Mathsolution пределы – Калькулятор онлайн – Решение пределов

Решение задач по математике онлайн

Данный сайт обращён к учащимся в том или ином объеме изучающим математику и/или геометрию и призван помочь школьникам и студентам в изучении курса математики, освободить их от многих рутинных вычислений, и подсказать метод решения.
Основу сайта составляют математические программы (калькуляторы) для решения задач онлайн.
Все вычисления производятся на сайте, программы не нужно скачивать и устанавливать на компьютер.
На каждую задачу приводится поэтапный процесс получения ответа, т.е. подробное решение с объяснениями этапов решения данной задачи.
Решение задач приводится в виде, принятом в большинстве школ и вузов, некоторые задачи решаются двумя способами.
Все математические программы (калькуляторы) бесплатные.
Полный список математических и геометрических задач для решения вы можете найти в меню справа.

Вычислить: $$x^2+2x-1=0$$ $$2\frac{1}{3} \cdot \left( 2\frac{3}{4}-1\frac{3}{8} \right) $$ Решение: $$2\frac{1}{3} \cdot \left( 2\frac{3}{4}-1\frac{3}{8} \right) = $$
Промежуточные результаты:
$$2\frac{3}{4}-1\frac{3}{8} = \frac{2\cdot(2\cdot4+3)-1\cdot8-3}{8} = \frac{11}{8}$$
$$ = 2\frac{1}{3} \cdot \frac{11}{8} = \frac{2\cdot3+1}{3} \cdot \frac{11}{8} = \frac{7}{3} \cdot \frac{11}{8} = \frac{77}{24} = 3\frac{5}{24} $$ Ответ: $$ 3\frac{5}{24} $$ Найти корни квадратного уравнения: $$x^2+2x-1=0$$ Решение.

Вычислим дискриминант.

$$D = b^2-4ac = 8$$ $$x_{1,2}= \frac{-b\pm\sqrt{D}}{2a} = \frac{-2\pm\sqrt{8}}{2} = \frac{-2\pm2\sqrt{2}}{2} $$ Ответ: $$ x_1 = -1+\sqrt{2},\; x_2 = -1-\sqrt{2} $$ Решить неравенство: $$\frac{4 x^2-7 x+3}{3 x-1} \geq x-1$$ Решение: $$\frac{4 x^2-7 x+3}{3 x-1} \geq x-1\Rightarrow $$ $$\frac{4 x^2-7 x+3- \left( x-1 \right) \left( 3 x-1 \right) }{3 x-1} \geq 0$$

Упрощение выражения \(4 x^2-7 x+3- \left( x-1 \right) \left( 3 x-1 \right) \)

$$4 x^2-7 x+3- \left( x-1 \right) \left( 3 x-1 \right) = $$ Раскрытие скобок: $$4 x^2-7 x+3+ \left( -x+1 \right) \left( 3 x-1 \right) = $$ Раскрытие скобок: $$4 x^2-7 x+3-3 x^2+x+3 x-1= $$ $$x^2-3 x+2$$ Ответ: \( x^2-3 x+2 \) Решим квадратное уравнение \( x^2-3 x+2= 0 \)

Решение квадратного уравнения \( x^2-3 x+2= 0 \)


Вычислим дискриминант. $$D = b^2-4ac = 1$$ $$x_{1,2}= \frac{-b\pm\sqrt{D}}{2a} = \frac{3\pm\sqrt{1}}{2} = \frac{3\pm1}{2} $$ Ответ: \( x_1 = 2,\; x_2 = 1 \)

Решение по теореме Виета

Т.к. \( \left| a \right|=1 \), то можно воспользоваться теоремой Виета: $$x^2+px+q=0 \Rightarrow \left\{\begin{array}{l} x_1+x_2=-p \\ x_1 \cdot x_2=q \end{array}\right.$$ $$\left\{\begin{array}{l} x_1+x_2=3 \\ x_1 \cdot x_2=2 \end{array}\right. \Rightarrow \left\{\begin{array}{l} x_1=2 \\ x_2=1 \end{array}\right.$$ Ответ: \( x_1= 2,\; x_2= 1 \) Корни квадратного уравнения: $$ x_1 = 1 ;\; x_2 = 2 $$ Решим линейное уравнение \( 3 x-1= 0 \) Корень линейного уравнения: \( x = \frac{1}{3}\)
  $$ \frac{1}{3} $$ $$ 1 $$ $$ 2 $$  
Ответ: $$ x \in \left( \frac{1}{3} ;\; 1 \right] \cup \left[ 2 ;\; +\infty \right) $$ или $$ \frac{1}{3}

Нахождение производной функции

Найти производную функции $$ f(x) = \left( 1+sin \left( 2 \cdot x\right) \right) ^{2}$$ Решение $$ f'(x) = \left( \left( 1+sin \left( 2 \cdot x\right) \right) ^{2}\right) '= $$ $$ = 2 \cdot \left( 1+sin \left( 2 \cdot x\right) \right) \cdot \left( 1+sin \left( 2 \cdot x\right) \right) '= $$ $$ = 2 \cdot \left( 1+sin \left( 2 \cdot x\right) \right) \cdot \left( sin \left( 2 \cdot x\right) \right) '= $$ $$ = 2 \cdot \left( 1+sin \left( 2 \cdot x\right) \right) \cdot cos \left( 2 \cdot x\right) \cdot \left( 2 \cdot x\right) '= $$ $$ = 2 \cdot \left( 1+sin \left( 2 \cdot x\right) \right) \cdot cos \left( 2 \cdot x\right) \cdot 2= $$ $$ = 4 \cdot \left( 1+sin \left( 2 \cdot x\right) \right) \cdot cos \left( 2 \cdot x\right) $$ Ответ: $$ f'(x) = 4 \cdot \left( 1+sin \left( 2 \cdot x\right) \right) \cdot cos \left( 2 \cdot x\right) $$

В разделе Книги вы найдете большой список книг, учебников, решебников, ГДЗ, тестов и контрольных работ с ответами по математике и геометрии для всех классов общеобразовательных школ.
Все книги в электронном виде и доступны для скачивания бесплатно.

Отдельно стоит упомянуть программу для построения графиков функций онлайн.
Программа работает в вашем браузере, её не нужно устанавливать на компьютер.
Для её работы нужен только установленный Adobe Flash Player.

Возможности программы:
- можно строить несколько графиков в одном окне
- можно менять цвет и толщину линии постоения графика
- можно скрывать и отображать как сетку так и графики
- можно изменять масштаб отображения
- можно трассировать графики
- можно сохранять построение графиков в виде картинки

www.mathsolution.ru

Калькулятор онлайн - Решение показательных уравнений

Этот математический калькулятор онлайн поможет вам решить показательное уравнение. Программа для решения показательного уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения результата.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Вы можете посмотреть теорию о показательной функции и общие методы решения показательных уравнений.

Примеры подробного решения >>

Введите показательное уравнение

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

Показательная функция, её свойства и график

Напомним основные свойства степени. Пусть а > 0, b > 0, n, m - любые действительные числа. Тогда
1) an am = an+m

2) \( \frac{a^n}{a^m} = a^{n-m} \)

3) (an)m = anm

4) (ab)n = an bn

5) \( \left( \frac{a}{b} \right)^n = \frac{a^n}{b^n} \)

6) an > 0

7) an > 1, если a > 1, n > 0

8) anm, если a > 1, n

9) an > am, если 0

В практике часто используются функции вида y = ax, где a - заданное положительное число, x - переменная. Такие функции называют показательными. Это название объясняется тем, что аргументом показательной функции является показатель степени, а основанием степени — заданное число.

Определение. Показательной функцией называется функция вида y = ax, где а — заданное число, a > 0, \( a \neq 1\)

Показательная функция обладает следующими свойствами

1) Область определения показательной функции — множество всех действительных чисел.
Это свойство следует из того, что степень ax где a > 0, определена для всех действительных чисел x.

2) Множество значений показательной функции — множество всех положительных чисел.
Чтобы убедиться в этом, нужно показать, что уравнение ax = b, где а > 0, \( a \neq 1\), не имеет корней, если \( b \leq 0\), и имеет корень при любом b > 0.

3) Показательная функция у = ax является возрастающей на множестве всех действительных чисел, если a > 1, и убывающей, если 0 Это следует из свойств степени (8) и (9)

Построим графики показательных функций у = ax при a > 0 и при 0 Использовав рассмотренные свойства отметим, что график функции у = ax при a > 0 проходит через точку (0; 1) и расположен выше оси Oх.
Если х x при a > 0.
Если х > 0 и |х| увеличивается, то график быстро поднимается вверх.

График функции у = ax при 0 Если х > 0 и увеличивается, то график быстро приближается к оси Ох (не пересекая её). Таким образом, ось Ох является горизонтальной асимптотой графика.
Если х

Показательные уравнения

Рассмотрим несколько примеров показательных уравнений, т.е. уравнений, в которых неизвестное содержится в показателе степени. Решение показательных уравнений часто сводится к решению уравнения ax = ab где а > 0, \( a \neq 1\), х — неизвестное. Это уравнение решается с помощью свойства степени: степени с одинаковым основанием а > 0, \( a \neq 1\) равны тогда и только тогда, когда равны их показатели.

Решить уравнение 23x • 3x = 576
Так как 23x = (23)x = 8x, 576 = 242, то уравнение можно записать в виде 8x • 3x = 242, или в виде 24x = 242, откуда х = 2.
Ответ х = 2

Решить уравнение 3х + 1 - 2 • 3x - 2 = 25
Вынося в левой части за скобки общий множитель 3х - 2, получаем 3х - 2(33 - 2) = 25, 3х - 2 • 25 = 25,
откуда 3х - 2 = 1, x - 2 = 0, x = 2
Ответ х = 2

Решить уравнение 3х = 7х
Так как \( 7^x \neq 0 \) , то уравнение можно записать в виде \( \frac{3^x}{7^x} = 1 \), откуда \( \left( \frac{3}{7} \right) ^x = 1 \), х = 0
Ответ х = 0

Решить уравнение 9х - 4 • 3х - 45 = 0
Заменой 3х = t данное уравнение сводится к квадратному уравнению t2 - 4t - 45 = 0. Решая это уравнение, находим его корни: t1 = 9, t2 = -5, откуда 3х = 9, 3х = -5.
Уравнение 3х = 9 имеет корень х = 2, а уравнение 3х = -5 не имеет корней, так как показательная функция не может принимать отрицательные значения.
Ответ х = 2

Решить уравнение 3 • 2х + 1 + 2 • 5x - 2 = 5х + 2х - 2
Запишем уравнение в виде
3 • 2х + 1 - 2x - 2 = 5х - 2 • 5х - 2, откуда
2х - 2 (3 • 23 - 1) = 5х - 2( 5 2 - 2 )
2х - 2 • 23 = 5х - 2• 23
\( \left( \frac{2}{5} \right) ^{x-2} = 1 \)
x - 2 = 0
Ответ х = 2

Решить уравнение 3|х - 1| = 3|х + 3|
Так как 3 > 0, \( 3 \neq 1\), то исходное уравнение равносильно уравнению |x-1| = |x+3|
Возводя это уравнение в квадрат, получаем его следствие (х - 1)2 = (х + 3)2, откуда
х2 - 2х + 1 = х2 + 6х + 9, 8x = -8, х = -1
Проверка показывает, что х = -1 — корень исходного уравнения.
Ответ х = -1

www.mathsolution.ru

Калькулятор онлайн - Упрощение многочлена (умножение многочленов) (с подробным решением)

С помощью данной математической программы вы можете упростить многочлен.
В процессе работы программа:
- умножает многочлены
- суммирует одночлены (приводит подобные)
- раскрывает скобки
- возводит многочлен в степень

Программа упрощения многочленов не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс решения для того чтобы вы могли проконтролировать свои знания по математике и/или алгебре.

Данная программа может быть полезна учащимся общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Примеры подробного решения >>

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

Произведение одночлена и многочлена. Понятие многочлена

Среди различных выражений, которые рассматриваются в алгебре, важное место занимают суммы одночленов. Приведем примеры таких выражений:
\( 5a^4 - 2a^3 + 0,3a^2 - 4,6a + 8 \)
\( xy^3 - 5x^2y + 9x^3 - 7y^2 + 6x + 5y - 2 \)

Сумму одночленов называют многочленом. Слагаемые в многочлене называют членами многочлена. Одночлены также относят к многочленам, считая одночлен многочленом, состоящим из одного члена.

Например, многочлен
\( 8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 \)
можно упростить.

Представим все слагаемые в виде одночленов стандартного вида:
\( 8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 = \)
\( = 8b^5 - 14b^5 + 3b^2 -8b -3b^2 + 16 \)

Приведем в полученном многочлене подобные члены:
\( 8b^5 -14b^5 +3b^2 -8b -3b^2 + 16 = -6b^5 -8b + 16 \)
Получился многочлен, все члены которого являются одночленами стандартного вида, причем среди них нет подобных. Такие многочлены называют многочленами стандартного вида.

За степень многочлена стандартного вида принимают наибольшую из степеней его членов. Так, двучлен \( 12a^2b - 7b \) имеет третью степень, а трехчлен \( 2b^2 -7b + 6 \) — вторую.

Обычно члены многочленов стандартного вида, содержащих одну переменную, располагают в порядке убывания показателей ее степени. Например:
\( 5x - 18x^3 + 1 + x^5 = x^5 - 18x^3 + 5x + 1 \)

Сумму нескольких многочленов можно преобразовать (упростить) в многочлен стандартного вида.

Иногда члены многочлена нужно разбить на группы, заключая каждую группу в скобки. Поскольку заключение в скобки — это преобразование, обратное раскрытию скобок, то легко сформулировать правила раскрытия скобок:

Если перед скобками ставится знак «+», то члены, заключаемые в скобки, записываются с теми же знаками.

Если перед скобками ставится знак «-», то члены, заключаемые в скобки, записываются с противоположными знаками.

Преобразование (упрощение) произведения одночлена и многочлена

С помощью распределительного свойства умножения можно преобразовать (упростить) в многочлен произведение одночлена и многочлена. Например:
\( 9a^2b(7a^2 - 5ab - 4b^2) = \)
\( = 9a^2b \cdot 7a^2 + 9a^2b \cdot (-5ab) + 9a^2b \cdot (-4b^2) = \)
\( = 63a^4b - 45a^3b^2 - 36a^2b^3 \)

Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

Этот результат обычно формулируют в виде правила.

Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

Мы уже неоднократно использовали это правило для умножения на сумму.

Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

Обычно пользуются следующим правилом.

Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученные произведения.

Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее часто встречаются выражения \( (a + b)^2, \; (a - b)^2 \) и \( a^2 - b^2 \), т. е. квадрат суммы, квадрат разности и разность квадратов. Вы заметили, что названия указанных выражений как бы не закончены, так, например, \( (a + b)^2 \) — это, конечно, не просто квадрат суммы, а квадрат суммы а и b. Однако квадрат суммы а и b встречается не так уж часто, как правило, вместо букв а и b в нем оказываются различные, иногда довольно сложные выражения.

Выражения \( (a + b)^2, \; (a - b)^2 \) нетрудно преобразовать (упростить) в многочлены стандартного вида, собственно, вы уже встречались с таким заданием при умножении многочленов:
\( (a + b)^2 = (a + b)(a + b) = a^2 + ab + ba + b^2 = \)
\( = a^2 + 2ab + b^2 \)

Полученные тождества полезно запомнить и применять без промежуточных выкладок. Помогают этому краткие словесные формулировки.

\( (a + b)^2 = a^2 + b^2 + 2ab \) - квадрат суммы равен сумме квадратов и удвоенного произведения.

\( (a - b)^2 = a^2 + b^2 - 2ab \) - квадрат разности равен сумме квадратов без удвоенного произведения.

\( a^2 - b^2 = (a - b)(a + b) \) - разность квадратов равна произведению разности на сумму.

Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно — правые части левыми. Самое трудное при этом — увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколько примеров использования формул сокращенного умножения.

www.mathsolution.ru