Главное свойство магнитного поля – В этом разделе рассматриваются основные характеристики магнитного поля, магнитные поля нескольких разных источников. Также анализируются магнитные силы, действу

Содержание

Магнитное поле, его свойства

Сегодня на уроке мы с вами поговорим о магнитном поле и его свойствах

 «Исследования Ампера… принадлежат к

 числу самых блестящих работ,

которые проведены когда-либо в науке»

Джеймс Клерк Максвелл

Магнитные явления известны людям с глубокой древности. Еще древние греки знали, что существует особый минерал, способный притягивать железные предметы. Это был один из минералов железной руды, который сейчас известен как магнетит. Его залежи находились возле города Магнесии на севере Турции. Слово «магнит» в переводе с греческого означает «камень из Магнесии».

Впервые свойства магнитных материалов использовали в Китае. Именно там в III веке до нашей эры был сконструирован первый компас, и только к XII веку он стал известен в Европе. Первой крупной работой, посвящённой исследованию магнитных явлений, является книга Вильяма Гильберта «О магните», вышедшая в 1600 году.

Известные с древних времен явления

притяжения разноименных и отталкивания одноименных полюсов магнита напоминают явление взаимодействия разноименных и одноименных электрических зарядов.

Известно, что между неподвижными электрическими зарядами действуют силы, определяемые законом Кулона. Согласно теории близкодействия это взаимодействие осуществляется так: каждый из зарядов создает электрическое поле, которое действует на другой заряд.

Однако долгое время оставался неразрешимым вопрос о том, могут ли между электрическими зарядами существовать силы иной природы? Рассмотрим опыт, проведенный французским физиком Андре-Мари Ампером в 1820 году.

Ампер взял два гибких провода и укрепил их вертикально, а затем присоединил нижние концы проводов к полюсам источника тока. При таком подключении с проводниками не обнаруживалось никаких изменений. Проводники заряжались от источника тока, но заряды проводников при разности потенциалов между ними в несколько вольт ничтожно малы. Поэтому кулоновские силы никак не проявляются.

Затем Ампер замкнул другие концы проводников небольшой проволочкой так, чтобы в проводниках возникли

токи противоположного направления. Оказалось, что при таком подключении проводники начинают отталкиваться друг от друга. Если же поменять направление токов так, чтобы они текли в одном направлении, то проводники начинали притягиваться друг к другу.

Это взаимодействие не может быть вызвано электростатическим полем по следующим причинам. Во-первых, при размыкании цепи взаимодействие проводников прекращается, хотя заряды на проводниках и их электростатические поля остаются. Во-вторых, одноименные заряды (электроны в проводнике) всегда только отталкиваются.

В том же 1820 году Ханс Кристиан Эрстед провел серии опытов. Он располагал проводник над магнитной стрелкой (или под ней) параллельно ее оси. При пропускании тока по проводнику, стрелка начинала отклоняться от своего первоначального положения. При размыкании цепи — стрелка возвращалась в своё первоначальное положение.

  

Этот опыт наглядно показывает, что в пространстве, окружающем проводник с током,

действуют силы, вызывающие поворот магнитной стрелки, то есть силы, подобные тем, которые действуют на нее вблизи постоянных магнитов.

Поэтому взаимодействия между проводниками с током, т.е. взаимодействия между направленно движущимися электрическими зарядами, называют магнитными.

Силы же, с которыми проводники с током действуют друг на друга, называют магнитными силами.

Действие магнитных сил было обнаружено в пространстве и вокруг отдельно движущихся заряженных частиц. Русский и советский физик Абрам Фёдорович Иоффе в 1911 году наблюдал отклонение магнитных стрелок, расположенных вблизи пучка движущихся электронов.

    

Схема его опыта довольно проста. Над и под трубкой, через которую пропускался поток электронов, находились две одинаковые, но противоположно направленные магнитные стрелки, укрепленные на общем кольце, подвешенном на упругой нити. При прохождении в трубке потока электронов магнитные стрелки поворачивались.

Таким образом, многочисленные опыты привели ученых к выводу, что вокруг любого проводника с током, т.е.

вокруг движущихся электрических зарядов, существует магнитное поле.

Магнитное полеэто особый вид материи, посредством которой осуществляется взаимодействие между движущимися электрически заряженными частицами.

Магнитное поле можно обнаружить и исследовать с помощью железных опилок, магнитной стрелки, а также небольшого контура или рамки с током, причем собственное магнитное поле контура должно быть слабым по сравнению с исследуемым.

Проводники, подводящие ток к контуру, должны быть расположены вблизи друг друга или сплетены между собой, тогда их магнитные поля взаимно компенсируются. Ориентация такого контура характеризуется направлением нормали к контуру. В качестве положительного направления нормали принимается направление, которое связано с током правилом правого винта (или правилом буравчика): если головку винта поворачивать по направлению тока в контуре, то поступательное движение острия винта указывает направление положительной нормали.

Опыт показывает, что если подвесить такой контур на гибких проводниках в магнитном поле, то он повернется и установится определенным образом. Таким образом,

магнитное поле оказывает на контур с током ориентирующее действие. При этом положительная нормаль будет направлена к плоскости контура вдоль продольной оси магнитной стрелки, помещенной в ту же точку магнитного поля. Поэтому за направление магнитного поля принимают направление от южного полюса к северному по оси свободно установившейся в магнитном поле стрелки.

Основные выводы:

Вокруг движущихся электрических зарядов, существует магнитное поле.

Магнитное поле — это особый вид материи, посредством которой осуществляется взаимодействие между движущимися электрически заряженными частицами.

Магнитное поле порождается электрическим током и обнаруживается по действию на электрический ток.

videouroki.net

Магнитное поле. Закон Ампера. Магнитная индукция. Анализ закона Ампера. Свойства силовых линий магнитного поля. Поток магнитной индукции. Магнитная проницаемость.

Магнитное поле — силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения, магнитная составляющая электромагнитного поля.

Закон Ампера: Сила , с которой магнитное поле действует на элемент проводника с током, находящегося в магнитном поле, прямо пропорциональна силе тока в проводнике и векторному произведению элемента длины проводника на магнитную индукцию : .

Магнитная индукция — векторная величина, являющаяся силовой характеристикой магнитного поля (его действия на заряженные частицы) в данной точке пространства. Определяет, с какой силой магнитное поле действует на заряд , движущийся со скоростью .

Из закона Ампера следует, что параллельные проводники с постоянными токами, текущими в одном направлении, притягиваются, а в противоположном — отталкиваются. Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током. Сила , с которой магнитное поле действует на элемент объёма

dV проводника с током плотности , находящегося в магнитном поле с индукцией :


Свойства силовых линий магнитного поля:

  1. Магнитные силовые линии замкнуты на себя и никогда не пересекаются;
  2. Магнитные силовые линии стремятся сократиться до наименьшей длины, то есть обладают свойством продольного напряжения;
  3. Одинаково направленные линии отталкиваются, противоположно направленные — притягиваются, то есть обладают свойством бокового распора;
  4. Направление силового действия магнитных линий совпадает с направлением северного конца магнитной стрелки, помещенной в поле.

Поток магнитной индукции — поток вектора магнитной индукции через некоторую поверхность. Величина, равная произведению: модуля вектора магнитной индукции на площадь поверхности и на косинус угла между вектором магнитной индукции и нормалью к поверхности.

Магнитная проницаемость — физическая величина, характеризующая связь между магнитной индукцией и напряжённостью магнитного поля в веществе.

Где — магнитная постоянная.


malishev.info

1 Вопрос Магнитное поле, его свойства и характеристики.

Магнитное поле - форма существования материи, окружающей движущиеся электрические заряды (проводники с током, постоянные магниты).

Это название обусловлено тем, что, как обнаружил в 1820 году датский физик Ханс Эрстед, оно оказывает ориентирующее действие на магнитную стрелку. Опыт Эрстеда: под проволокой с током помещалась магнитная стрелка, вращающаяся на игле. При включении тока она устанавливалась перпендикулярно проволоке; при изменении направления тока поворачивалась в противоположную сторону.

Основные свойства магнитного поля:

порождается движущимися электрическими зарядами, проводниками с током, постоянными магнитами и переменным электрическим полем;

действует с силой на движущиеся электрические заряды, проводники с током, намагниченные тела;

переменное магнитное поле порождает переменное электрическое поле.

Из опыта Эрстеда следует, что магнитное поле имеет направленный характер и должно иметь векторную силовую характеристику. Ее обозначают и называют магнитной индукцией.

Магнитное поле изображается графически с помощью магнитных силовых линий или линий магнитной индукции.Магнитными силовыми линиями называются линии, вдоль которых в магнитном поле располагаются железные опилки или оси маленьких магнитных стрелок. В каждой точке такой линии вектор направлен по касательной.

Линии магнитной индукции всегда замкнуты, что говорит об отсутствии в природе магнитных зарядов и вихревом характере магнитного поля.

Условно они выходят из северного полюса магнита и входят в южный. Густота линий выбирается так, чтобы число линий через единицу площади, перпендикулярную магнитному полю, было пропорционально величине магнитной индукции.

Магнитное поле соленоида с током. Направление линий определяется правилом правого винта. Соленоид - катушка с током, витки которой расположены вплотную друг к другу, а диаметр витка много меньше длины катушки.

Магнитное поле внутри соленоида является однородным. Магнитное поле называется однородным, если вектор в любой точке постоянен.

Магнитное поле соленоида аналогично магнитному полю полосового магнита.

Соленоид с током представляет собой электромагнит.

Опыт показывает, что для магнитного поля, как и для электрического, справедлив принцип суперпозиции: индукция магнитного поля, создаваемого несколькими токами или движущимися зарядами, равна векторной сумме индукций магнитных полей, создаваемых каждым током или зарядом:

Вектор вводится одним из 3-х способов:

а) из закона Ампера;

б) по действию магнитного поля на рамку с током;

в) из выражения для силы Лоренца.

Ампер экспериментально установил, что сила с которой магнитное поле действует на элемент проводникас током I, находящегося в магнитном поле, прямо пропорциональна силетока I и векторному произведению элемента длинына магнитную индукцию:

 - закон Ампера

Направление вектора может быть найдено согласно общим правилам векторного произведения, откуда следует правило левой руки: если ладонь левой руки расположить так, чтобы магнитные силовые линии входили в нее, а 4 вытянутых пальца направить по току, то отогнутый большой палец покажет направление силы.

Сила, действующая на провод конечной длины, найдется интегрированием по всей длине.

При I = const, B=const, F = BIlsin

Если  =900, F = BIl

Индукция магнитного поля - векторная физическая величина, численно равная силе, действующей в однородном магнитном поле на проводник единичной длины с единичной силой тока, расположенный перпендикулярно магнитным силовым линиям.

1Тл - индукция однородного магнитного поля, в котором на проводник длиной 1м с током в 1А, расположенный перпендикулярно магнитным силовым линиям, действует сила 1Н.

До сих пор мы рассматривали макротоки, текущие в проводниках. Однако, согласно предположению Ампера, в любом теле существуют микроскопические токи, обусловленные движением электронов в атомах. Эти микроскопические молекулярные токи создают свое магнитное поле и могут поворачиваться в полях макротоков, создавая в теле дополнительное магнитное поле. Вектор характеризует результирующее магнитное поле, создаваемое всеми макро- и микротоками, т.е. при одном и том же макротоке векторв различных средах имеет разные значения.

Магнитное поле макротоков описывается вектором магнитной напряженности .

Для однородной изотропной среды

,

0= 410-7Гн/м - магнитная постоянная, 0= 410-7Н/А2,

 - магнитная проницаемость среды, показывающая, во сколько раз магнитное поле макротоков изменяется за счет поля микротоков среды.

studfiles.net

Основные свойства магнитного поля



Впервые связь между электрическими и магнитными явлениями была открыта в 1820 году Хансом Кристианом Эрстедом: при замыкании цепи магнитная стрелка отклоняется от своего первоначального положения (показано пунктиром). При размыкании цепи стрелка возвращается в свое первоначальное положение. Это означает, что проводник с током и магнитная стрелка взаимодействуют друг с другом.


Взаимодействия между проводниками с током, то есть взаимодействия между движущимися электрическими зарядами, называют магнитными. Силы, с которыми проводники с током действуют друг на друга, называют магнитными силами.



В 1820 году Андре Ампер открыл закон взаимодействия проводников с током. Для двух бесконечно длинных проводников Ампер установил



Магнитное поле представляет собой особую форму материи, посредством которой осуществляется взаимодействие между движущимися заряженными частицами.

Основные свойства магнитного поля:
  • Магнитное поле порождается электрическим током (движущимися зарядами).

  • Магнитное поле обнаруживается по действию на электрический ток (движущиеся заряды).

  • Магнитное поле существует реально независимо от нас, от наших знаний о нем.



Для изучения магнитного поля можно взять замкнутый контур малых размеров (рис. 4). Выяснить характер магнитного поля на контур с током можно с помощью следующего опыта (рис. 5). Магнитное поле создается не только электрическим током, но и постоянными магнитами (рис. 6) Магнитное поле оказывает на рамку с током ориентирующее действие.



За направление вектора магнитной индукции принимается направление от южного S к северному N магнитной стрелки, свободно устанавливающейся в магнитном поле. Это направление совпадает с направлением положительной нормали к замкнутому контуру с током. Направление вектора магнитной индукции так же можно определить и с помощью правила буравчика: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции.



Важная особенность линий магнитной индукции состоит в том, что они не имеют ни начала ни конца. Они всегда замкнуты. Поля с замкнутыми силовыми линиями называют вихревыми. Магнитное поле – вихревое поле. Магнитные линии прямолинейного Магнитные линии проводника соленоида (катушки)



В ходе своих исследований Ампер сумел установить выражение для силы, действующей на отдельный элемент тока, в результате чего смог определить модуль вектора магнитной индукции

В ходе своих исследований Ампер сумел установить выражение для силы, действующей на отдельный элемент тока, в результате чего смог определить модуль вектора магнитной индукции

Модулем вектора магнитной индукции называется отношение максимальной силы, действующей со стороны магнитного поля на участок проводника с током, к произведению силы тока на длину этого участка.

Сила Ампера

Если же вектор магнитной индукции направлен к элементу тока под углом

то

соответственно

Данное выражение называется

Данное выражение называется

законом Ампера:

Сила ампера равна произведению вектора магнитной индукции на силу тока, длину участка проводника и на синус угла между магнитной индукцией и участком проводника

Направление силы Ампера можно определить с помощью правила левой руки

  • Если левую руку расположить так, чтобы вектор магнитной индукции входил в ладонь, а четыре вытянутых пальца были направлены по направлению тока, то отогнутый на 90° большой палец покажет направление силы, действующей на отрезок проводника.



За единицу магнитной индукции принимается магнитная индукция однородного поля, в котором на участок проводника длиной 1 м при силе тока в нем 1 А действует со стороны поля максимальная сила 1 Н

За единицу магнитной индукции принимается магнитная индукция однородного поля, в котором на участок проводника длиной 1 м при силе тока в нем 1 А действует со стороны поля максимальная сила 1 Н

dok.opredelim.com

85.Основные характеристики магнитного поля. Магнитные свойства веществ. Магнитные свойства биологических тканей.

Магнитное поле - вид материи, посредством которого взаимодействуют движущиеся электрические заряды (токи) с магнитами или другими движущимися электрическими зарядами (токами).Основной характеристикой магнитного поля является магнитная индукция “В” - векторная величина, численное значение которой определяется по силе “F”, действующей в однородном поле на проводник длиной “”, обтекаемый током “I” и расположенный перпендикулярно вектору “В”:В =

Единица измерения в “СИ” - тесла. Направление вектора магнитной индукции совпадает с направлением, указываемым северным полюсом магнитной стрелки, помещенной в данную точку поля. Магнитное поле кроме того характеризуют ещё и напряженностью “Н” - векторной величиной, числовое значение которой связывают стоком, образующим поле, а направление принимают совпадающим с направлением вектора магнитной индукции. (“CИ”), если среда изотропна. Единицей напряженности магнитного поля в “СИ” является.- напряженность магнитного поля, которое создается током силой в, протекающими по прямому проводнику, в точке, отстоящей от его оси на расстоянии .Направление напряженности следует определять по правилу буравчика (ввинчиваемого по направлению тока).Все вещества, помещенные в магнитное поле, приобретают магнитные свойства, то есть намагничиваются, и поэтому в некоторой мере изменяют внешнее (первоначальное) поле.Магнетиками называют все вещества при рассмотрении их магнитных свойств. При этом оказывается, что одни вещества ослабляют внешнее поле, а другие - усиливают его; первые называются диамагнитными, вторые - парамагнитными веществами, или, короче, диамагнетиками и парамагнетиками. Ферромагнетиками называют вещества, вызывающие очень большое усилие внешнего поля (кристаллическое железо, никель, кобальт, гадолиний и диспрозий, а также некоторые сплавы и окислы этих металлов и некоторые сплавы марганца и хрома).Подавляющее большинство веществ относится к диамагнетикам. Диамагнетиками являются такие элементы как фосфор, сера, сурьма, углерод, многие металлы (висмут, ртуть, золото, серебро, медь и др.), большинство химических соединений (вода, почти все органические соединения). К парамагнетикам относятся некоторые газы (кислород, азот) и металлы (алюминий, вольфрам, платина, щелочные и щелочноземельные металлы).Ткани организма в значительной степени диамагнитны, подобно воде. Однако в организме имеются и парамагнитные вещества, молекулы и ионы. Ферромагнитных частиц в организме нет.Первичными физическим или физико-химическими процессами при действии магнитного поля на биологические системы могут быть: ориентация молекул, изменение концентрации молекул или ионов в неоднородном магнитном поле, В настоящее время физическая природа воздействия магнитного поля на биологические объекты ещё не установлена.

Магнитотерапия - метод физиотерапии, в основе которого лежит действие на организм низкочастотного переменного или постоянного магнитного поля.Магнитные поля по направлению силовых линий могут быть постоянными и переменными и генерироваться в непрерывном или прерывистом (импульсном) режимах с различной частотой, формой и длительностью импульсов

studfiles.net

Основные характеристики магнитного поля

Магнитное поле это силовое поле, основным свойством которого является способность воздействовать на движущиеся электрические заряды (в т. ч. на проводники с током) , а также на магнитные тела независимо от состояния их движения. Источниками магнитного поля могут быть движущиеся электрические заряды (проводники с током) , намагниченные тела и изменяющиеся во времени электрические поля. Основная количественная характеристика магнитного поля – магнитная индукция В, которая определяет силу, действующую в данной точке поля в вакууме на движущийся электрический заряд и на тела, имеющие магнитный момент.

Магнитная индукция B — это векторная величина определяющая силу действующую на заряженную частицу со стороны магнитного поля. Измеряется в теслах Тл.

 

µотносительная магнитная проницаемость — табличная величина (для вакуума = 1)

Магнитный поток Ф — скалярная физическая величина числено равная произведению магнитной индукции на площадь поверхности ограниченной замкнутым контуром. Измеряется в веберах Вб.

Магнитный поток рассчитывается по формуле:

Φmax= B · S

Вопрос №43

Закон Ампера
Закон Ампера — закон взаимодействия постоянных токов. Из закона следует, что параллельные проводники с постоянными токами, текущими в одном направлении, притягиваются, а в противоположном — отталкиваются.

где: B – магнитная индукция; I – сила тока; L – длина участка проводника; sinВ – синус угла между вектором магнитной индукции и проводником.

 

Вопрос №44

Действие магнитного поля на движущийся электрический заряд. Сила Лоренса

 

Силу, действующую на движущуюся заряженную частицу со стороны магнитного поля, называют силой Лоренца. Онаперпендикулярна векторам магнитной индукции и скорости упорядоченного движения заряженных частиц. Ее направление определяется с помощью того же правила левой руки, что и направление силы Ампера.

Fл = q * v * B * sin(a)

где q - заряд частицы;
V - скорость заряда;
B - индукции магнитного поля;
a - угол между вектором скорости заряда и вектором магнитной индукции.

 

Вопрос №45

Магнитные свойства вещества.

Постоянные магниты могут быть изготовлены лишь из сравнительно немногих веществ, но все вещества, помещенные в магнитное поле, намагничиваются, т. е. сами становятся источниками магнитного поля.

Магнитные свойства вещества определяют по тому, как эти вещества реагируют на внешнее магнитное поле и каким образом упорядочена их внутренняя структура. Существует три основных класса веществ с резко различающимися магнитными свойствами: ферромагнетики, парамагнетики и диамагнетики.

Вещества, у которых, подобно железу,

μ≫1

- ферромагнетиками.

Важнейшее свойство ферромагнетиков существование у них остаточного магнетизма. Из ферромагнетиков изготавливают постоянные магниты. Существуют вещества, которые ведут себя подобно железу, т. е. втягиваются в магнитное поле- парамагнитными.

Магнитная проницаемость парамагнетиков зависит от температуры и уменьшается при ее увеличении. Без намагничивающего поля парамагнетики не создают собственного магнитного поля. Постоянных парамагнетиков нет.

Диамагнетики−вещества, которые выталкиваются из магнитного поля. Магнитная проницаемость практически не зависит от индукции намагничивающего поля и от температуры. При вынесении диамагнетика из внешнего намагничивающего поля он полностью размагничивается и магнитного поля не создает.

Вопрос №46

Магнитные свойства тканей организма.

Ткани организма в значительной степени диамагнитны, подобно воде. Однако в организме имеются и парамагнитные вещества, молекулы и ионы.

Магнетизм биологических объектов,т.е их магнитные мвойства и магнитны поля, создоваемые ими, получили название биомагнетизм.

Биотоки, возникающие в организме, являются источником слабых магнитных полей. В некоторых случаях индукцию таких полей удается измерить. Так, например, на основании регистрации временной зависимости индукции магнитного поля сердца (биотоков сердца) создан диагностический метод - магнитокардиографня.

Магнитное поле оказывает воздействие на биологические системы, которые в нем находятся. Это воздействие изучает раздел биофизики, называемыймагнитобиологией.

 

Вопрос №47

Магнитные свойства вещества

Магнитные поля создаются либо постоянными магнитами, либо токами.

Постоянные магниты могут быть изготовлены лишь из сравнительно немногих веществ, но все вещества, помещенные в магнитное поле, намагничиваются, т. е. сами становятся источниками магнитного поля.

Магнитные свойства вещества определяют по тому, как эти вещества реагируют на внешнее магнитное поле и каким образом упорядочена их внутренняя структура. Существует три основных класса веществ с резко различающимися магнитными свойствами: ферромагнетики, парамагнетики и диамагнетики.

Вещества, у которых, подобно железу,

μ≫1

- ферромагнетиками.

Важнейшее свойство ферромагнетиков существование у них остаточного магнетизма. Из ферромагнетиков изготавливают постоянные магниты. Существуют вещества, которые ведут себя подобно железу, т. е. втягиваются в магнитное поле- парамагнитными.

Магнитная проницаемость парамагнетиков зависит от температуры и уменьшается при ее увеличении. Без намагничивающего поля парамагнетики не создают собственного магнитного поля. Постоянных парамагнетиков нет.

Диамагнетики−вещества, которые выталкиваются из магнитного поля. Магнитная проницаемость практически не зависит от индукции намагничивающего поля и от температуры. При вынесении диамагнетика из внешнего намагничивающего поля он полностью размагничивается и магнитного поля не создает.

Вопрос №48




infopedia.su

Ответы@Mail.Ru: основные свойства магнитного поля??

Магнитное поле представляет собой особую форму материи и проявляется в пространстве в виде определенного рода сил, которые легко обнаруживаются по своему действию на намагниченные тела. Действие этих сил на намагниченные тела объясняется наличием в телах быстро движущихся внутримолекулярных электрических зарядов.

Согласно определению, магнитная индукция и магнитный поток связаны соотношением

Для характеристики намагниченности вещества в магнитном поле используется магнитный момент рm, который численно равен механическому моменту, испытываемому веществом в магнитном поле с индукцией в 1 Тл

Магнитный момент можно определить из уравнения

где М - механический момент, испытываемый веществом; α - угол между вектором индукции и вектором магнитного момента.

Магнитный момент единицы объема вещества определяет интенсивность его намагничивания или намагниченность I

где V - объем вещества.

Магнитное поле характеризуется напряженностью H. Напряженностью магнитного поля в данной точке называется сила, с которой поле действует на единицу положительной магнитной массы, помещенную в эту точку поля.

Магнитная индукция В связана с напряженностью магнитного поля соотношением

где μ - относительная магнитная проницаемость среды; μ0 - магнитная постоянная.

Неоднородность магнитного поля в данной его точке характеризуется градиентом его напряженности grad H:

Для однородных полей dH/dx=0, для неоднородных dH/dx>0. Силой магнитного поля Fп (А2/м3) в данной его точке называют произведение градиента его напряженности на напряженность поля в данной точке

Магнитные свойства вещества характеризуются магнитной восприимчивостью х и удельной магнитной восприимчивостью

где δ - плотность вещества.

Магнитная сила м, действующая на минеральное зерно с массой т, помещенное в магнитное поле, оценивается зависимостью

где удельная магнитная сила

Одно из важнейших свойств магнитного поля - явление электромагнитной индукции. Его суть состоит в том, что при всяком изменении магнитного потока, пронизывающего какой-либо контур, в нем наводится электродвижущая сила. Другим свойством магнитного поля является механическое взаимодействие его с электрическим током. Минеральные частицы, попадая в магнитное поле, влияют на расположение его силовых линий. Магнитные частицы оказывают небольшое сопротивление магнитным силовым линиям, поэтому последние в них концентрируются. Устремляясь по кратчайшему пути, силовые линии втягивают магнитные частицы в пространство между полюсами. Немагнитные частицы ухудшают проводимость, поэтому силовые линии обходят их и выталкивают из поля.

Физическая сущность магнитной сепарации состоит в том, что магнитное поле искажает гравитационную траекторию минералов, обладающих соответствующими магнитными свойствами, чем вызывает их извлечение из потока других минералов, которые таких свойств не имеют.

otvet.mail.ru