Как сделать тесла – схема и расчет. Как сделать катушку Тесла?

Содержание

Как самостоятельно сделать катушку Тесла?

Для того, чтобы самостоятельно создать генератор Тесла, необходимо иметь такие детали:

  • трансформатор;
  • конденсатор;
  • разрядник;
  • первичная катушка, которая должна иметь низкую индуктивность;
  • вторичная катушка, должна иметь высокую индуктивность;
  • конденсатор вторичный, должен иметь небольшую емкость;
  • проволока разных диаметров;
  • несколько трубок из пластика или картона;
  • обычная шариковая ручка;
  • паяльник;
  • фольга;
  • металлическое кольцо;
  • штырь, чтобы заземлить прибор;
  • металлический штырь, чтобы ловить заряд;

Пошаговая инструкция по сборке

Для того, чтобы изобретение работало исправно и не представляло угрозы, нужно тщательно додерживаться всех инструкций и быть очень осторожным.

Тщательно следуйте руководству, и проблем не возникнет:

  1. Выбрать подходящий трансформатор. Он определяет размер катушки, которую вы сможете сделать. Вам нужен такой, чтобы мог выдавать как минимум 5-15 Вт, и ток 30-100 миллиампер.
  2. Первый конденсатор. Его можно создать с помощью более мелких конденсаторов, скреплённых наподобие цепи. Они будут равномерно накапливать энергию в вашем первичном контуре. Но для этого они должны быть одинаковыми. Конденсатор можно снять с нерабочего телевизора, купить в магазине или сделать самостоятельно с помощью обычной пленки и фольги из алюминия. Чтобы ваш конденсатор был максимально мощным, он должен заряжаться постоянно. Заряд должен подаваться каждую секунду по 120 раз.
  3. Разрядник. Для одиночного разрядника можно взять провод, толщина которого больше 6 миллиметров. Это нужно, чтобы электроды смогли выдержать тепло, которое будет выделяться. Электроды можно охлаждать с помощью потока холодного воздуха, использовав фен, пылесос, кондиционер.
  4. Обмотка первой катушки. Вам нужна специальная форма, вокруг которой нужно намотать медную проволоку. Ее можно взять из старого ненужного электрического прибора или купить новую в магазине. Форма, на которую будет наматываться проволока должна быть либо в форме цилиндра или конуса. От длины проволоки напрямую зависит индуктивность катушки. А первичная, как уже написано выше, должна быть с низкой индукцией. Витков должно быть немного, и проволока может быть и не цельной, иногда используют куски, скрепляя их.
  5. Уже можно собрать созданные приборы в одно целое, присоединив их один к другому, как звенья в цепи. Если все сделано правильно, то они должны создать первичный колебательный контур, который будут передавать электроды.
  6. Вторичная катушка. Создается также, как и первая, на форму наматывается проволока, витков должно быть больше. Ведь вторая катушка нужна намного больше и выше, чем первая. Она не должна создавать вторичный контур, наличие которого может привести к сгоранию первичной катушки. Не забывайте о том, что эти катушки должны быть одинаковой частоты, чтобы исправно работать и не сгореть во время включения прибора.
  7. Другой конденсатор. Его форма может быть как круглой, так и сферической. Делается также, как и для первичной катушки.
  8. Соединение. Для создания вторичного контура нужно соединить оставшиеся катушку и конденсатор в одно целое. Но, необходимо заземлить контур, чтобы не нанести вред приборам, которые подключены в сеть. Заземлять нужно как можно дальше от проводки, которая размещена по всему дому. Заземлить очень просто — нужно воткнуть штырь в землю.
  9. Дроссель. Необходимо сделать дроссель, чтобы не поломать разрядником всю электросеть. Создать просто — плотно намотать проволоку на шариковую ручку.
  10. Собрать все вместе:
    • первичную и вторичную катушки;
    • трансформатор;
    • дроссели;
  11. Нужно разместить обе катушки рядом и присоединить к ним трансформатор с помощью дросселей. Если вторая катушка получилась больше первой, то первую можно разместить внутри.

Прибор начнет работать после подключения трансформатора.

Устройство

схема простейшего трансформатора Тесла

Данный прибор состоит из нескольких деталей:

  • 2 разных катушек: первичная и вторичная;
  • разрядника;
  • конденсатора;
  • тороида;
  • терминала;

Также, в состав первичной входят провод, диаметр которого больше 6 миллиметров и медная трубка. Чаще всего, она создается именно горизонтальной, но бывает еще вертикальной и в форме конуса. Для другой катушки используют намного больше провода, диаметр которого меньше, чем у первой.

Для создания трансформатора Тесла, не используют ферромагнитного сердечника, и таким образом, уменьшают индукцию между первичной и вторичной катушками. Если использовать ферромагнитный сердечник, то взаимоиндукция будет намного сильнее. А это не подходит для создания и нормального функционирования прибора Тесла.

Колебательный контур образуется благодаря первой катушке и подключенному к ней конденсатору. Также, в него входит и один нелинейный элемент, а именно — обычный газовый разрядник.

Вторичная образует такой же контур, но вместо конденсата используется емкость тороида, и сам межвитковой промежуток в катушке. Кроме того, такая катушка, чтобы не допустить электрический пробой, покрывается специальной защитой — эпоксидной смолой.

Терминал обычно используется в виде диска, но он может быть сделан и в виде сферы. Он необходим, чтобы получить длинные разряды из искр.

В этом приборе используются 2 колебательных контура, что и отличает это изобретение от всех остальных трансформаторов, которые состоят только из одного. Для того, чтобы данный трансформатор работал исправно, эти контуры должны иметь одну и ту же частоту.

Принцип работы

Катушки, которые вы создали, имеют колебательный контур. Если к первой катушке подвести напряжение, то она создаст собственное магнитное поле. С его помощью передается энергия от одной катушки к другой.

Вторичная катушка создает вместе с емкостью такой же контур, который способен накапливать энергию, которую передала первичная. Все работает по простой схеме — чем больше энергии способна передать первая катушка, а вторая — накопить, то тем больше будет напряжение. И результат будет более зрелищный.

Как говорилось выше, чтобы прибор начал работать, его необходимо подключить к питающему трансформатору. Для того, чтобы направить разряды, которые выдает генератор Тесла, нужно рядом разместить металлический предмет. Но делать это так, чтобы они не соприкасались. Если рядом положить лампочку, то она будет светиться. Но только в том случае, если напряжения будет достаточно.

Чтобы сделать самостоятельно изобретение Тесла, нужно делать математические расчеты, поэтому нужно иметь опыт. Или же найти инженера, который поможет правильно вывести формулы.

Практические советы

  1. Если опыта нет, то лучше не начинайте работу самостоятельно. Помочь вам сможет инженер.
  2. Будьте очень аккуратны, ведь разряды, которые выдает генератор Тесла, могут обжечь.
  3. Такое изобретение способно вывести из строя все подключенные устройства, перед включением будет лучше убрать их подальше.
  4. Все металлические предметы, которые находятся недалеко от включенного устройства, могут обжигать.

slarkenergy.ru

принцип работы, как сделать трансформатор тесла своими руками

Одним из самых распространенных изобретений Николы Тесла считается трансформатор Тесла. Работа этого устройства основана на действии резонансных электромагнитных стоячих волн в катушках. Этот принцип лег в основу множества современных вещей: люминесцентные лампы, кинескопы телевизоров, зарядка устройств на расстоянии. Благодаря явлению резонанса в момент совпадения частоты колебаний контура первичной обмотки с частотой колебания стоячих волн вторичной обмотки между концами катушки проскакивает дуга.

Несмотря на всю кажущуюся сложность этого генератора, сделать его можно и самому. Технология того, как сделать катушку Тесла своими руками, содержится ниже.

Составные части и принцип работы

Трансформатор Тесла собирается из первичной, вторичной катушки и обвязки, составляемой из разрядника или прерывателя, конденсатора и терминала, служащего выходом.

Первичная обмотка состоит из небольшого числа витков медного провода большого сечения или медной трубки. Она бывает горизонтальной (плоской), вертикальной (цилиндрической) или конической. Вторичная обмотка состоит из большого числа витков меньшего сечения и является наиболее важным узлом конструкции. Отношение ее длины к диаметру должно составлять 4:1, а в основании должно располагаться заземленное защитное кольцо из медного провода, призванное сохранить электронику установки.

Так как работает трансформатор Тесла в импульсном режиме, его конструкция характеризуется тем, что в нее не входит ферромагнитный сердечник. Это позволяет снизить взаимную индукцию между обмотками. Конденсатор, взаимодействуя с первичной катушкой, создает колебательный контур с включенным в него разрядником, в данном случае газовым. Разрядник собирают из массивных электродов, а для большей износостойкости дополнительно снабжают радиаторами.

Принцип работы катушки Тесла следующий. Конденсатор через дроссель заряжается от трансформатора. Скорость зарядки напрямую зависит от показателя индуктивности. Зарядившись до критического уровня, он вызовет пробой разрядника. После этого в первичном контуре генерируются высокочастотные колебания. Одновременно с этим активируется разрядник, убирающий трансформатор из общего контура, замыкая его.

Если это не произошло, то в первичном контуре могут произойти потери, негативно влияющие на его работу. В стандартной схеме параллельно с источником питания устанавливается газовый разрядник.

Таким образом, катушка Тесла на выходе может выдать напряжение в несколько миллионов вольт. От такого напряжения в воздухе возникают разряды электричества, имеющие вид коронарных разрядов и стримеров.

Крайне важно помнить, что эти изделия генерируют токи высокого потенциала и смертельно опасны для жизни. Даже маломощные устройства способны вызывать сильные ожоги, повреждение нервных окончаний, мышечных тканей и связок. Способны вызывать остановку сердца.

Конструкция и сборка

Трансформатор Тесла был запатентован в 1896 г. и по своей конструкции прост для исполнения. Он включает в себя:

  1. Первичную катушку с обмоткой из медной жилы сечением от 6 мм², в количестве достаточном для 5-7 витков.
  2. Вторичную катушку из диэлектрического материала и провода диаметром до 0,5 мм и длиной достаточной для 800-1000 витков.
  3. Полусферы разрядника.
  4. Конденсаторов.
  5. Защитного кольца из медной жилы, как на первичной обмотке трансформатора.

Особенность прибора заключается в том, что его мощность не зависит от мощности питающего источника. Важнее физические свойства воздуха. Устройство может создавать колебательные контуры различными методами:

  • с использованием разрядника искрового промежутка;
  • с помощью генератора колебания на транзисторах;
  • на лампах.

Для изготовления трансформатора Тесла своими руками потребуется:

  1. Для первичной обмотки – 3 м тонкой медной трубки диаметром 6 мм либо медная жила того же диаметра и длины.
  2. Для сборки вторичной обмотки необходима ПВХ труба диаметром 5см и длиной около 50 см и резьбовой фитинг ПВХ к ней. Также необходим медный, покрытый лаком или эмалью, провод диаметром 0,5 мм и длиной 90 м.
  3. Металлический фланец с внутренним диаметром 5 см.
  4. Различные гайки, шайбы и болты.
  5. Разрядник.
  6. Гладкая полусфера для терминала.
  7. Конденсатор можно изготовить самостоятельно. Для него потребуются 6 стеклянных бутылочек, поваренная соль, рапсовое или вазелиновое масло, алюминиевая фольга.
  8. Потребуется источник питания, выдающий 9кВ при 30мА.

Схема трансформатора Тесла проста в реализации. От трансформатора отходят 2 провода с подключенным разрядником. К одному из проводов подключаются последовательно соединенные конденсаторы. В конце расположена первичная обмотка. Отдельно располагается вторичная катушка с терминалом и заземленным кольцом защиты.

Описание того, как собрать катушку Тесла в домашних условиях:

  1. Изготавливают вторичную обмотку, предварительно закрепив край провода на конце трубы. Наматывать следует равномерно, не допуская обрыва провода. Между витками не должны присутствовать зазоры.
  2. Закончив, оберните обмотку в верхней и нижней частях малярной лентой. После этого покройте обмотку лаком или эпоксидной смолой.
  3. Подготовьте 2 панели для нижнего и верхнего оснований. Подойдет любой диэлектрический материал, лист фанеры или пластика. Установите по центру нижнего основания металлический фланец и закрепите его болтами так, чтобы между нижним и верхним основаниями осталось место.
  4. Подготовьте первичную обмотку, скрутив ее в спираль и закрепив на верхнем основании. Просверлив в нем 2 отверстия, выведите концы трубки в них. Закреплять ее следует так, чтобы исключить соприкосновение обмоток и при этом соблюсти расстояние между ними в 1 см.
  5. Для изготовления разрядника потребуется поместить 2 болта напротив друг друга в деревянную рамку. Расчет сделан на то, что при движении они будут играть роль регулятора.
  6. Конденсаторы изготавливаются следующим образом. Стеклянные бутылки обматывают фольгой и заливают в них соленую воду. Ее состав для всех бутылок должен быть одинаковым – 360 г на 1л воды. Пробивают крышки и вставляют в них провода. Конденсаторы готовы.
  7. Соединяют все узлы по схеме, описанной выше. Обязательно заземляют вторичную обмотку.
  8. Итоговое количество в первичной обмотке должно составить 6,5 витка, во вторичной – 600 витков.

Описанная последовательность действий дает представление о том, как сделать трансформатор Тесла самому.

Включение, проверка и регулировка

Первый запуск желательно производить вне помещения, также стоит подальше убрать все бытовые приборы, чтобы исключить их поломку. Помните о мерах предосторожности! Для запуска выполняют следующие действия:

  1. Проходят по всей цепочке проводов и проверяют, чтобы нигде не соприкасались оголенные контакты, а все узлы были надежно закреплены. В разряднике между болтами оставляют небольшой зазор.
  2. Подают напряжение и наблюдают за появлением стримера. В случае его отсутствия к вторичной обмотке подносят люминесцентную лампу или лампу накаливания. Желательно закрепить их на диэлектрике, подойдет кусок ПВХ трубы. Появление свечения подтверждает, что трансформатор Тесла работает.
  3. В случае отсутствия свечения меняют выводы первичной катушки местами.

Если с первого раза не получилось, не отчаивайтесь. Попробуйте изменить количество витков во вторичной обмотке и расстоянием между обмотками. Подкрутите болты в разряднике.

Мощная катушка Тесла

Отличительной особенностью такой катушки являются ее размеры, сила получаемого тока и метод генерации резонансных колебаний.

Выглядит это следующим образом. После включения заряжается конденсатор. Достигнув максимального уровня заряда, происходит пробой в разряднике. На следующем этапе образуется LC контур – цепь, образованная последовательным включением конденсатора и первичного контура. Это создает во вторичной обмотке резонансные колебания и напряжения высокой мощности.

При этом нечто подобное можно собрать и в домашних условиях. Для этого следует:

  1. Увеличить в 1,5-2,5 раза диаметр катушки и сечение провода.
  2. Изготовить терминал в форме тороида. Для этого подойдет алюминиевая гофра диаметром 100 мм.
  3. Заменить источник постоянного на источник переменного тока, выдающий 3-5кВ.
  4. Сделать надежное заземление.
  5. Убедиться в том, что ваша проводка выдержит такую нагрузку.

Такие трансформаторы могут генерировать мощность до 5кВт и создавать коронарные и дуговые разряды. При этом максимальный эффект достигается при совпадении частоты обоих контуров.

odinelectric.ru

Как сделать катушку Тесла (трансформатор), устройство и применение.

😎 От автора: данная статья является первоисточником, прошу помнить об этом в случае её переиздания на других ресурсах.

Трансформатор Тесла своими руками

Наша рабочая модель самодельного трансформатора Тесла в действии

                1. Описание: катушки Тесла- это простейший трансформатор, состоящий из двух катушек без общего сердечника. Первичная обмотка (первичка)  имеет несколько (3-10) витков толстого провода. Вторичная (высоковольтная) обмотка содержит намного больше витков, порядка 1000. Трансформатор Тесла обладает коэффициентом трансформации в 10-50 раз выше отношения числа витков вторичной обмотки к числу витков первичной. Выходное напряжение трансформатора Тесла может достигать нескольких миллионов вольт. Это напряжение в резонансной частоте способно создавать внушительные электрические разряды в воздухе, которые могут иметь значительную длину, в зависимости от мощности конечно.

применение простейшей катушки Тесла в быту.

                  2. Изобретение: «Трансформатор Тесла» в том виде, который нам известен, стал итогом одного из экспериментов в Колорадо-Спрингс (США) проходивших в далёком 1899 году. Предвестником изобретения стало открытие, сделанное Николой Тесла в 1888 году  явления вращающегося магнитного поля и строительство электрогенератора высокой и сверхвысокой частот. В 1891 году учёный создаёт резонансный трансформатор, позволяющий получать высокочастотное напряжение с амплитудой до нескольких миллионов вольт. В своих изысканий Никола Тесла доказал возможность создания стоячей электромагнитной волны. Само изобретение наружу кажется очень простым и незамысловатым, в действительности самое сложное в трансформаторе Тесла, — это цепь питания для первичной обмотки трансформатора.

             3. Эксперимент: работая с гигантской катушкой, Тесла   дошёл до строительства целой башни высотой в несколько десятков метров, которую венчала большая медная полусфера, и при включении установки возникали искровые разряды длиной до сорока метров. Молнии сопровождались громовыми раскатами, слышимыми за 24 километра. Вокруг самой башни, во время её работы, пылал огромный световой шар. Идущие по улице, люди испуганно шарахались с ужасом наблюдая, как между их ногами и землёй проскакивают искры. Лошади получали электрошоковые удары через железные подковы. На многих, в том числе значительно удалённых, металлических предметах возникали синие ореолы – «огни святого Эльма».

Башня Ворденклиф при лаборатории Николы Тесла 1901—1917— первая беспроводная телекоммуникационная башня

Человек, устроивший всю эту электрическую фантасмагорию в 1899 году из своей лаборатории в Колорадо-Спрингс, вовсе не собирался пугать людей. Его цель была иной, и она была достигнута: за двадцать пять миль от башни под аплодисменты наблюдателей разом загорелись 200 электрических лампочек. Электрический заряд был передан без всяких проводов.

               4. Как сделать простейшую катушку Тесла: Берём любой источник высокого напряжения (МИНИМУМ 1.5кВ и вообще привыкайте, что теперь вольтов не существует, есть только кВ, а 1.5кВ так же мало, как 1.5В в обычной жизни) лучше брать не меньше 5 кВ, его подключаем к любому конденсатору на нужное напряжение (если ёмкость слишком большая, то нужен будет ещё и диодный мост, но для начала лучше экспериментировать с малыми емкостями).

          Затем через искровой промежуток — два провода, смотанные изолентой, так что их оголённые концы смотрят в одну сторону (подгибая проволоку провода регулируем зазор, настроенный на пробой при напряжении чуть выше напряжения источника, ток-то переменный, так что в пике напряжение выше номинального), подключаете это дело к первичной обмотке катушки (для наших параметров лучше брать 5-6 витков). Для вторичной обмотки достаточно будет 150 витков (можно намотать на обычную картонную трубку) и, если Вы всё сделали правильно, то получите разряд в 1см если приблизить выводы катушки и довольно заметную корону, если их развести. Да, не забудьте один нижний вывод вторичной обмотки хорошенько заземлить.

Простейший трансформатор Тесла в работе. Для его создания понадобился высоковольтный источник питания.

 Цель данной статьи- показать как своими руками можно сделать  настоящую трансформатор (катушку) Тесла с нуля. Итак, начнём!

5. Требования к оборудованию: для Теслы, которую не стыдно показать, уже нужно попотеть.

а) Входное напряжение нужно МИНИМУМ 6кВ, иначе искровик стабильно работать не будет (настройка будет сбиваться).
б) Искровик должен быть из масивных кусков меди, желательна их честкая фиксация в нужном положении.
в) Мощность на входе не ниже 50Вт, но лучше 100+.
г) Конденсатор и первичная обмотка должны образовывать колебательный контур, попадающий в резонанс со вторичной обмоткой. Вторичная обмотка может иметь много кратных резонансов (например, в нашей схеме резонирует на 200, 400, 800 и 1200кГц, почему так — не знаю, но это проверено экспериментально на точном оборудовании), причём одни сильнее, а другие слабее (первый не обязательно самый сильный) и они зависят от расположения первичной обмотки. Как определить эти частоты без генератора частот не знаю — придётся использовать метод «научного тыка”, перематывая первичную обмотку и меняя ёмкость конденсатора.
д) Ещё потребуется либо относительно маленькая ёмкость конденсатора (чтобы он до большого напряжения переменным током заряжался), либо диодный мост выпрямления тока (с мостом мне как-то спокойнее — можно любую ёмкость подключать , но там нужен резистор для её разрядки, после выключения питания либо в ручную его закорачивать, а то он ОЧЕНЬ больно бьёт током).
е) Первичная обмотка должна быть хорошо заизолирована от вторичной, иначе пробьёт на неё. Вторичная обмотка также должна иметь хорошую межвитковую изоляцию, иначе из каждой царапины на лаке будет идти корона, либо вообще вся катушка будет светиться.

А теперь поговорим о том, как создать катушку, подобную той, что изображена на самом верху!

6.СХЕМА ТРАНСФОРМАТОРА ТЕСЛА

Принципиальная схема трансформатора Тесла, по которой собрана наша катушка.

Как Вы видите, в данной схеме минимум элементов, что нисколько не облегчает нашу задачу. Ведь чтобы она работала необходимо её не только собрать, но и настроить! Начнём по-порядку.

7. Принципы безопасности:

            Прежде чем начинать какую либо практическую работу связанную с электричеством, очень важно для себя оценить всю его опасность и предупредить возможные риски. Помните, что смертельный ток для человека это жалкие 0,1 Ампера, а неотпускающий – переменный ток, который за счет периодических импульсов вызывает прилипание человека к источнику тока, возникает при силе от 0,025 ампер;

Помните про опасность при работе с электричеством!

                 При попадании под электрическое напряжение пострадавший всегда получает шок, а вот его последствия могут быть различными: от судорог пальцев конечностей и их дрожи, от неприятных ощущений нагревания и жжения до остановки дыхания и фибрилляции сердца (бессистемного сокращения) и полной его остановки. В последнем случае кровь перестает перемещаться по сосудам, отчего человек умирает. Кроме того, электрический ток является опасным для человека, поскольку при определенных значениях его силы создается эффект прилипания к оголенным проводам из-за чрезмерного стимулирования электричеством нервных волокон. Одной из причин смерти от удара током может стать механическая травма в результате непроизвольного сокращения мышц. Может наступить потеря зрения из-за воздействия на сетчатку глаза образовавшейся электрической дуги. И, если вы не обладаете должным практическим навыком работы, то потренируйтесь сначала на более простых вещах, прежде чем начинать подобный этому большой проект.

8. Схема питания трансформатора Тесла:

8.1. МОТЫ:  такой трансформатор есть в микроволновке. Представляет собой обычный силовой трансформатор с одной лишь разницей, что его сердечник работает в режиме, близком к насыщению. Это означает, что несмотря на малые размеры, он имеет мощность до 1,5 кВт. Однако, есть и отрицательные стороны у такого режима работы. Это и большой ток холостого хода, около 2-4 А, и сильный нагрев даже без нагрузки, про нагрев с нагрузкой я молчу. Обычное выходное напряжение у МОТа — 2000-2200 вольт при силе тока 500-850 мА.

МОТ — силовой трансформатор.

            У всех МОТов первичка намотана внизу, вторичка сверху. Делается это для хорошей изоляции обмоток. На вторичке, а иногда и на первичке намотана накальная обмотка магнетрона, около 3,6 вольт. Причём между обмотками можно заметить две металлические перемычки. Это — магнитные шунты. Основное их назначение — замкнуть на себя часть создаваемого первичкой магнитного потока и таким образом ограничить магнитный поток через вторичку и её выходной ток на некотором уровне. Делается это из-за того, что при отсутствии шунтов при коротком замыкании во вторичке (при дуге) ток через первичку многократно возрастает и ограничивается лишь её сопротивлением, которое и так очень мало.

             Таким образом, шунты не дают трансу быстро перегреться при подключенной нагрузке. Хотя МОТ и греется, но в печке ставят  вентилятор для его охлаждения и он не сдыхает. Если же шунты удалить, то мощность, отдаваемая трансом, повышается, но перегрев происходит гораздо быстрее. Шунты у импортных МОТов обычно хорошо залиты эпоксидкой и их не так просто удалить. Но сделать это всё-же желательно, уменьшится просадка под нагрузкой. Для уменьшения нагрева могу посоветовать погрузить МОТ в масло, но сделать это таким образом, чтобы масло в случае перегрева или даже возгорания не могло причинить вреда.

Батарея из трансформаторов МОТ для питания нашей катушки Тесла

Мы использовали батарею из четырёх МОТов, собранную аналогичным нашей схеме. Помните. что напряжение на вторичной обмотке многократно превышает сетевое и смертельно опасно, опасайтесь дуговых разрядов и не работайте без снятия напряжения!

8.2. Конденсаторный блок — Капы: Под Капами подразумеваются высоковольтные керамические конденсаторы (серий К15У1, К15У2,  ТГК, КТК, К15-11, К15-14 -для установок высокой частоты!) Самое сложное в капах- это найти их.

Капы -высоковольтный конденсаторный блок

8.3. Фильтр от ВЧ: соответственно две катушки, выполняющие функцию фильтров от напряжения высокой частоты. В каждой 140 витков медного лакированного провода 0.5 мм в диаметре.

Фильтр высокой частоты и  конденсаторный блок

Фильтр ВЧ и КАПы- конденсаторный блок для питания Теслы

8.4. Искровик: Искровик нужен  для коммутации питания и возбуждения колебаний в контуре. Если в схеме не будет искровика , то питание будет, а колебаний нет. А еще блок питания начинает сифонить через первичку — а это короткое замыкание! Пока искровик не замкнут — капы заряжаются. Как только замыкается — начинаются колебания.  Поэтому ставят балласт в виде дросселей — когда искровик замкнут дроссель мешает течь току от блока питания заряжается сам, а потом, когда разрядник разомкнется, заряжает капы с удвоенной злостью. И да, если бы в розетке было 200 кГц, разрядник естественно был бы  не нужен.

Искровик для возбуждения колебаний в контуре катушки Тесла

Искровик для возбуждения колебаний в цепи питания катушки Тесла

8.5. Тор и катушка Тесла: Наконец-то очередь дошла и до самого трансформатора Тесла. Первичная обмотка катушки Тесла состоит из 7-9 витков провода очень большого сечения, впрочем подойдёт сантехническая медная трубка. Вторичная обмотка содержит от 400 до 800 витков, тут нужно подстраиваться. На первичную обмотку подаётся питание. У вторички один вывод надёжно заземлён, второй присоединён к ТОРУ (излучатель молний) . Тор, своеобразный токопроводящий бублик можно изготовить из обычной вентиляционной гофры.

Намотка катушки Тесла трудоёмкое и медитативное занятие

катушка Тесла перед сборкой

8.6. Небольшое видео про нашу самодельную катушку Тесла:

 

9. Практическое применение. Трансформатор использовался Теслой для генерации и распространения электрических колебаний, направленных на управление устройствами на расстоянии без проводов (радиоуправление) , беспроводной передачи данных (радио) и беспроводной передачи энергии. В начале XX века трансформатор Тесла также нашёл популярное использование в медицине. Пациентов обрабатывали слабыми высокочастотными токами, которые протекая по тонкому слою поверхности кожи не причиняли вреда внутренним органам (см. : скин-эффект, Дарсонвализация) , оказывая при этом «тонизирующее» и «оздоравливающее» влияние. Похожая на этот трансформатор схема используется в системах зажигания двигателей внутреннего сгорания, но там она низкочастотная.

         В наши дни трансформатор Тесла не имеет широкого практического применения. Он изготовляется многими любителями высоковольтной техники и сопровождающих её работу эффектов. Также он иногда используется для поджига газоразрядных (в том числе неисправных) ламп и для поиска течей в вакуумных системах.  Есть теория, что его использовали для создания радиопомех.

            Некоторые создают аттракционы, другие светильники и фокусы. один чудак и вовсе умудрился создать новогоднюю ёлку. Цвета у него получились благодаря нанесению разных веществ на излучатель. Например если нанести раствор какой нибудь борной кислоты, то будет корона зеленая. Если марганца ,то вроде ярко синяя, если лития, то малиновый. Так что, катушка Тесла в руках современного человека превратилась в игрушку и только.

Применение катушки Тесла

Это должно изображать сигнализацию. Хотя совершенно очевидно, что такая близость может оказаться фатальной для электрооборудования автомобиля =)

У меня есть своя идея по применению трансформатора Тесла, но об этом в другой раз.  🙂

Выражаю  благодарность создателю нашей катушки Тесла,

Ларионову А.

за предоставленные материалы!

intelogic.ru

Как изготовить тороид для трансформатора Тесла

Думаю, нет необходимости подробно объяснять, зачем нужна дополнительная ёмкость наверху вторичной обмотки резонатора в катушке Тесла, обычно выполняемая в виде металлической сферы или тороида, а также их сочетаний. Вкратце, функции её таковы:
— снижение рабочей частоты за счёт изменения ёмкости во вторичном LC-контуре;
— значительное увеличение выходного напряжения за счёт гладкости (большого радиуса кривизны) поверхности;
— экранирование вторичной обмотки дополнительным электростатическим полем;
— формирование направления истечения разряда при помощи терминала;
— придание общему виду катушки классических форм и пропорций;
и многие другие. Часто с хорошим изготовлением этой ёмкости возникают проблемы разного рода, в основном упирающиеся в невозможность точной механической обработки в кустарных условиях. Я расскажу о нескольких способах сделать хороший тороид (сфера гораздо менее удобна для изготовления, и менее популярна) для катушки Тесла.

Способ 1, базовый: алюминиевая гофра.

Стандартная вентиляционная гофра из алюминия — классический способ сделать тор. Она дёшева, распространена, и легко обрабатывается. Единственная проблема с ней — крепёж краёв, а главный недостаток — низкая жизнестойкость: любое слабое механическое воздействие типа падения приводит к появлению на ней необратимых вмятин, безобразно портящих внешний вид и иногда функциональность.
Как сделать: берём фанеру, выпиливаем два одинаковых диска. Это будет центральная часть тороида. Если лень пилить, берём пластиковые поддоны от цветочных горшков. Сверлим по центру отверстия, насаживаем на шпильку с резьбой, проставляем где надо гайками и шайбами, фиксируем. Это основа тороида. Далее берём гофру, предварительно растягиваем её до нужной длины. Стоит учесть, что чем более растянута гофра, тем менее она прочна и тем хуже выглядит. Растянутую гофру оборачиваем вокруг основы и скрепляем краями саму с собой. На этом этапе полезно иметь четыре руки (т. е. скреплять гофру вдвоём): один держит, второй фиксирует. Фиксировать можно: алюминиевым скотчем по стыку, термоклеем по стыку, сшивать медным проводом. Можно изобрести что-нибудь ещё, главная задача — зафиксировать гофру. После этого этапа гофра приклеивается к основе в нескольких точках любым способом (я советую термоклей), чтобы устранить болтания. От центральной шпильки как угодно выводится гальванический контакт к собственно гофре — например, путём заклейки всей основы алюминиевым скотчем. Всё, тороид готов. Этим способом с несущественными вариациями сделаны 90% моих тороидов, и большая часть известных мне тороидов от других конструкторов.

Способ 2, расширенный: шпатлевание.

Довольно трудоёмкий способ, позволяющий получить хороший и почти профессионально выглядящий тор. Те, кто когда-либо занимался шпатлеванием, могут дальше не читать, а просто смотреть картинки. Для остальных же распишу что и как.
Сначала надо сделать тор из гофры по «базовому» способу. Далее берём самую обычную шпатлёвку (лучше сразу финишную), и равномерно при помощи шпателя обмазываем ей тор. Обмазывать надо достаточно густо, с заходом на основу, чтобы нигде не торчало алюминия. 

Шпатлёвки уходит много: на тор размером 50х16 у меня ушло два ведёрка по 1.5кг, и их хватило еле-еле. Для удобства лучше всего закрепить тороид на импровизированном стенде, который позволит его свободно вращать. После полного покрытия шпатлёвке надо дать просохнуть (например, под горячим воздухом от тепловентилятора). После полного просыхания берём шкурки, начиная с самой крупнозернистой до нулёвки, и методично и мучительно, меняя шкурки по мере продвижения в разглаживании поверхности, сошкуриваем все торчащие участки.  Чем больше участок торчит, тем быстрее он сошлифовывается, и в перспективе весь тор станет гладким и ровным. Если всё получилось, то необходимо покрыть его любым лаком для окончательной фиксации шпатлёвки и снова дать просохнуть. Далее на лак наклеивается алюминиевый скотч, с таким расчётом, чтобы закрыть все свободные места. Здесь есть одна проблема, а именно — скотч можно ровно наклеить только на очень большой тор. На малых будет ощутимо заметна проблема, связанная с кривизной поверхности: алюминиевый скотч будет неисправимо идти складками. К счастью, складки эти разглаживаются (например, при помощи столовой ложки), но эстетика пропадает. Мне было ужасно лень с ними возится, и поэтому мой тор выглядит как шкура шарпея. Но издалека он смотрится определённо симпатичнее обычной гофры.
Плюсы метода: тороид прочнее, гораздо лучше выглядит, более гладкий.
Минусы: весьма трудоёмко, тороид значительно больше весит, чем базовый из гофры.

Способ три: паяный из меди/алюминия.

В CW-катушках, как, например, мои аудиокатушки, возникает новая проблема: сплошной алюминий гофры представляет собой единый замкнутый виток большой площади, и, в результате, наверху катушки Тесла, работающей в непрерывном режиме, чувствует себя как сковорода в индукционном нагревателе, раскаляясь порой до температур более сотни градусов Цельсия. Чтобы избежать этого, тороид можно делать не сплошным, а сетчатым. На рабочих частотах в сотни килогерц нет принципиальной разницы между ёмкостью цельного предмета и предмета той же формы, но состоящего из сетки. Приближённо можно представить себе такой предмет с точки зрения электрического поля как будто бы обтянутым резиной, слегка вогнутой внутрь ячеек сетки.
Два основных способа сделать сетчатый тор сводятся к следующим: а) сделать спираль из провода, после чего согнуть её в тор,
б) сделать несколько колец разных диаметров (концентрических с вертикальной проекцией тороида), после чего скрепить их перпендикулярными им кольцами, совпадающими по диаметру с диаметром трубы тороида.

 
Способ А значительно проще и не требует особых пояснений. Способ Б более трудоёмкий, особенно в случае алюминия, который очень трудно паять. Зато им можно сделать огромные тороиды для профессиональных катушек Тесла, выдерживающие переезды, удары и падения, при этом одновременно лёгкие и достойным образом выглядящие. При этом большой тороид такого рода можно сделать из толстого провода, допускающего аргонодуговую сварку, что сделает его практически неуничтожимым. Моделька на картинке чуть ниже изображает большой сварной тороид, от конструкторов из Lightning on Demand.

Способ 4: вращение

Самые лучшие, не имеющие аналогов тороиды, получаются при помощи изготовления вращением, т. н. spun toroids. Суть этого способа такова: в мощный двигатель, например, в токарный станок, зажимается специальная оправка из дерева или стали, а перед ней зажимается заготовка в виде круглого листа тонкого алюминия. Далее при помощи лома или подобного инструмента, зафиксированного относительно станины двигателя, оператор как бы намазывает алюминий на шаблон. В результате получается половинка тороида. Две таких половинки полируются, скрепляются любым удобным способом и получается замечательный, профессиональный и чрезвычайно приятный по виду и свойствам тор.  Для полного понимания сути проще всего посмотреть два видео: http://www.youtube.com/watch?v=quvLVeWS3N4 и http://www.youtube.com/watch?v=kIslwnsfq3g. К сожалению, найти способного на такую работу мастера трудно, а готовые такие торы стоят невменяемых денег, растущих почти пропорционально его внутреннему объёму.  У меня нет ни одного такого, а потому все фотографии их не мои (как и видео), и взяты из открытых источников в сети.

Есть масса иных способов сделать тороид. Например, можно было бы рассказать про сварку его из полукруглых уголков труб, про обтягивание сеткой-рабицей автомобильной камеры, про крепление металлических труб-обручей проставками из пластика, про гальваническое покрытие формы, про штамповку гидроударом в пресс-форму, и множество иных. Но все они настолько мало популярны (ввиду специфичности применений), сопряжены с техническими трудностями и дорогостоящи, что проще предоставить интересующимся самим продумать при необходимости их подробности и процедуру изготовления. Нижеследующий снимок взят с tesladownunder.com.

Такие дела. Всем гладких торов, господа.

teslacoil.ru

Как сделать катушку Тесла своими руками

Трансформатор Тесла не дает покоя многим современным изобретателям. В этом мастер-классе мы продемонстрируем вам, как сделать катушку Тесла своими руками. Она будет небольшого размера. При создании и последующем запуске катушки рекомендуем соблюдать все меры безопасности. Напряжение катушки высокое, но, в отличие от обычного тока, вы можете не почувствовать характерную боль и покалывания, при этом стенки сосудов и нервные клетки могут пострадать.

Материалы

Для создания катушки вам понадобятся:

  • клей ПВА;
  • 1,5-дюймовые ПВХ-трубы;
  • 1,5-дюймовый ПВХ-заглушка;
  • 1,5-дюймовый металлический фланец с резьбой;
  • эмалевая краска в баллончике;
  • медная трубка;
  • болты, гайки и шайбы;
  • стеклянные бутылки;
  • поваренная соль;
  • рапсовое масло;
  • алюминиевая фольга;
  • провода;
  • высоковольтный источник питания.


Шаг 1. Первым делом нужно обернуть медную проволоку вокруг трубы ПВХ. Это самая трудоемкая часть работы. Наматывать проволоку нужно внимательно и аккуратно, витки должны идти плотно друг к другу, между ними не должно быть пустого пространства. Также нельзя, чтобы они заходили друг на друга.

Для удобства верхние витки можете закрепить клейкой лентой. При дальнейшей работе витки также можете крепить ею, чтобы при формировании следующих, не распадались предыдущие.

В конце трубки проволоку также зафиксируйте клейкой лентой и пространство в несколько сантиметров снизу и сверху, покройте эмалированной краской из баллончика. Наносить краску нужно в два – три слоя.

В верхней части трубки закрепите круглый гладкий металлический объект для разрядки катушки.

Шаг 2. Металлический фланец будет в основе катушки. Через него нужно пропустить четыре болта и, соответственно их расположению, в куске доски необходимо просверлить четыре отверстия. С одной из сторон просверлите еще одно отверстие. В него нужно будет продеть трубку. Саму трубку пока что уложите спиралью.


Под углом закрепите два деревянных бруска, и витки медной трубки уложите вверх. Витки крепите кабельными стяжками, чтобы они не съезжали.

На деревянной доске закрепите трубку с проволокой, установленную в ПВХ заглушку.

В роли разрядника в катушке выступают два болта в открытой деревянной конструкции. При необходимости, их можно регулировать.

Шаг 3. Теперь следует изготовить конденсатор. Для этого бутылки оберните фольгой и заполните их раствором соленой воды (5 г/мл). Сверху воду аккуратно залейте рапсовым маслом. В крышке банки пробейте отверстие и опустите в него провода.

Аналогичным образом соорудите еще пять конденсаторов.

Все бутылки поставьте в металлическую емкость, например, на поднос.

Шаг 4. Подключите катушку Тесла по схеме к источнику питания. Можете испытывать ее в действии.


Похожие записи:

bighandmade.ru

Как сделать катушку Тесла своими руками

Трансформатор Тесла не дает покоя многим современным изобретателям. В этом мастер-классе мы продемонстрируем вам, как сделать катушку Тесла своими руками. Она будет небольшого размера. При создании и последующем запуске катушки рекомендуем соблюдать все меры безопасности. Напряжение катушки высокое, но, в отличие от обычного тока, вы можете не почувствовать характерную боль и покалывания, при этом стенки сосудов и нервные клетки могут пострадать.

Материалы

Для создания катушки вам понадобятся:

  • клей ПВА;
  • 1,5-дюймовые ПВХ-трубы;
  • 1,5-дюймовый ПВХ-заглушка;
  • 1,5-дюймовый металлический фланец с резьбой;
  • эмалевая краска в баллончике;
  • медная трубка;
  • болты, гайки и шайбы;
  • стеклянные бутылки;
  • поваренная соль;
  • рапсовое масло;
  • алюминиевая фольга;
  • провода;
  • высоковольтный источник питания.

Шаг 1. Первым делом нужно обернуть медную проволоку вокруг трубы ПВХ. Это самая трудоемкая часть работы. Наматывать проволоку нужно внимательно и аккуратно, витки должны идти плотно друг к другу, между ними не должно быть пустого пространства. Также нельзя, чтобы они заходили друг на друга.

Для удобства верхние витки можете закрепить клейкой лентой. При дальнейшей работе витки также можете крепить ею, чтобы при формировании следующих, не распадались предыдущие.

В конце трубки проволоку также зафиксируйте клейкой лентой и пространство в несколько сантиметров снизу и сверху, покройте эмалированной краской из баллончика. Наносить краску нужно в два – три слоя.

В верхней части трубки закрепите круглый гладкий металлический объект для разрядки катушки.

Шаг 2. Металлический фланец будет в основе катушки. Через него нужно пропустить четыре болта и, соответственно их расположению, в куске доски необходимо просверлить четыре отверстия. С одной из сторон просверлите еще одно отверстие. В него нужно будет продеть трубку. Саму трубку пока что уложите спиралью.

Под углом закрепите два деревянных бруска, и витки медной трубки уложите вверх. Витки крепите кабельными стяжками, чтобы они не съезжали.

На деревянной доске закрепите трубку с проволокой, установленную в ПВХ заглушку.

В роли разрядника в катушке выступают два болта в открытой деревянной конструкции. При необходимости, их можно регулировать.

Шаг 3. Теперь следует изготовить конденсатор. Для этого бутылки оберните фольгой и заполните их раствором соленой воды (5 г/мл). Сверху воду аккуратно залейте рапсовым маслом. В крышке банки пробейте отверстие и опустите в него провода.

Аналогичным образом соорудите еще пять конденсаторов.

Все бутылки поставьте в металлическую емкость, например, на поднос.

Шаг 4. Подключите катушку Тесла по схеме к источнику питания. Можете испытывать ее в действии.

rukami.boltai.com

Трансформатор тесла своими руками. Как сделать трансформатор Тесла

Подробности
Категория: Высоковольтные устройства

Если вы решили сами собрать качественный генератор Тесла большой мощности то вам придется изрядно постараться. В последнее время появилось множество различных схем катушек Теслы, которые в основном отличаются принципом дейстия самой схемы. В данной статье рассматривается самая простая (классическая) схема генератора тесла.

Схема трансформатора Тесла

Структурно схема состоит из следующих основных блоков:

  • источника питания;
  • повышающего трансформатора;
  • конденсатора;
  • разрядника;
  • катушки теслы (первичная и вторичная обмотка).

Внешний вид собранной катушки Теслы

 

Выбор требуемого источника питания или питающего трансформатора

Мощность источника питания должна быть достачной для получения требуемой длины разряда. Как показывает практика чем больше мощность тем качественее будет разряд. 

Повышающий трансформатор предназначен для повышения напряжения до значения порядка 4 кВ. Для таких целей отлично подойдет трансформатор из микроволновой печи. Подключая данный трансформатор в сеть на выходе получаем переменное напряжение порядка нескольких киловольт. Для ограничения по мощность на входе можно поставить предохранители.

Изготовление требуемого разрядника

Это могут быть, как вариант просто два обычных винтика, установленных в паре миллиметров на расстоянии друг от друга, но, как правило, рекомендуется приложить намного больше усилия. Так как выполненное качество будущего разрядника сильно повлияет на основную производительность будущей катушки.

Выполнение расчета требуемой ёмкости конденсатора

Используя формулы для расчетов из учебников по физике, выполняете расчет резонансной емкости для требуемого трансформатора. Значение данного конденсатора необходимо примерно в 1,5 раза больше представленного значения. Как правило, наиболее эффективным выходом будет сборка самому, требуемого конденсатора. Если вы хотите уменьшить денежные затраты, можете попробовать полноценно изготовить конденсатор своими руками, но он может вас подвести в самый ответственный момент, а его емкость будет трудно определить.

Изготовление требуемой вторичной обмотки

Применяйте примерно 1000 витков выполненных из эмалированной медной проволоки, толщина которой должна быть до 0,6мм. Высота готовой катушки обычно равна 5 – 6 её представленным диаметрам. Полый металлический шар, прилепленный к верхней части имеющейся вторичной обмотке, а её нижнюю часть требуется заземлить. Для этого необходимо использовать хорошее и отдельное заземление, т.к. при применении общедомового заземления есть вариант уничтожить все электроприборы.

Получение требуемой первичной обмотки

Вся первичная обмотка для данной катушки может быть выполнена из обычного толстого кабеля, или медной трубки. Наиболее лучший эффект будет достигнут если применить одножильный медный стержень толщиной 5-6 мм. Первичная обмотка содержит от 4-6 витков.

Добавить комментарий

www.radio-magic.ru