7]
    • является элементом кольца периодов (а значит, вычислимым и арифметическим числом). Но неизвестно, принадлежит ли к кольцу периодов.

    Соотношения

    Известно много формул числа :

    • Кратные ряды :
    здесь простые числа

    История

    Символ константы

    Впервые обозначением этого числа греческой буквой воспользовался британский математик Джонс в 1706 году, а общепринятым оно стало после работ Леонарда Эйлера в 1737 году.

    Это обозначение происходит от начальной буквы греческих слов περιφέρεια — окружность, периферия и περίμετρος — периметр.

    История числа шла параллельно с развитием всей математики. Некоторые авторы разделяют весь процесс на 3 периода: древний период, в течение которого изучалось с позиции геометрии, классическая эра, последовавшая за развитием математического анализа в Европе в XVII веке, и эра цифровых компьютеров.

    Геометрический период

    То, что отношение длины окружности к диаметру одинаково для любой окружности, и то, что это отношение немногим более 3, было известно ещё древнеегипетским, вавилонским, древнеиндийским и древнегреческим геометрам. Самое раннее из известных приближений датируется 1900 годом до н. э.; это 25/8 (Вавилон) и 256/81 (Египет), оба значения отличаются от истинного не более, чем на 1 %. Ведийский текст «Шатапатха-брахмана» даёт как 339/108 ≈ 3,139.

    Алгоритм Лю Хуэя для вычисления

    Архимед, возможно, первым предложил математический способ вычисления . Для этого он вписывал в окружность и описывал около неё правильные многоугольники. Принимая диаметр окружности за единицу, Архимед рассматривал периметр вписанного многоугольника как нижнюю оценку длины окружности, а периметр описанного многоугольника как верхнюю оценку. Рассматривая правильный 96-угольник, Архимед получил оценку и предположил, что примерно равняется 22/7 ≈ 3,142857142857143.

    Чжан Хэн во II веке уточнил значение числа , предложив два его эквивалента: 1) 92/29 ≈ 3,1724…; 2) ≈ 3,1622.

    В Индии Ариабхата и Бхаскара использовали приближение 3,1416. Варахамихира в 6 веке пользуется в «Панча-сиддхантике» приближением .

    Около 265 года н. э. математик Лю Хуэй из царства Вэй предоставил простой и точный итеративный алгоритм (англ. Liu Hui’s π algorithm) для вычисления с любой степенью точности. Он самостоятельно провёл вычисление для 3072-угольника и получил приближённое значение для по следующему принципу:

    Позднее Лю Хуэй придумал быстрый метод вычисления и получил приближённое значение 3,1416 только лишь с 96-угольником, используя преимущества того факта, что разница в площади следующих друг за другом многоугольников формирует геометрическую прогрессию со знаменателем 4.

    В 480-х годах китайский математик Цзу Чунчжи продемонстрировал, что ≈ 355/113, и показал, что 3,1415926 < < 3,1415927, используя алгоритм Лю Хуэя применительно к 12288-угольнику. Это значение оставалось самым точным приближением числа в течение последующих 900 лет.

    Классический период

    До II тысячелетия было известно не более 10 цифр . Дальнейшие крупные достижения в изучении связаны с развитием математического анализа, в особенности с открытием рядов, позволяющих вычислить с любой точностью, суммируя подходящее количество членов ряда. В 1400-х годах Мадхава из Сангамаграма (англ. Madhava of Sangamagrama) нашёл первый из таких рядов:

    Этот результат известен как ряд Мадхавы — Лейбница, или ряд Грегори — Лейбница (после того как он был заново обнаружен Джеймсом Грегори и Готфридом Лейбницем в XVII веке). Однако этот ряд сходится к очень медленно, что приводит к сложности вычисления многих цифр числа на практике — необходимо сложить около 4000 членов ряда, чтобы улучшить оценку Архимеда. Однако преобразованием этого ряда в

    Мадхава смог вычислить как 3,14159265359, верно определив 11 цифр в записи числа. Этот рекорд был побит в 1424 году персидским математиком Джамшидом ал-Каши, который в своём труде под названием «Трактат об окружности» привёл 17 цифр числа , из которых 16 верные.

    Первым крупным европейским вкладом со времён Архимеда был вклад голландского математика Людольфа ван Цейлена, затратившего десять лет на вычисление числа с 20-ю десятичными цифрами (этот результат был опубликован в 1596 году). Применив метод Архимеда, он довёл удвоение до n-угольника, где n = 60·229. Изложив свои результаты в сочинении «Об окружности» («Van den Circkel»), Лудольф закончил его словами: «У кого есть охота, пусть идёт дальше». После смерти в его рукописях были обнаружены ещё 15 точных цифр числа . Лудольф завещал, чтобы найденные им знаки были высечены на его надгробном камне. В честь него число иногда называли «лудольфовым числом», или «константой Лудольфа».

    Примерно в это же время в Европе начали развиваться методы анализа и определения бесконечных рядов. Первым таким представлением была формула Виета:

    ,

    найденная Франсуа Виетом в 1593 году. Другим известным результатом стала формула Валлиса:

    ,

    выведенная Джоном Валлисом в 1655 году.

    Аналогичные произведения:

    Произведение, доказывающее родственную связь с числом Эйлера e :

    В Новое время для вычисления используются аналитические методы, основанные на тождествах. Перечисленные выше формулы малопригодны для вычислительных целей, поскольку либо используют медленно сходящиеся ряды, либо требуют сложной операции извлечения квадратного корня.

    Первую эффективную формулу нашёл в 1706 году Джон Мэчин (англ. John Machin)

    Разложив арктангенс в ряд Тейлора

    ,

    можно получить быстро сходящийся ряд, пригодный для вычисления числа с большой точностью.

    Формулы такого типа, в настоящее время известные как формулы Мэчина (англ. Machin-like formula), использовались для установки нескольких последовательных рекордов и остались наилучшими из известных методов для быстрого вычисления в эпоху компьютеров. Выдающийся рекорд был поставлен феноменальным счетчиком Иоганном Дазе (англ. Johann Dase), который в 1844 году по распоряжению Гаусса применил формулу Мэчина для вычисления 200 цифр в уме. Наилучший результат к концу XIX века был получен англичанином Вильямом Шенксом (англ. William Shanks), у которого ушло 15 лет для того, чтобы вычислить 707 цифр, хотя из-за ошибки только первые 527 были верными. Чтобы избежать подобных ошибок, современные вычисления подобного рода проводятся дважды. Если результаты совпадают, то они с высокой вероятностью верные. Ошибку Шенкса обнаружил один из первых компьютеров в 1948 году; он же за несколько часов подсчитал 808 знаков .

    Теоретические достижения в XVIII веке привели к постижению природы числа , чего нельзя было достичь лишь только с помощью одного численного вычисления. Иоганн Генрих Ламберт доказал иррациональность в 1761 году, а Адриен Мари Лежандр в 1774 году доказал иррациональность . В 1735 году была установлена связь между простыми числами и , когда Леонард Эйлер решил знаменитую Базельскую проблему (англ. Basel problem) — проблему нахождения точного значения

    ,

    которое составляет . И Лежандр, и Эйлер предполагали, что может быть трансцендентным, что было в конечном итоге доказано в 1882 году Фердинандом фон Линдеманом.

    Считается, что книга Уильяма Джонса «Новое введение в математику» c 1706 года первая ввела в использование греческую букву для обозначения этой константы, но эта запись стала особенно популярной после того, как Леонард Эйлер принял её в 1737 году. Он писал:

    Существует множество других способов отыскания длин или площадей соответствующей кривой или плоской фигуры, что может существенно облегчить практику; например, в круге диаметр относится к длине окружности как 1 к

    Эра компьютерных вычислений

    Эпоха цифровой техники в XX веке привела к увеличению скорости появления вычислительных рекордов. Джон фон Нейман и другие использовали в 1949 году ЭНИАК для вычисления 2037 цифр , которое заняло 70 часов. Ещё одна тысяча цифр была получена в последующие десятилетия, а отметка в миллион была пройдена в 1973 году. Такой прогресс имел место не только благодаря более быстрому аппаратному обеспечению, но и благодаря алгоритмам. Одним из самых значительных результатов было открытие в 1960 году быстрого преобразования Фурье, что позволило быстро осуществлять арифметические операции над очень большими числами.

    В начале XX века индийский математик Сриниваса Рамануджан обнаружил множество новых формул для , некоторые из которых стали знаменитыми из-за своей элегантности и математической глубины. Одна из этих формул — это ряд:

    .

    Братьями Чудновскими в 1987 году найдена похожая на неё:

    ,

    которая даёт примерно по 14 цифр на каждый член ряда. Чудновские использовали эту формулу для того, чтобы установить несколько рекордов в вычислении в конце 1980-х, включая то, в результате которого в 1989 году было получено 1 011 196 691 цифр десятичного разложения. Эта формула используется в программах, вычисляющих на персональных компьютерах, в отличие от суперкомпьютеров, которые устанавливают современные рекорды.

    В то время как последовательность обычно повышает точность на фиксированную величину с каждым следующим членом, существуют итеративные алгоритмы, которые на каждом шагу умножают количество правильных цифр, требуя, правда, высоких вычислительных затрат на каждом из таких шагов. Прорыв в этом отношении был сделан в 1975 году, когда Ричард Брент (англ. Richard P. Brent) и Юджин Саламин (англ. Eugene Salamin (mathematician)) независимо друг от друга открыли алгоритм Брента — Саламина (англ. Gauss–Legendre algorithm), который, используя лишь арифметику, на каждом шагу удваивает количество известных знаков.[9] Алгоритм состоит из установки начальных значений

    и итераций:

    пока an и bn не станут достаточно близки. Тогда оценка даётся формулой

    При использовании этой схемы 25 итераций достаточно для получения 45 миллионов десятичных знаков. Похожий алгоритм, увеличивающий на каждом шаге точность в четыре раза, был найден Джонатаном Боруэйном (англ. Jonathan Borwein) Питером Боруэйном (англ. Peter Borwein).[10] При помощи этих методов Ясумаса Канада и его группа, начиная с 1980 года, установили большинство рекордов вычисления вплоть до 206 158 430 000 знаков в 1999 году. В 2002 году Канада и его группа установили новый рекорд — 1 241 100 000 000 десятичных знаков. Хотя большинство предыдущих рекордов Канады были установлены при помощи алгоритма Брента — Саламина, вычисление 2002 года использовало две формулы типа мэчиновских, которые работали медленнее, но радикально снижали использование памяти. Вычисление было выполнено на суперкомпьютере Hitachi из 64 узлов с 1 терабайтом оперативной памяти, способном выполнять 2 триллиона операций в секунду.

    Важным развитием недавнего времени стала формула Бэйли — Боруэйна — Плаффа (англ. Bailey–Borwein–Plouffe formula), открытая в 1997 году Саймоном Плаффом (англ. Simon Plouffe) и названная по авторам статьи, в которой она впервые была опубликована[11]. Эта формула,

    примечательна тем, что она позволяет извлечь любую конкретную шестнадцатеричную или двоичную цифру числа без вычисления предыдущих.[11] С 1998 до 2000 года распределённый проект PiHex использовал видоизменённую формулу ББП Фабриса Беллара для вычисления квадриллионного бита числа , который оказался нулём.[12]

    В 2006 году Саймон Плафф, используя PSLQ, нашёл ряд красивых формул.[13] Пусть q = eπ, тогда

    и другие вида

    где q = eπ, k — нечётное число, и abc — рациональные числа. Если k — вида 4m + 3, то эта формула имеет особенно простой вид:

    для рационального p у которого знаменатель — число, хорошо разложимое на множители, хотя строгое доказательство ещё не предоставлено.

    В августе 2009 года учёные из японского университета Цукубо рассчитали последовательность из 2 576 980 377 524 десятичных разрядов.[14]

    31 декабря 2009 года французский программист Фабрис Беллар на персональном компьютере рассчитал последовательность из 2 699 999 990 000 десятичных разрядов.[15]

    2 августа 2010 года американский студент Александр Йи и японский исследователь Сигэру Кондо (яп.)русск. рассчитали последовательность с точностью в 5 триллионов цифр после запятой.[16][17]

    19 октября 2011 года Александр Йи и Сигэру Кондо рассчитали последовательность с точностью в 10 триллионов цифр после запятой[18][19].

    Рациональные приближения

    •  — Архимед,
    •  — дана в книге индийского мыслителя и астронома Ариабхаты в V веке н. э.,
    •  — приписывается современнику Ариабхаты китайскому астроному Цзу Чунчжи.

    Нерешённые проблемы

    Метод иглы Бюффона

    На разлинованную равноудалёнными прямыми плоскость произвольно бросается игла, длина которой равна расстоянию между соседними прямыми, так что при каждом бросании игла либо не пересекает прямые, либо пересекает ровно одну. Можно доказать, что отношение числа пересечений иглы с какой-нибудь линией к общему числу бросков стремится к при увеличении числа бросков до бесконечности.[26] Данный метод иглы базируется на теории вероятностей и лежит в основе метода Монте-Карло.[27]

    Стихотворение для затвердевания в памяти 8-11 знаков числ π:

    Чтобы нам не ошибаться,
    Надо правильно прочесть:
    Три, четырнадцать, пятнадцать,
    Девяносто два и шесть.

    Надо только постараться
    И запомнить всё как есть:
    Три, четырнадцать, пятнадцать,
    Девяносто два и шесть.

    Три, четырнадцать, пятнадцать,
    Девять, два, шесть, пять, три, пять.
    Чтоб наукой заниматься,
    Это каждый должен знать.

    Можно просто постараться
    И почаще повторять:
    «Три, четырнадцать, пятнадцать,
    Девять, двадцать шесть и пять».

    Запоминанию может помогать соблюдение стихотворного размера:

    Три, четырнадцать, пятнадцать, девять два, шесть пять, три пять
    Восемь девять, семь и девять, три два, три восемь, сорок шесть
    Два шесть четыре, три три восемь, три два семь девять, пять ноль два
    Восемь восемь и четыре, девятнадцать, семь, один

    Существуют стихи, в которых первые цифры числа π зашифрованы в виде количества букв в словах:

    Это я знаю и помню прекрасно:
    Пи многие знаки мне лишни, напрасны.
    Доверимся знаньям громадным
    Тех, пи кто сосчитал, цифр армаду.

    Раз у Коли и Арины
    Распороли мы перины.
    Белый пух летал, кружился,
    Куражился, замирал,
    Ублажился,
    Нам же дал
    Головную боль старух.
    Ух, опасен пуха дух!

    — Георгий Александров

    Дополнительные факты

    Памятник числу «пи» на ступенях перед зданием Музея искусств в Сиэтле
    • Древние египтяне и Архимед принимали величину от 3 до 3,160, арабские математики считали число .[28]
    • Неофициальный праздник «День числа пи» отмечается 14 марта, которое в американском формате дат (месяц/день) записывается как 3.14, что соответствует приближённому значению числа . Считается[29], что праздник придумал в 1987 году физик из Сан-Франциско Ларри Шоу, обративший внимание на то, что 14 марта ровно в 01:59 дата и время совпадают с первыми разрядами числа Пи = 3,14159.
    • Ещё одной датой, связанной с числом , является 22 июля, которое называется «Днём приближённого числа Пи» (англ. Pi Approximation Day), так как в европейском формате дат этот день записывается как 22/7, а значение этой дроби является приближённым значением числа .
    • Мировой рекорд по запоминанию знаков числа после запятой принадлежит китайцу Лю Чао, который в 2006 году в течение 24 часов и 4 минут воспроизвёл 67 890 знаков после запятой без ошибки.[30][31] В том же 2006 году японец Акира Харагути заявил, что запомнил число до 100-тысячного знака после запятой,[32] однако проверить это официально не удалось.[33]
    • В штате Индиана (США) в 1897 году был выпущен билль (см.: en:Indiana Pi Bill), законодательно устанавливающий значение числа Пи равным 3,2.[34] Данный билль не стал законом благодаря своевременному вмешательству профессора университета Пердью, присутствовавшего в законодательном собрании штата во время рассмотрения данного закона.
    • «Число Пи для гренландских китов равно трем» написано в «Справочнике китобоя» 1960-х годов выпуска.[35]
    • По состоянию на 2010 год вычислено 5 триллионов знаков после запятой[17].
    • По состоянию на 2011 год вычислено 10 триллионов знаков после запятой[19].

    В культуре

    См. также

    Примечания

    1. PI
    2. Это определение пригодно только для евклидовой геометрии. В других геометриях отношение длины окружности к длине её диаметра может быть произвольным. Например, в геометрии Лобачевского это отношение меньше, чем .
    3. Lambert, Johann Heinrich. Mémoire sur quelques propriétés remarquables des quantités transcendentes circulaires et logarithmiques, стр. 265–322.
    4. Доказательство Клейна приложено к работе «Вопросы элементарной и высшей математики», ч. 1, вышедшей в Гёттингене в 1908 году.
    5. Weisstein, Eric W. Постоянная Гельфонда (англ.) на сайте Wolfram MathWorld.
    6. 1 2 Weisstein, Eric W. Иррациональное число (англ.) на сайте Wolfram MathWorld.
    7. Модулярные функции и вопросы трансцендентности
    8. Weisstein, Eric W. Pi Squared (англ.) на сайте Wolfram MathWorld.
    9. Brent, Richard (1975), Traub, J F, ed., “«Multiple-precision zero-finding methods and the complexity of elementary function evaluation»”, Analytic Computational Complexity (New York: Academic Press): 151–176, <http://wwwmaths.anu.edu.au/~brent/pub/pub028.html>   (англ.)
    10. Jonathan M Borwein. Pi: A Source Book. — Springer, 2004. — ISBN 0387205713 (англ.)
    11. 1 2 David H. Bailey, Peter B. Borwein, Simon Plouffe. On the Rapid Computation of Various Polylogarithmic Constants // Mathematics of Computation. — 1997. — В. 218. — Т. 66. — С. 903—913. (англ.)
    12. Fabrice Bellard. A new formula to compute the nth binary digit of pi  (англ.). Архивировано из первоисточника 22 августа 2011. Проверено 11 января 2010.
    13. Simon Plouffe. Indentities inspired by Ramanujan’s Notebooks (part 2)  (англ.). Архивировано из первоисточника 22 августа 2011. Проверено 11 января 2010.
    14. Установлен новый рекорд точности вычисления числа π
    15. Pi Computation Record
    16. Число «Пи» рассчитано с рекордной точностью
    17. 1 2 5 Trillion Digits of Pi — New World Record (англ.)
    18. Определено 10 триллионов цифр десятичного разложения для π
    19. 1 2 Round 2… 10 Trillion Digits of Pi
    20. Weisstein, Eric W. Мера иррациональности (англ.) на сайте Wolfram MathWorld.
    21. Weisstein, Eric W. Pi (англ.) на сайте Wolfram MathWorld.
    22. en:Irrational number#Open questions
    23. Some unsolved problems in number theory
    24. Weisstein, Eric W. Трансцендентное число (англ.) на сайте Wolfram MathWorld.
    25. An introduction to irrationality and transcendence methods
    26. Обман или заблуждение? Квант № 5 1983 год
    27. Г. А. Гальперин. Биллиардная динамическая система для числа пи.
    28. Лудольфово число. Пи. Pi.
    29. Статья в Los Angeles Times «Желаете кусочек »? (название обыгрывает сходство в написании числа и слова pie (англ. пирог)) (англ.).
    30. Chinese student breaks Guiness record by reciting 67,890 digits of pi
    31. Interview with Mr. Chao Lu
    32. How can anyone remember 100,000 numbers? — The Japan Times, 17.12.2006.
    33. Pi World Ranking List
    34. The Indiana Pi Bill, 1897  (англ.)
    35. В. И. Арнольд любит приводить этот факт, см. например книгу Что такое математика (ps), стр. 9.

    Литература

    Ссылки

    dic.academic.ru