Нерешенные уравнения в математике – Открытые математические проблемы — Википедия

Содержание

уравнения Навье-Стокса, гипотеза Ходжа, гипотеза Римана. Задачи тысячелетия

Нерешаемые задачи — это 7 интереснейших математических проблем. Каждая из них была предложена в свое время известными учеными, как правило, в виде гипотез. Вот уже много десятилетий над их решением ломают головы математики во всем мире. Тех, кто добьется успеха, ждет вознаграждение в миллион американских долларов, предложенное институтом Клэйя.

Предыстория

В 1900 году великий немецкий математик-универсал Дэвид Гильберт, представил список из 23-х проблем.

Исследования, осуществленные с целью их решения, оказали огромное влияние на науку 20 века. На данный момент большинство из них уже перестали быть загадками. В числе нерешенных или решенных частично остались:

  • проблема непротиворечивости арифметических аксиом;
  • общий закон взаимности на пространстве любого числового поля;
  • математическое исследование физических аксиом;
  • исследование квадратичных форм при произвольных алгебраических числовых коэффициентах;
  • проблема строгого обоснования исчислительной геометрии Федора Шуберта;
  • и пр.

Неисследованными являются: проблема распространения на любую алгебраическую область рациональности известной теоремы Кронекера и гипотеза Римана.

Институт Клэйя

Под таким названием известна частная некоммерческая организация, штаб-квартира которой находится в Кембридже, штат Массачусетс. Она была основана в 1998 году гарвардским математиком А. Джеффи и бизнесменом Л. Клэйем. Целью деятельности института является популяризация и развитие математических знаний. Для ее достижения организация выдает премии ученым и спонсирует многообещающие исследования.

В начале 21 столетия Математический институт Клэйя предложил премию тем, кто решит проблемы, которые известны, как самые сложные нерешаемые задачи, назвав свой список Millennium Prize Problems. Из «Списка Гильберта» в него вошла только гипотеза Римана.

Задачи тысячелетия

В список института Клэйя изначально входили:

  • гипотеза о циклах Ходжа;
  • уравнения квантовой теории Янга — Миллса;
  • гипотеза Пуанкаре;
  • проблема равенства классов Р и NP;
  • гипотеза Римана;
  • уравнения Навье Стокса, о существовании и гладкости его решений;
  • проблема Берча — Свиннертон-Дайера.

Эти открытые математические проблемы представляют огромный интерес, так как могут иметь множество практических реализаций.

Что доказал Григорий Перельман

В 1900 году известный ученый-философ Анри Пуанкаре предположил, что всякое односвязное компактное 3-мерное многообразие без края гомеоморфно 3-мерной сфере. Ее доказательство в общем случае не находилось в течение века. Лишь в 2002-2003 годах петербургский математик Г. Перельман опубликовал ряд статей с решением проблемы Пуанкаре. Они произвели эффект разорвавшейся бомбы. В 2010 году гипотеза Пуанкаре была исключена из списка «Нерешенные задачи» института Клэйя, а самому Перельману было предложено получить полагающееся ему немалое вознаграждение, от которого последний отказался, не объяснив причин своего решения.

Самое понятное объяснение того, что удалось доказать российскому математику, можно дать, представив, что на бублик (тор), натягивают резиновый диск, а затем пытаются стянуть края его окружности в одну точку. Очевидно, что это невозможно. Другое дело, если произвести этот эксперимент с шаром. В таком случае вроде бы трехмерная сфера, получившаяся из диска, окружность которого стянули в точку гипотетическим шнуром, будет трехмерной в понимании обычного человека, но двумерной с точки зрения математики.

Пуанкаре предположил, что трехмерная сфера является единственным трехмерным «предметом», поверхность которой можно стянуть в одну точку, а Перельману удалось это доказать. Таким образом, список «Нерешаемые задачи» сегодня состоит из 6 проблем.

Теория Янга-Миллса

Эта математическая проблема была предложена ее авторами в 1954-м году. Научная формулировка теории имеет следующий вид: для любой простой компактной калибровочной группы квантовая пространственная теория, созданная Янгом и Милльсом, существует, и при этом имеет нулевой дефект массы.

Если говорить на языке, понятном для обычного человека, взаимодействия между природными объектами (частицами, телами, волнами и пр.) делятся на 4 типа: электромагнитное, гравитационное, слабое и сильное. Уже много лет физики пытаются создать общую теорию поля. Она должна стать инструментом для объяснения всех этих взаимодействий. Теория Янга-Миллса — это математический язык, с помощью которого стало возможно описать 3 из 4-х основных сил природы. Она не применима к гравитации. Поэтому нельзя считать, что Янгу и Миллсу удалось создать теорию поля.

Кроме того, нелинейность предложенных уравнений делает их крайне сложными для решения. При малых константах связи их удается приближенно решить в виде ряда теории возмущений. Однако пока непонятно, как можно решить эти уравнения при сильной связи.

Уравнения Навье-Стокса

С помощью этих выражений описываются такие процессы, как воздушные потоки, течение жидкостей и турбулентность. Для некоторых частных случаев аналитические решения уравнения Навье-Стокса уже были найдены, однако сделать это для общего пока никому не удалось. В то же время, численное моделирование для конкретных значений скорости, плотности, давления, времени и так далее позволяет добиться прекрасных результатов. Остается надеяться, что у кого-нибудь получится применить уравнения Навье-Стокса в обратном направлении, т. е. вычислить с их помощью параметры, либо доказать, что метода решения нет.

Задача Берча — Свиннертон-Дайера

К категории «Нерешенные задачи» относится и гипотеза, предложенная английскими учеными из Кембриджского университета. Еще 2300 лет назад древнегреческий ученый Эвклид дал полное описание решений уравнения x2 + y2 = z2.

Если для каждого из простых чисел посчитать количество точек на кривой по его модулю, получится бесконечный набор целых чисел. Если конкретным образом «склеить» его в 1 функцию комплексной переменной, тогда получится дзета-функция Хассе-Вейля для кривой третьего порядка, обозначаемая буквой L. Она содержит информацию о поведении по модулю всех простых чисел сразу.

Брайан Берч и Питер Свиннертон-Дайер выдвинули гипотезу относительно эллиптических кривых. Согласно ей, структура и количество множества ее рациональных решений связаны с поведением L-функции в единице. Недоказанная на данный момент гипотеза Берча — Свиннертон-Дайера зависит от описания алгебраических уравнений 3 степени и является единственным сравнительно простым общим способом расчета ранга эллиптических кривых.

Чтобы понять практическую важность этой задачи, достаточно сказать, что в современной криптографии на эллиптических кривых основан целый класс асимметричных систем, и на их применении основаны отечественные стандарты цифровой подписи.

Равенство классов p и np

Если остальные «Задачи тысячелетия» относятся к чисто математическим, то эта имеет отношение к актуальной теории алгоритмов. Проблема, касающаяся равенства классов р и np, известная также, как проблема Кука-Левина, понятным языком может быть сформулирована следующим образом. Предположим, что положительный ответ на некий вопрос можно проверить достаточно быстро, т. е. за полиномиальное время (ПВ). Тогда правильно ли утверждение, что ответ на него можно довольно быстро отыскать? Еще проще эта задача звучит так: действительно ли решение задачи проверить не труднее, чем его найти? Если равенство классов р и np будет когда-либо доказано, то все проблемы подбора можно будет решать за ПВ. На данный момент многие специалисты сомневаются в истинности этого утверждения, хотя не могут доказать обратное.

Гипотеза Римана

Вплоть до 1859 года не было выявлено какой-либо закономерности, которая описывала бы, как распределяются простые числа среди натуральных. Возможно, это было связано с тем, что наука занималась другими вопросами. Однако к середине 19 столетия ситуация изменилась, и они стали одними из наиболее актуальных, которыми начала заниматься математика.

Гипотеза Римана, появившаяся в этот период — это предположение о том, что в распределении простых чисел существует определенная закономерность.

Сегодня многие современные ученые считают, что если она будет доказана, то придется пересмотреть многие фундаментальные принципы современной криптографии, составляющие основу значительной части механизмов электронной коммерции.

Согласно гипотезе Римана, характер распределения простых чисел, возможно, существенно отличается от предполагаемого на данный момент. Дело в том, что до сих пока не было обнаружено какой-либо системы в распределения простых чисел. Например, существует проблема «близнецов», разность между которыми равна 2. Этими числами являются 11 и 13, 29. Другие простые числа образуют скопления. Это 101, 103, 107 и др. Ученые давно подозревали, что подобные скопления существуют и среди очень больших простых чисел. Если их найдут, то стойкость современных криптоключей окажется под вопросом.

Гипотеза о циклах Ходжа

Эта нерешенная до сих пор задача сформулирована в 1941 году. Гипотеза Ходжа предполагает возможность аппроксимации формы любого объекта путем «склеивания» вместе простых тел большей размерности. Этот способ был известен и успешно применяется достаточно давно. Однако не известно, до какой степени можно производить упрощение.

Теперь вы знаете, какие нерешаемые задачи существуют на данный момент. Они являются предметом исследования тысяч ученых во всем мире. Остается надеяться, что в ближайшее время они будут решены, а их практическое применение поможет человечеству выйти на новый виток технологического развития.

fb.ru

7 математических загадок тысячелетия. Просто о сложном

Только для мыслящих людей!

"Я знаю только то, что ничего не знаю, но другие не знают и этого"
(Сократ, древнегреческий философ)

НИКОМУ не дано владеть вселенским разумом и знать ВСЁ. Тем не менее, у большинства ученых, да и тех, кто просто любит размышлять и исследовать, всегда есть стремление узнать больше, разгадать загадки. Но остались ли еще неразгаданные темы у человечества? Ведь, кажется, все уже ясно и нужно только применять полученные веками знания?

НЕ стоит отчаиваться! Еще остались нерешенные проблемы из области математики, логики, которые в 2000 году эксперты Математического института Клэя в Кембридже (Массачусетс, США) объединили в список, так называемые, 7 загадок тысячелетия (Millennium Prize Problems). Эти проблемы волнуют ученых всей планеты. С тех пор и по сей день любой человек может заявить, что нашел решение одной из задач, доказать гипотезу и получить от бостонского миллиардера Лэндона Клэя (в честь которого и назван институт) премию. Он уже выделил на эти цели 7 миллионов долларов. К слову сказать, на сегодняшний день одна из проблем уже решена.

Итак, вы готовы узнать о математических загадках?
Уравнения Навье - Стокса (сформулированы в 1822 году)

Область: гидроаэродинамика

Уравнения о турбулентных, воздушных потоках, а также течении жидкостей известны как уравнения Навье - Стокса. Если, к примеру, плыть по озеру на чем-либо, то неизбежно вокруг возникнут волны. Это касается и воздушного пространства: при полете на самолете в воздухе также будут образовываться турбулентные потоки.
Данные уравнения как раз производят описание процессов движения вязкой жидкости и являются стержневой задачей всей гидродинамики. Для некоторых частных случаев уже найдены решения, в которых части уравнений отбрасываются, как не влияющие на конечный результат, но в общем виде решения этих уравнений не найдены.
Необходимо найти решение уравнениям и выявить гладкие функции.

Гипотеза Римана (сформулирована в 1859 году)

Область: теория чисел

Известно, что распределение простых чисел (Которые делятся только на себя и на единицу: 2,3,5,7,11…) среди всех натуральных чисел не подчиняется никакой закономерности.
Над этой проблемой задумался немецкий математик Риман, который сделал свое предположение, теоретически касающееся свойств имеющейся последовательности простых чисел. Уже давно известны так называемые парные простые числа - простые числа-близнецы, разность между которыми равна 2, например 11 и 13, 29 и 31, 59 и 61. Иногда они образуют целые скопления, например, 101, 103, 107, 109 и 113.

Если такие скопления будут найдены и выведен определенный алгоритм, то это приведет к революционному изменению наших знаний в области шифрования и к невиданному прорыву в области безопасности Интернета.

Проблема Пуанкаре (сформулирована в 1904 году. Решена в 2002 году.)

Область: топология или геометрия многомерных пространств

Суть проблемы заключается в топологии и состоит в том, что если натягивать резиновую ленту, к примеру, на яблоко (сферу), то будет теоретически возможным сжать ее до точки, медленно перемещая без отрыва от поверхности ленту. Однако если эту же ленту натянуть вокруг бублика (тора), то сжать ленту без разрыва ленты или разлома самого бублика не представляется возможным. Т.е. вся поверхность сферы односвязна, в то время как тора – нет. Задача состояла в том, чтобы доказать, что односвязной является только сфера.

Представитель ленинградской геометрической школы Григорий Яковлевич Перельман является лауреатом премии тысячелетия математического института Клэя (2010 г.) за решение проблемы Пуанкаре. От знаменитой Фильдсовской премии он отказался.

Гипотеза Ходжа (сформулирована в 1941 году)

Область: алгебраическая геометрия

В реальности существуют множество как простых, так и куда более сложных геометрических объектов. Чем сложнее объект, тем труднее его изучать. Сейчас учеными придуман и вовсю применяется подход, основанный на использовании частей одного целого ("кирпичики") для изучения этого объекта, как пример - конструктор. Зная свойства «кирпичиков», становится возможным подступиться и к свойствам самого объекта. Гипотеза Ходжа в данном случае связана с некоторыми свойствами как «кирпичиков», так и объектов.
Это очень серьезная проблема алгебраической геометрии: найти точные пути и методы анализа сложных объектов с помощью простых "кирпичиков".

Уравнения Янга - Миллса (сформулированы в 1954 году)

Область: геометрия и квантовая физика

Физики Янг и Миллс описывают мир элементарных частиц. Они, обнаружив связь между геометрией и физикой элементарных частиц, написали свои уравнения в области квантовой физики. Тем самым был найден путь к объединению теорий электромагнитного, слабого и сильного взаимодействий.
На уровне микрочастиц возникает «неприятный» эффект: если на частицу действуют несколько полей сразу, их совокупный эффект уже нельзя разложить на действие каждого из них поодиночке. Это происходит по причине того, что в этой теории друг к другу притягиваются не только частицы материи, но и сами силовые линии поля.
Хотя и уравнения Янга - Миллса приняты всеми физиками мира, экспериментально теория, касающаяся предсказывания массы элементарных частиц, не доказана.

Гипотеза Берча и Свиннертон-Дайера (сформулирована в 1960 году)

Область: алгебра и теория чисел

Гипотеза связана с уравнениями эллиптических кривых и множеством их рациональных решений. В доказательстве теоремы Ферма эллиптические кривые заняли одно из важнейших мест. А в криптографии они образуют целый раздел имени себя, и на них основаны некоторые российские стандарты цифровой подписи.
Задача в том, что нужно описать ВСЕ решения в целых числах x, y, z алгебраических уравнений, то есть уравнений от нескольких переменных с целыми коэффициентами.

Проблема Кука (сформулирована в 1971 году)

Область: математическая логика и кибернетика

Ее еще называют "Равенство классов P и NP", и она является одной из наиболее важных задач теории алгоритмов, логики и информатики.
Может ли процесс проверки правильности решения какой-либо задачи длиться дольше, чем время, затраченное на само решение этой задачи (независимо от алгоритма проверки)?
На решение одной и той же задачи, порой, нужно разное количество времени, если изменить условия и алгоритмы. К примеру: в большой компании вы ищете знакомого. Если вы знаете, что он сидит в углу или за столиком - то вам понадобится доли секунд, чтобы его увидеть. Но если вы не будете знать точно, где находится объект, то затратите больше времени на его поиски, обходя всех гостей.
Основным вопросом является: все или не все задачи, которые можно легко и быстро проверить, можно также легко и быстро решить?

Математика, как может показаться многим, не так далека от реальности. Она является тем механизмом, с помощью которого можно описать наш мир и многие явления. Математика всюду. И прав был В.О. Ключевский, который изрек: «Не цветы виноваты, что слепой их не видит».

И в заключение….

Одну из самых популярных теорем математики - Великую (Последнюю) теорему Ферма: аn + bn = cn - не могли доказать 358 лет! И только в 1994 году британец Эндрю Уайлз смог дать ей решение.
Так что, дерзайте, великие умы!

www.ufamama.ru

Задачи тысячелетия, Нерешенные математические проблемы

Всем привет!

Бытует мнение, что сегодня наукой заниматься не выгодно – богатым не стать! Но надеюсь, что сегодняшний пост покажет вам, что это далеко не так. Сегодня я расскажу вам как, занимаясь фундаментальными исследованиями, можно заработать кругленькую сумму.

На любом этапе развития перед любой из наук всегда стоял ряд нерешенных проблем и задач, которые не давали покоя ученым. Физика – холодный термоядерный синтез, математика – гипотеза Гольдбаха, медицина – лекарство от рака и тд. Некоторые из них настолько важны (по тем или иным причинам), что за их решение полагается вознаграждение. И порой это вознаграждение весьма и весьма приличное.

В ряде наук этим вознаграждением может служить Нобелевская премия. Но за математические открытия ее не дают, а поговорить сегодня хотелось бы именно о математике.

Математика – царица наук, предлагает вашему вниманию море нерешенных проблем и интереснейших задач, но поговорим мы сегодня только о семи. Их еще называют «Задачами тысячелетия».

Казалось бы, задачи, да и задачи? Что в них особенного? Дело в том, что решение их не найдено на протяжении уже многих лет, да и за решение каждой из них институт имени Клэя пообещал вознаграждение в размере 1 миллиона долларов! Согласитесь, не мало. Конечно не «Нобелевка», размер которой, примерно, 1,5 миллиона, но тоже сойдет.

Вот их список:

  • Равенство классов P и NP
  • Гипотеза Ходжа
  • Гипотеза Пуанкаре (решена)
  • Гипотеза Римана
  • Квантовая теория Янга — Миллса
  • Существование и гладкость решений уравнений Навье — Стокса
  • Гипотеза Бёрча — Свиннертон-Дайера

Итак, давайте рассмотрим подробнее каждую из них.

 

1.Равенство классов P и NP

Эта задача является одной из важнейших задач в теории алгоритмов, и, держу пари, многие из вас хоть и косвенно о ней слышали. Что это за проблема и в чем ее суть? Представьте, что есть некий класс задач, на которые мы можем быстро давать ответ, то есть быстро находить для них решение. Этот класс задач в теории алгоритмов называю P классом. А есть класс задач, для которых мы можем быстро проверить правильность их решения – это NP класс. И доселе, не известно равны ли эти классы или нет. То есть не известно, можно ли, хоть в теории, найти такой алгоритм по которому мы сможем так же быстро находить решение поставленной задачи, как и проверять его правильность.

Классический пример. Пусть дано множество чисел, например: 50, 2, 47, 5, 21, 4, 78, 1. Задача: можно ли подобрать среди этих чисел такие, что их сумма даст 100? Ответ: можно, например 50+47+2+1 = 100. Проверить верность решения просто. Четыре раза применим операцию сложения и все. Толи дело подобрать эти числа. На первый взгляд это сделать гораздо сложнее. То есть найти решение задачи сложнее, чем его проверить. С точки зрения банальной эрудиции так оно и есть, но математически это не доказано, и остается надежда на то что это не так.

И что с этого? Что с того, если окажется что классы P и NP  окажутся равны? Все просто. Равенство классов означает то, что существуют алгоритмы решения многих задач, которые работают гораздо быстрее, чем ныне известные (как было сказано выше).

Естественно, была предпринята далеко не одна попытка доказать или опровергнуть эту гипотезу, но ни одна не увенчалась успехом. Последней была попытка индийского математика Винэя Деолаликара. По мнению автора формулировки проблемы, Стивена Кука, это решение было «относительно серьёзной попыткой решить проблему P vs NP». Но, к сожалению, в представленном доказательстве был найден ряд ошибок, которые автор пообещал исправить.

 

2.Гипотеза Ходжа

Сложное есть сумма простых составляющих. В результате изучения сложных объектов математики разработали методы их аппроксимации посредствам склеивания объектов возрастающей размерности. Но пока не выяснено, до какой степени можно проводить подобного рода аппроксимацию, и остается неясна геометрическая природа некоторых объектов, которые используются при аппроксимации.

3.Гипотеза Пуанкаре

Гипотеза Пуанкаре на сегодняшний момент является единственной из семи задач тысячелетия, которая была решена. Отрадно заметить, что автором решения стал наш соотечественник Григорий Яковлевич Перельман, по совместительству гений-затворник. О нем можно много и интересно рассказывать, но сосредоточимся на самой гипотезе.

Формулировка:

Всякое односвязное компактное трёхмерное многообразие без края гомеоморфно трёхмерной сфере.

Или обобщенная гипотеза Пуанкаре:

Для любого натурального числа n всякое многообразие размерности n гомотопически эквивалентно сфере размерности n тогда и только тогда, когда оно гомеоморфно ей.

По-простому, суть проблемы в следующем. Если взять яблоко и обтянуть его резиновой пленкой, то мы, с помощью деформаций, не разрывая пленку, можем превратить яблоко в точку или кубик, но никоим образом не сможем превратить его в бублик. Кубик, трехмерная сфера и даже трехмерное пространство идентичны друг другу, с точностью до деформации.

Не смотря на столь простую формулировку, гипотеза оставалась не доказанной на протяжении сотни лет. Хотя в математике, порой, чем проще формулировка, тем сложнее доказательство (все помним о Великой теореме Ферма).

Вернемся к товарищу Перельману. Этот господин знаменит еще тем, что отказался от положенного ему миллиона, заявив следующее: «Зачем мне ваши деньги, если у меня в руках вся Вселенная?» Я бы так не смог. Вследствие отказа выделенный миллион был пожалован молодым французским и американским математикам.

Напоследок хотелось бы заметить, что гипотеза Пуанкаре не имеет совершенно никакого практического применения(!!!).

 

4.Гипотеза Римана.

Гипотеза Римана является, наверное, самой известной (на ряду с гипотезой Пуанкаре) из семи задач тысячелетия. Одной из причин ее известности среди людей профессионально не занимающихся математикой в том, что она имеет весьма простую формулировку.

Все нетривиальные нули дзета-функции Римана имеют действительную часть равную ?.

Согласитесь, весьма просто. И кажущаяся простота являлась причиной многих попыток доказать сею гипотезу. К сожалению, пока безрезультатно.

Большое количество безрезультатных попыток доказать гипотезу Римана породило сомнение о ее справедливости среди некоторых математиков. Среди них Джон Литлвуд. Но ряды скептиков не столь много числены и большая часть математического сообщества склонны считать, что гипотеза Римана, все же, верна. Косвенным подтверждением этого является справедливость ряда схожих утверждений и гипотез.

Многие алгоритмы и утверждения в теории чисел были сформулированы с допущением, что вышеуказанная гипотеза верна. Таким образом доказательство справедливости гипотезы Римана утвердит фундамент теории чисел, а ее опровержение теорию чисел «пошатнет» в самом основании.

И, напоследок, один довольно известный, но весьма интересный факт. Однажды у Давида Гильберта спросили: «Каковы будут ваши первые действия, если вы проспите 500 лет и проснетесь?» — «Я спрошу, доказана ли гипотеза Римана».

 

5.  Теория Янга — Миллса

Одна из калибровочных теорий квантовой физики с неабелевой калибровочной группой. Данная теория была предложена в середине прошлого века, но долгое время рассматривалась как чисто математический прием, не имеющий никакого отношения к реальной природе вещей. Но позже на основе теории Янга-Миллса были построены основные теории Стандартной модели — квантовая хромодинамика и теория слабых взаимодействий.

 

Формулировка проблемы:

 

Для любой простой компактной калибровочной группы  квантовая теория Янга — Миллса для пространства  существует и имеет ненулевой дефект массы.

Теория отлично подтверждается результатами экспериментов и результатам компьютерного моделирования, но теоретического доказательства не получила.

 

6.  Существование и гладкость решений уравнений Навье — Стокса

Одна из самых важных задач гидродинамики, и последняя из нерешенных проблем классической механики.

Уравнение Навье—Стокса дополненное уравнениями Максвелла, уравнениями переноса тепла и тд, используется при решении многих задач электрогидродинамики, магнитогидродинамики, конвекции жидкосте и газов, теплодифузии и тд.

Сами уравнения представляют из себя систему уравнений в частных производных. Уравнения состоят из двух частей:

  • уравнения движения
  • уравнения неразрывности

Нахождение полного аналитического решения уравнений Навье—Стокса сильно осложняется их нелинейностью и сильной зависимостью от граничных и начальных условий.

 

7. Гипотеза Бёрча — Свиннертон-Дайера

Последняя из проблем тысячелетия — это гипотеза Бёрча — Свиннертон-Дайера.

Гипотеза утверждает, что

ранг эллиптической кривой r над Q равен порядку нуля дзета-функции Хассе—Вейля

E(L,s) в точке s = 1.

Данная гипотеза единственный относительно простой способ определения ранга эллиптических кривых, которые, в свою очередь, являются основными объектами изучения современной теории чисел и криптографии.

 

Вот и все проблемы тысячелетия. Прошу прощения, за то, что некоторые проблемы освещены гораздо меньше остальных. Это связано с отсутствием информации по данным проблемам и невозможностью довольно просто (без привлечения громоздкой и сложной математики) изложить их суть.  За решение каждой из проблем институт Клея объявил награду в 1 миллион долларов. Дерзайте! Есть шанс неплохо заработать, двигая вперед фундаментальную науку, ведь шесть из семи проблем пока так и не дождались своего решения.

neudoff.net

Великие проблемы математики на сайте Игоря Гаршина. Величайшие математические загадки

Великие проблемы математики на сайте Игоря Гаршина. Величайшие математические загадки

Хорошая теория – самая практичная вещь на свете.

"Математика содержит в себе черты волевой деятельности, умозрительного рассуждения и стремления к эстетическому совершенству. Ее основные и взаимно противоположные элементы - логика и интуиция, анализ и конструкция, общность и конкретность..." (Р. Курант, Г. Роббинс. Что такое математика?)

Американский математик Джно Данциг, будучи аспирантом, опоздал на урок и принял написанные на доске уравнения за домашнее задание. Оно ему показалось сложнее обычного, но через несколько дней он смог его выполнить. Оказалось, что он решил - 2 "нерешаемые" проблемы в статистике, над которыми бились многие ученые. [Неужели правда?]

В  течение тысячелетия математика породила 7 величайших загадок. 25 мая 2000 г. Институт математики Клея объявил о награде в $1 млн за решение каждой из этих главных математических проблем. Их обзорный список:

  1. Уравнение Навье-Стокса о турбулентных потоках, 1822 [гидроаэродинамика]. Решения этих уравнений неизвестны [эмпирические степенные функции-многочлены?], и при этом даже неизвестно, как их решать. Необходимо показать, что решение существует и является достаточно гладкой функцией. Это позволит существенно изменить способы проведения гидро- и аэродинамических расчетов. [Интегрирование криволинейных тензоров как матрицы роторов и дивергенций?].
  2. Гипотеза Римана, 1859 [теория чисел]. Считается, что распределение простых чисел среди натуральных не подчиняется никакой закономерности. Однако немецкий математик Риман высказал предположение, касающееся свойств последовательности простых чисел. Если гипотеза Римана будет доказана, то это приведет к революционному изменению наших знаний в области шифрования и к невиданному прорыву в области безопасности Интернета.
  3. Гипотеза Пуанкаре, 1904 [топология или геометрия многомерных пространств]: всякое односвязное замкнутое трехмерное многообразие гомеоморфно трехмерной сфере [т.е. 4-мерного тороида быть не может, а наша Вселенная - трехмерная сфера?].
  4. Гипотеза Ходжа, 1941 [алгебра, топология?]. В ХХ веке математики открыли мощный метод исследования формы сложных объектов - использование вместо самого объекта простых "кирпичиков", которые склеиваются между собой и образуют его подобие [разве это не есть "кубические интегралы"?]. Гипотеза Ходжа связана с некоторыми предположениями относительно свойств таких "кирпичиков" и объектов.
  5. Теория Янга-Миллса [связь геометрии с квантовой физикой], 1954. Уравнения квантовой физики описывают мир элементарных частиц. Физики Янг и Миллс, обнаружив связь между геометрией и физикой элементарных частиц [!!!], написали свои уравнения. Тем самым они нашли путь к объединению теорий электромагнитного, слабого и сильного взаимодействий [!!]. Из уравнений Янга-Миллса следовало существование частиц, которые действительно наблюдались в лабораториях, поэтому теория Янга - Миллса принята большинством физиков. несмотря на то, что в рамках этой теории до сих пор не удается предсказывать массы элементарных частиц.
  6. Гипотеза Берча и Свиннертона-Дайера, 1960 [алгебра и теория чисел?]. Связана с описанием множества решений некоторых алгебраических уравнений от нескольких переменных с целыми коэффициентами. Примером подобного уравнения является выражение x2 + y2 = z2. [Гипотеза Пьера Ферма - частный случай гипотезы Берча и Свиннертона-Дайера? А нельзя ли ее также доказать с помощью модальных функций?]
  7. Гипотеза Кука, 1971 [математическая логика и кибернетика?]: может ли проверка правильности решения задачи быть более длительной, чем само получение решения, независимо от алгоритма проверки? Эта проблема - также одна из нерешенных задач логики и информатики. Ее решение революционно изменило бы основы криптографии [также как и доказательство гипотезы Римана - ниже].
  8. И ещё одна большая тайна в математике, восьмая - Гипотеза Эстерле-Массера, 1988? (также из теории чисел).

Разделы страницы о нерешённых проблемах математики:

Смотрите также о нерешённых проблемах физики.


  • Семь величайших загадок математики. Михаил Витебский
  • Приз в 1 миллион долларов за решение каждой из семи математических проблем.

Диофант Александрийский (3-й век) - древнегреческий математик. В основном труде "Арифметика" (сохранились 6 книг из 13) [ее любил штудировать Пьер Ферма] дал решение задач, приводящихся к т.н. диофантовым уравнениям (решения которых только в целых числах), и впервые ввел буквенную символику в алгебру.

Задачи по теории чисел принадлежат к области высшей арифметики.

Гипотеза Берча-Свиннертона-Дайера

Берч и Свиннертон-Дайер предпoложили, что числo решений опрeделяeтся значением связанной с уравнением дзета-функции в точке 1: если значение дзета-функции в точке 1 равно 0, то имеется бескoнечнoе число решeний, и наобopот, если не равно 0, то имеется только конечное число таких решений (например, доказательство отсутствия целых решений уравнения xn + yn = zn [ВТФ]).

  • Проблемы 2000 года: Гипотеза Берча-Свиннертон-Дайера.
  • Ученые нашли решение древней математической задачи. Задача 1000-летней давности заключается в вычислении натурального числа, способного составлять площадь прямоугольного треугольника, стороны которого представлены выраженными рациональными числами. Значение площади такого треугольника и называется конгруэнтным. Наименьшее известное конгруэнтное число - 5 (длины сторон соответствующего ему треугольника - 3/2, 20/3 и 41/6). Потом следуют 6, 7, 13, 14, 15, 20 и так далее. Существует простое правило: если число s конгруэнтно, то конгруэнтным будет и число s?n2, где n - натуральное. Таким образом, основная сложность здесь - это именно поиск новых конгруэнтных чисел, свободных от квадратов. Возможное доказательство тесно связано с одной из открытых проблем современной математики - гипотезой Бёрча и Свиннертон-Дайера.

Гипотеза Римана и распределение простых чисел

Простые числа (те, которое делится без остатка только на единицу и на само себя) - это ключ к разрешению многих математических проблем, они также играют большую роль в криптографии (шифровании), благодаря чему интересуют не только математиков, но и военных, разведку и контрразведку. Первым проблему определения простых чисел поставил древнегреческий ученый Эратосфен примерно в 220 году до нашей эры, предложив один из путей определения простых чисел. С тех пор ученые постепенно продвигались вперед.

Знаменитая «Гипотеза Римана» была сформулирована немецким математиком Георгом Фридрихом Бернардом Риманом в 1859 году. Согласно ей, характер распределения простых чисел может существенно отличаться от предполагаемого в настоящее время. Дело в том, что математикам до сих пор не удавалось обнаружить какой-либо системы в характере распределения простых чисел. Так, считается, что в окрестности целого числа х среднее расстояние между последовательными простыми числами пропорционально логарифму х. Тем не менее, уже давно известны так называемые парные простые числа (простые числа-близнецы, разность между которыми равна 2): 11 и 13, 29 и 31, 59 и 61. Иногда они образуют целые скопления, например 101, 103, 107, 109 и 113. У математиков давно существовало подозрение, что такие скопления существуют и в области очень больших простых чисел, однако ни доказать, ни опровергнуть это утверждение до сих пор не удавалось. Если такие «кластеры» будут найдены, стойкость криптографических ключей, используемых в настоящее время, может в одночасье оказаться под очень большим вопросом.

Математическое сообщество в полной мере оценило важность задачи — гипотеза Римана была признана одной из 7 важнейших научных проблем тысячелетия. Институт математики Clay в США предложил $1 млн. за ее доказательство либо опровержение. Преамбула с "Арбузного блога".

Великая теорема Ферма [частный случай гипотезы БСД?]

Статьи о Великой Теореме Ферма
  • Великая теорема Ферма.
Статьи математиков (любителей и профессионалов) с попыткой доказать ВТФ

Читайте также статью В.А. Белотелова и статьи в сборнике А.Ф. Рудыкина (помещены выше в разделе о проблеме распределения простых чисел).

  • Доказательство ВТФ Смолиным. И ряд статей с гипотезами и решениями по Великой Теореме.
  • Гипотеза П. Ферма или его Великая теорема? Рудыкин А. Ф. Zip [100K] | Word Doc [630K]. Автором в доступной форме изложено доказательство Великой теоремы Ферма. Доказательство основано на уравнении из книги: Gerhard Frey, Links between stable elliptic curves and certain Diophantine equations, Ann. Univ. Saraviensis, Series Mathematicae 1 (1986), 1-40.
  • Статьи А.А. Назарова:
    1. Элементарное доказательство Великой теоремы Ферма и его обобщение - Zip. [8К] | Word Doc [40K]. Арону Рувимовичу Майзелису, школьному учителю, посвящается.
    2. Элементарное доказательство Великой теоремы Ферма для школьников старших классов - Word Doc [120K]. Доказательство ВТФ, которое доведено до школьного уровня. Доказательство основывается на геометрическом представлении натурального числа в его аксиоматическом определении. Центральным соотношением xn-1 + yn-1 – zn-1 = (x + y – z)n-1 дается обоснование справедливости доказательств из предыдущей статьи. Само предлагаемое доказательство, методически, может оказаться полезным для средней школы (6-9 классы) в качестве одного из приемов введения в комбинаторику и теорию групп. Имеется также самое краткое, на взгляд автора, доказательство ВТФ, 3 части которого находятся в Zip-архиве. [27К] |
    3. Об элементарном доказательстве ВТФ: Word Doc [80K].
  • Великая теорема Ферма Сорокин.: Zip [25K] | Word Doc [100K].

Гипотеза Эстерле-Массера

Независимо друг от друга abc-гипотеза предложена математиками Дэвидом Массером в 1985 году и Джозефом Эстерле в 1988 году, а ее решение составляет одну из главных проблем теории чисел. Гипотеза утверждает, что для любого действительного числа r > 1 существует не более конечного числа троек натуральных чисел a, b и c таких, что для них выполняются условия: a + b = c; a, b и c взаимно просты в совокупности (то есть у них нет общих делителей) и c > rad (abc)r.

Радикалом (rad) натурального числа N называется число, которое представляет собой произведение всех различных простых (отличных от единицы чисел, делящихся только на себя и на единицу) делителей числа N. Например, rad(15) = 15, так как у этого числа простые делители 3 и 5, а rad(18) = 6, поскольку простых делителей у числа 18 ровно два — это 3 и 2.

Гипотеза Эстерле-Массера важна для теории диофантовых уравнений, а ее справедливость позволит провести еще одно доказательство великой теоремы Ферма для больших степеней.

  • «Японский Перельман» согласился объяснить главнейшую тайну математики. Доказательство Мотидзуки занимает более 500 страниц текста, а понять и проверить его способно небольшое число математиков. У эксперта может уйти до 500 часов работы для понимания доказательства, тогда как у математика-аспиранта это займет около десяти лет.

Статьи математиков-энтузиастов по решению задач теории чисел

Гипотезы и возможные доказательства решения проблем простых чисел, в т.ч. Диофантовых уравнений, проблем Ландау и Гольдбаха.

  • Белотелов В.А. (г. Заволжье) - статьи о числах:
  • Богомолов Сергей. Локализация области поиска сомножителей произведения простых чисел: RTF-файл [21K].
  • Немлихер И.А., Немлихер Е.А., Никулин Г.И. Методика определения делимости чисел натурального числового ряда и ее практическое применение. Можете скачать статью [RTF, упакованный в ZIP 30К] или загрузить сам RTF-файл [320 Кбайт].
  • Рудыкин А.Ф. Некоторые «доказательства»: Великая теорема Ферма и прочее: Zip-файл [400 К, упакованные в 90 К]. Предлагаемая статья призвана послужить исключению распространенных ошибок при доказательстве Великой теоремы Ферма и других математических задач. Представлено:
    1. 1. Завершение проблемы Великой теоремы Ферма (Бледнов В. А., 2004).
    2. 2. Теорема Ферма. Бесконечный спуск для нечётных показателей n (А. Ф. Горбатов).
    3. 3. Доказательство теоремы Ферма методами элементарной алгебры (Бобров А.В.).
    4. 4. Великая теорема Ферма – два коротких доказательства (Бобров А.В. - доказательство аналогично предыдущему).
    5. 5. Доказательство Великой теоремы Ферма с помощью метода бесконечных (неопределенных) спусков (А.В. Тарасов, 2008).
    6. 6. Алгоритм решения Диофантовых уравнений (X Всероссийский симпозиум по прикладной и промышленной математике. Санкт-Петербург, 19 мая 2009 г.). В работе рассмотрен метод исследования Диофантовых уравнений и представлены решенные этим методом: - Великая теорема Ферма; - Уравнение Пелля; - поиск Пифагоровых троек; - Уравнение Каталана; - уравнение Гипотезы Билля; - уравнения эллиптических кривых и др.
    7. 7. Общее доказательство Гипотезы Биля, Великой теоремы Ферма и Теоремы Пифагора (Н.М. Козий, 2007).
    8. 8. Закономерность распределения простых чисел в ряду натуральных чисел (Белотелов В.А., 2008).
  • Фомюк Г.А., Кудина Е.А. Закономерность распределения простых чисел в натуральном числовом ряду. Доказательство гипотезы Римана. Скачать книгу можно со страниц по обзору этой работы ("Гипотеза Римана доказана?"): на русском, а также Zip [90K] на этом сайте.
    Геннадий и Елена Фомюки нашли простую (арифметическую) формулу для нахождения простых чисел:
    Q = A + 18 * X, где Q - искомое простое число, A – базовое простое число (1, 5, 7, 11, 13 или 17), x – любое натуральное число (1, 2, 3, 4, …).
    [Правда, эта формула в ряде случаев (нашел пока 2) дает и квадраты простых чисел: 7 + 18 * 1 = 25 = 52, 13 + 18 * 2 = 49 = 72.
    Справедливости ради заметим, что это доказательство критикуется другими исследователями.
  • Статьи Александра Щербакова о чётных числах:

Научные новости о попытках решения проблем с простыми числами

  • Математики справились с задачей, мучившей человечество 2200 лет. [Утро.ру] В последние десятилетия на помощь математикам в проверке делимости огромных чисел пришли компьютеры. Трое математиков индийского института технологии в городе Канпур, объявили, что разработали метод, позволяющий безошибочно и быстро определять, простым ли является то или иное число.

Геометрия многомерных пространств и гипотеза Пуанкаре

Над гипотезой о вероятных формах Вселенной бились лучшие умы 20 века.

Решение гипотеза Пуанкаре Григорием Перельманом

Российский математик Григорий Перельман решил гипотезу Пуанкаре. В 2002-2003 годах он совершил прорыв, предложив ряд новых идей. Он развил и довел до конца метод, предложенный в 1980-е годы Ричардом Гамильтоном. В своих работах Перельман утверждает, что построенная им теория позволяет доказать не только гипотезу Пуанкаре, но и гипотезу геометризации Тёрстона.

Суть метода состоит в том, что для геометрических объектов можно определить некоторое уравнение «плавной эволюции», похожее на уравнение ренормализационной группы в теорфизике. Исходная поверхность в ходе этой эволюции будет деформироваться и, как показал Перельман, в конце концов плавно перейдет именно в сферу. Сила этого подхода состоит в том, что, минуя все промежуточные моменты, можно сразу заглянуть «в бесконечность», в самый конец эволюции, и обнаружить там сферу.

В  2002 году Г. Перельман опубликовал решение гипотезы Пуанкаре, и до сих пор ни один пристрастный анализ не нашел в нем ошибки.

Г.Перельман родился 13 июня 1966 года в Ленинграде, в семье служащих [Папа - физик, написавший известный учебник]. Окончил знаменитую среднюю школу № 239 с углубленным изучением математики. В 1982 году в составе команды советских школьников участвовал в Международной математической олимпиаде, проходившей в Будапеште. Был без экзаменов зачислен на матмех Ленинградского государственного университета. Побеждал на факультетских, городских и всесоюзных студенческих математических олимпиадах. Получал Ленинскую стипендию. Окончив университет, Перельман поступил в аспирантуру при Санкт-Петербургском отделении Математического института им.В.А.Стеклова. Кандидат физико-математических наук. Работает в лаборатории математической физики [работал].
  • Полное доказательство гипотезы Пуанкаре предъявлено уже тремя независимыми группами математиков.
  • Notes and commentary on Perelman's Ricci flow papers.
  • Ученый отказался от награды. Гениальный математик Перельман уже отказался от европейской математической премии и, возможно, откажется от миллионного вознаграждения и медали Филда. [Взгляд]
  • Научный мир боится странностей российского гения.
  • Россиянин решил знаменитую математическую задачу. Шэрон Бегли.
  • Математик Перельман отказался от высшей награды. Ему присудили медаль заочно. Г.Перельман заявил американским журналистам, что принял такое решение в знак протеста против царящих в современном математическом мире нравов. По его мнению большинство математиков – люди честные, но они почему-то мирятся с существованием рядом с собой всяких шарлатанов. [2006]
  • Григорий Перельман не отказывался от миллиона. Он не принял медаль Филдса.

Топология и гипотеза Ходжа

Гипотеза Ходжа сформулирована в 1941 году и состоит в том, что для особенно хороших типов пространств, называемых проективными алгебраическими многообразиями, так называемые циклы Ходжа являются комбинациями объектов, имеющих геометрическую интерпретацию, — алгебраических циклов.

В XX веке математики изобрели мощные методы исследования формы сложных объектов. Основная идея состоит в том, чтобы выяснить, до какой степени мы можем аппроксимировать форму данного объекта, склеивая вместе простые тела возрастающей размерности. Этот метод оказался эффективным при описании разнообразных объектов встречающихся в математике. При этом были не ясны геометрические обоснования метода: в некоторых случаях было необходимо прибавлять части, которые не имели никакого геометрического истолкования.

Доказать гипотезу Ходжа удалось для некоторых частных случаев. Более общее доказательство пока не найдено, не найдено и доказательство обратного — что гипотеза неверна.

  • Проблемы 2000 года: гипотеза Ходжа. [2005]

Квантовая физика и геометрия (гипотеза Янга-Миллса)

Тео́рия Я́нга—Ми́ллса — калибровочная теория с неабелевой калибровочной группой. Калибровочные поля в этой теории называются полями Янга — Миллса. Такие теории были предложены в 1954 году Чж. Янгом (Yang) и Р. Миллсом (Mills), однако долгое время рассматривались лишь как математические изыски, не имеющие отношения к реальности.

Несмотря на это, именно на основе теорий Янга — Миллса в 1970-х годах были созданы две краеугольные теории Стандартной Модели в физике элементарных частиц: квантовая хромодинамика (теория сильных взаимодействий) на основе группы SU(3) и теория электрослабых взаимодействий на основе группы SU(2).

  • Теория Янга-Миллса. [Компутерра]

Теория графов и теорема Шварца-Кристоффеля

Теорема Шварца — Кристоффеля относится к теории функций комплексного переменного и носит название немецких математиков Карла Шварца и Элвина Кристоффеля. Она касается проблемы о конформном отображении некой канонической области (единичного круга Δ или верхней полуплоскости H+) на внутренность произвольного многоугольника. Теорема дает общий вид таких отображений, что важно с практической точки зрения.

Сформулированная 140 лет назад формула Шварца–Кристоффеля является незаменимой для проектирования различных объектов, включая здания, мосты, а также самолеты. Она определяет уровень внешней и внутренней сопротивляемости структуры и степень запаса ее прочности. Однако классическая формула не могла быть применена для сложных объектов, имеющих отверстия и сложные формы.

  • Британский профессор решил теорему Шварца–Кристоффеля.
  • Доказательства великих завихрений.

Уравнение Навье-Стокса

Уравнения Навье — Стокса описывают движение вязкой ньютоновской жидкости и являются основой гидродинамики. Численные решения уравнений Навье — Стокса используются во многих практических приложениях и научных работах. Однако в аналитическом виде решения этих уравнений найдены лишь в некоторых частных случаях, поэтому нет полного понимания свойств уравнений Навье — Стокса. В частности, решения уравнений Навье — Стокса часто включают в себя турбулентность, которая остаётся одной из важнейших нерешённых проблем в физике, несмотря на её огромную важность для науки и техники. (Существование и гладкость решений уравнений Навье — Стокса, Википедия)

Среди 7 проблем тысячелетия 6-я проблема является чисто прикладной задачей. От ее решения зависит качество проектирования самолетов, ракет, снарядов, гидротурбин, подводных лодок, газо- и нефтепроводов. В биологии и медицине решение этого уравнения дает всю правду о течении крови в сосудах, жидкости в клетках сосудов и т.д.

Решить уравнения Навье-Стокса не могут с 1822 года. Более того, не могут доказать: правильно ли мы решаем это уравнение, а их приходится решать на компьютерах в силу большой размерности, где 3 - уже много. Поэтому, прежде, чем вычислять, надо доказать теорему существования и единственности решения (СЕР), что составляет суть проблемы и важно потому, что аварии на газопроводах, гидростанциях, авиакатастрофы могут оказаться следствием неправильных расчетов уравнения Навье-Стокса, а не слепой случайности. (Чоро Тукембаев)

  • Американка Пенелопа Смит (Penelope Smith) из Университета Лихай (Lehigh University, Вифлеем, штат Пенсильвания) опубликовала 26.09.2006 сатью "Immortal Smooth Solution of the Three Space Dimensional Navier-Stokes System". Она выяснила, что уравнения Навье-Стокса могут быть перезаписаны в форме дифференциальных уравнений, которые она знала, как решать. В статье представлено это решение и она уверена в нём. Смит когда-то также посещала те же самые семинары, что и наш Григорий Перельман. Большой вклад в развитие теории уравнений Навье-Стокса внесла некогда и наша петербургская женщина-математик - Ольга Ладыженская. Главным результатом Ладыженской в этой области стало полное решение проблемы в двумерном случае.
  • Статьи Чоро Тукембаева:
  • Работы Талайбека Омурова, Кыргызстан:
  • Работы Намаза Алтаева (Казахстан, г.Шымкент): Намаз считает, что принятые подходы к решению уравнений Эйлера и Навье-Стокса методами математической физики ведут в тупик. Он полагает, что природу этих уравнений можно удовлетворительно интерпретировать, если за основу анализа брать основополагающие принципы теоретической и эмпирической физики.

Задача притяжения трех тел

Задача о движении трех материальных точек под действием ньютоновских сил взаимного притяжения — «задача трех тел» — получила в математике, механике и астрономии широкую известность. Достаточно просмотреть посвященные этой задаче главы в книгах Уиттекера, Биркгофа, Зигеля и статьи Арнольда и Смейла, чтобы убедиться в богатстве и плодотворности круга идей, так или иначе обязанных ей своим возникновением. [Странно, почепму это математическая, а не физическая задача.]

Задача трех тел описывается системой дифференциальных уравнений; ей соответствует фазовый поток в 18-мерном фазовом пространстве.

  • Сербские физики нашли новые решения ньютоновской задачи трех тел.
  • Найдено 152 новых решения ньютоновской задачи трех тел.

Гипотеза Кука

Может ли проверка правильности решения задачи быть более длительной, чем само получение решения, независимо от алгоритма проверки? Недавно установлена связь между гипотезой Ж.Эдмондса и проблемой С.А.Кука.

Допустим, находясь в большой компании, Вы хотите убедиться, что там же находится Ваш знакомый. Если Вам скажут, что он сидит в углу, то Вам достаточно доли секунды, чтобы, бросив взгляд, убедиться в истинности информации. В отсутствии этой информации Вы будете вынуждены обойти всю комнату, рассматривая гостей. Точно так же, если кто-то сообщит Вам, что число 13717421 можно представить, как произведение двух меньших чисел, непросто быстро убедиться в истинности информации, но если Вам сообщат, что исходное число можно разложить на множители 3607 и 3803, то это утверждение легко проверяется с помощью калькулятора.

Это примеры иллюстрируют общее явление: решение какой-либо задачи часто занимает больше времени, чем проверка правильности решения. Стивен Кук сформулировал проблему: может ли проверка правильности решения задачи быть более длительной, чем само получение решения, независимо от алгоритма проверки. Эта проблема является одной из нерешенных проблем логики и информатики. Ее решение могло бы революционным образом изменить основы криптографии, используемой при передаче и хранении данных.

Обзоры. статьи и новости о других важных математических проблемах и задачах: проблемах Гилберта, теореме Атия-Сингера...

ABC-гипотеза (гипотеза Эстерле-Массера)

Независимо друг от друга abc-гипотеза предложена математиками Дэвидом Массером в 1985 году и Джозефом Эстерле в 1988 году. Ее решение составляет одну из главных проблем теории чисел. Гипотеза утверждает, что для любого действительного числа r > 1 существует не более конечного числа троек натуральных чисел a, b и c таких, что для них выполняются условия: a + b = c; a, b и c взаимно просты в совокупности (то есть у них нет общих делителей) и c > rad(abc)r.

Радикалом (rad) натурального числа N называется число, которое представляет собой произведение всех различных простых (отличных от единицы чисел, делящихся только на себя и на единицу) делителей числа N. Например, rad (15) = 15, так как у этого числа простые делители 3 и 5, а rad (18) = 6, поскольку простых делителей у числа 18 ровно два — это 3 и 2.

Гипотеза Эстерле-Массера важна для теории диофантовых уравнений, а ее справедливость позволит провести еще одно доказательство великой теоремы Ферма для больших степеней.

И вот, в 2012 году японский математик Синъити Мотидзуки представил доказательство abc-гипотезы, которое занимает более 500 страниц текста. Понять и проверить его способно небольшое число математиков. У эксперта может уйти до 500 часов работы для понимания доказательства, тогда как у математика-аспиранта это займет около 10 лет. В настоящее время проверкой работы Мотидзуки занимаются десять математиков. Отдельные этапы доказательства математика ясны, но «всеобъемлющая стратегия остается совершенно неуловимой». Считается, что проверить корректность доказательства Мотидзуки удастся к 2017 году,

Работа японского ученого содержит революционные идеи и использует оригинальные обозначения, ранее не встречавшиеся в математической литературе.

  • Доказательство «японского Перельмана» совершило революцию в математике. [29.07.16]

Атия-Сингера теорема

Теорема Атьи — Зингера об индексе — один из наиболее популярных математических результатов последнего пятилетия. Такой интерес к проблеме индекса объясняется ее положением на стыке анализа и топологии, а также тем, что для ее решения потребовались новейшие математические разработки.

  • Пале. Р. Семинар по теореме Атьи - Зингера об индексе.

Гильберта проблемы

Пробле́мы Ги́льберта — список из 23 кардинальных проблем математики, представленный Давидом Гильбертом на II Международном Конгрессе математиков в Париже в 1900 году. Тогда эти проблемы (охватывающие основания математики, алгебру, теорию чисел, геометрию, топологию, алгебраическую геометрию, группы Ли, вещественный и комплексный анализ, дифференциальные уравнения, математическую физику и теорию вероятностей, а также вариационное исчисление) не были решены.

На данный момент решены 16 проблем из 23. Ещё 2 не являются корректными математическими проблемами (одна сформулирована слишком расплывчато, чтобы понять, решена она или нет, другая, далёкая от решения, — физическая, а не математическая). Из оставшихся 5 проблем две не решены никак, а три решены только для некоторых случаев. (Из Википедии)

  • Проблемы Гильберта.
  • 23 проблемы Гильберта. Сборник комментариев

Новые математические гипотезы

  • Thurston's Geometrization Conjecture. Гипотезы геометризации

Новости о "неключевых", но важных математических достижениях

  • Высшей награды в области математики удостоена работа 40-летней давности. Высшая награда в области математики - норвежская Премия Абеля – присуждена двум ученым: британцу сэру Майклу Фрэнсису Атьи и Айсадору М. Зингеру из США за работу на стыке двух наук – физики и математики. Норвежская Академия наук и литературы выделила 6 млн крон "за их открытие и доказательство теоремы об индексе с помощью топологии, геометрии и математического анализа, а также за их выдающуюся роль в создании новых связей между математикой и теоретической физикой". 75-летний Атья из университета Эдинбурга и 79-летнйи Зингер из технологического института Массачусетса еще 40 лет назад разработали то, что сейчас называется теоремой Атия-Сингера. [2004]


Ключевые слова для поиска сведений о великих математических загадках и проблемах:

На русском языке: великие проблемы математики, величайшие математические загадки, доказательство Перельмана, гипотеза Римана, Пуанкаре, Ходжа, Кука, Берча, Свиннертона-Дайера, проблемы Гильберта, Гольдбаха, Ландау, теория Янга-Миллса, Великая теорема Ферма, уравнение Навье-Стокса, закономерность распределение простых чисел, премия Института математики Клея, главные достижения математиков; На английском языке: mathematic problems.

www.garshin.ru

Хочу учиться - нерешенные задачи


Главная страница - » Задачи человечества

 ЗАДАЧИ МАТЕМАТИКИ, НЕ РЕШЕННЫЕ ЧЕЛОВЕЧЕСТВОМ

 

 

Задачи Гильберта

23 важнейших проблем математики были представлены величайшим немецким математиком  Давидом Гильбертом на  Втором Международном конгресе математиков в Париже в 1990 году. Тогда эти проблемы (охватывающие основания математики, алгебру, теорию чисел, геометрию, топологию, алгебраическую геометрию, группы Ли, вещественный и комплексный анализ, дифференциальные уравнения, математическую физику, вариационное исчисление и теорию вероятностей, не были решены. На данный момент решены 16 проблем из 23. Ещё 2 не являются корректными математическими проблемами (одна сформулирована слишком расплывчато, чтобы понять, решена она или нет, другая, далёкая от решения, — физическая, а не математическая). Из оставшихся 5 проблем две не решены никак, а три решены только для некоторых случаев

 

Задачи Ландау

До сих пор существует много открытых вопросов, связанных с простыми числами (простое число - это число, которое имеет отлько два делителя: единицу и само это число). Наиболее важные вопросы  были перечислены Эдмундом Ландау на Пятом Междунанародном математическом конгресе:

Первая проблема Ландау (проблема Гольдбаха): верно ли, что каждое чётное число, большее двух, может быть представлено в виде суммы двух простых чисел, а каждое нечётное число, большее 5, может быть представлено в виде суммы трёх простых чисел?

Вторая проблема Ландау: бесконечно ли множество «простых близнецов» — простых чисел, разность между которыми равна 2?
Третья проблема Ландау (гипотеза Лежандра): верно ли, что для всякого натурального числа n между и всегда найдётся простое число?
Четвёртая проблема Ландау: бесконечно ли множество простых чисел вида , где n — натуральное число?

 

 

Задачи тысячелетия (Millennium Prize Problems)

Это семь математических задач, за решение каждой из которых инcтитут Клея предложил приз в 1 000 000 долларов США. Вынося на суд математиков эти семь задач, иститут Клея сравнил их с 23 задачами Д.Гильберта, которые оказали большое влияние на на математику ХХ века. Из  23 проблем Гильберта большинство уже решены, и только одна  — гипотеза Римана — вошла в список задач тысячелетия. По состоянию на декабрь 2012 года только одна из семи проблем тысячелетия  (гипотеза Пуанкаре) решена. Приз за её решение присуждён российскому математику Григорию Перельману, который от него отказался.

 

Вот список этих семи задач:

№1. Равенство классов P и NP

Если положительный ответ на какой-то вопрос можно быстро  проверить (используя некоторую вспомогательную информацию, называемую сертификатом), то верно ли, что и сам ответ (вместе с сертификатом) на этот вопрос можно быстро найти? Задачи первого типа относятся к классуц NP, второго — классу Р. Проблема равенства этих классов является одной из важнейших проблем теории алгоритмов.

№2. Гипотеза Ходжа

Важная проблема алгебраической геометрии. Гипотеза описывает классы комогологий на комплексных проективных многообразиях, реализуемые алгебраическими подмногообразиями.

 

№3. Гипотеза Пуанкаре (доказана Г.Я.Перельманом)

Cчитается наиболее известной проблемой топологии. Говоря более просто, она утверждает, что всякий 3D «объект», обладающий некоторыми свойствами трёхмерной сферы (например, каждая петля внутри него должна быть стягиваема), обязан быть сферой с точностью до деформации. Премия за доказательство гипотезы Пуанкаре присуждена российскому математику Г.Я.Перельману,  опубликовавшему в 2002 году серию работ, из которых следует справедливость гипотезы Пуанкаре.

 

№4. Гипотеза Римана

Гипотеза гласит, что все нетривиальные (то есть имеющие ненулевую мнимую часть) нули дзета-функции Римана имеют действительную часть 1/2. Гипотеза Римана была восьмой в списке проблем Гильберта.

 

№5. Теория Янга — Миллса

Задача из области физики элементарных частиц. Требуется доказать, что для любой простой компактной калибровочной группы G квантовая теория Янга — Миллса для четырехмарного пространства  существует и имеет ненулевой дефект массы. Это утверждение соответствует экспериментальным данным и численному моделированию, однако доказать его до сих пор не удалось.

 

№6. Существование и гладкость решений уравнений Навье — Стокса

Уравнения Навье — Стокса описывают движение вязкой жидкости. Одна из важнейших задач гидродинамики.

 

№7. Гипотеза Бёрча — Свиннертон-Дайера

Гипотеза связана с уравнениями эллиптических кривых и множеством их рациональных решений.

 

на главную



 

 

gghelp.ru

7 величайших математических загадок тысячелетия.

Часто, беседуя со старшеклассниками об исследовательских работах по математике, слышу следующее: "Что можно нового открыть в математике?" А действительно: может быть все великие открытия сделаны, а теоремы доказаны?

8 августа 1900 года на международном математическом конгрессе в Париже математик Дэвид Гилберт (David Hilbert) изложил список проблем, которые, как он полагал, предстояло решить в ХХ веке. В списке было 23 пункта. Двадцать один из них на данный момент решены. Последней решенной проблемой из списка Гилберта была знаменитая теорема Ферма, с которой ученые не могли справиться в течение 358 лет. В 1994 году свое решение предложил британец Эндрю Уайлз. Оно и оказалось верным.

По примеру Гилберта в конце прошлого века многие математики пытались сформулировать подобные стратегические задачи на ХХI век. Один из таких списков приобрел широкую известность благодаря бостонскому миллиардеру Лэндону Клэю (Landon T. Clay). В 1998 году на его средства в Кембридже (Массачусетс, США) был основан Математический институт Клэя (Clay Mathematics Institute) и установлены премии за решение ряда важнейших проблем современной математики. 24 мая 2000 года эксперты института выбрали семь проблем - по числу миллионов долларов, выделенных на премии. Список получил название Millennium Prize Problems:

1. Проблема Кука (сформулирована в 1971 году)

Допустим, что вы, находясь в большой компании, хотите убедиться, что там же находится ваш знакомый. Если вам скажут, что он сидит в углу, то достаточно будет доли секунды, чтобы, бросив взгляд, убедиться в истинности информации. В отсутствие этой информации вы будете вынуждены обойти всю комнату, рассматривая гостей. Это говорит о том, что решение какой-либо задачи часто занимает больше времени, чем проверка правильности решения.

Стивен Кук сформулировал проблему: может ли проверка правильности решения задачи быть более длительной, чем само получение решения, независимо от алгоритма проверки. Эта проблема также является одной из нерешенных задач из области логики и информатики. Ее решение могло бы революционным образом изменить основы криптографии, используемой при передаче и хранении данных.

2. Гипотеза Римана (сформулирована в 1859 году)

Некоторые целые числа не могут быть выражены как произведение двух меньших целых чисел, например 2, 3, 5, 7 и так далее. Такие числа называются простыми и играют важную роль в чистой математике и ее приложениях. Распределение простых чисел среди ряда всех натуральных чисел не подчиняется никакой закономерности. Однако немецкий математик Риман высказал предположение, касающееся свойств последовательности простых чисел. Если гипотеза Римана будет доказана, то это приведет к революционному изменению наших знаний в области шифрования и к невиданному прорыву в области безопасности Интернета.

3. Гипотеза Берча и Свиннертон-Дайера (сформулирована в 1960 году)

Связана с описанием множества решений некоторых алгебраических уравнений от нескольких переменных с целыми коэффициентами. Примером подобного уравнения является выражение x2 + y2 = z2. Эвклид дал полное описание решений этого уравнения, но для более сложных уравнений поиск решений становится чрезвычайно трудным.

4. Гипотеза Ходжа (сформулирована в 1941 году)

В ХХ веке математики открыли мощный метод исследования формы сложных объектов. Основная идея заключается в том, чтобы использовать вместо самого объекта простые "кирпичики", которые склеиваются между собой и образуют его подобие. Гипотеза Ходжа связана с некоторыми предположениями относительно свойств таких "кирпичиков" и объектов.

5. Уравнения Навье - Стокса (сформулированы в 1822 году)

Если плыть в лодке по озеру, то возникнут волны, а если лететь в самолете, в воздухе возникнут турбулентные потоки. Предполагается, что эти и другие явления описываются уравнениями, известными как уравнения Навье - Стокса. Решения этих уравнений неизвестны, и при этом даже неизвестно, как их решать. Необходимо показать, что решение существует и является достаточно гладкой функцией. Решение этой проблемы позволит существенно изменить способы проведения гидро- и аэродинамических расчетов.

6. Проблема Пуанкаре (сформулирована в 1904 году)

Если натянуть резиновую ленту на яблоко, то можно, медленно перемещая ленту без отрыва от поверхности, сжать ее до точки. С другой стороны, если ту же самую резиновую ленту соответствующим образом натянуть вокруг бублика, то никаким способом невозможно сжать ленту в точку, не разрывая ленту или не ломая бублик. Говорят, что поверхность яблока односвязна, а поверхность бублика - нет. Доказать, что односвязна только сфера, оказалось настолько трудно, что математики ищут правильный ответ до сих пор.

7. Уравнения Янга - Миллса (сформулированы в 1954 году)

Уравнения квантовой физики описывают мир элементарных частиц. Физики Янг и Миллс, обнаружив связь между геометрией и физикой элементарных частиц, написали свои уравнения. Тем самым они нашли путь к объединению теорий электромагнитного, слабого и сильного взаимодействий. Из уравнений Янга - Миллса следовало существование частиц, которые действительно наблюдались в лабораториях во всем мире, поэтому теория Янга - Миллса принята большинством физиков несмотря на то, что в рамках этой теории до сих пор не удается предсказывать массы элементарных частиц.

Думаю, что этот материал, опубликованный в блоге

интересен не только студентам, но и школьникам, серьёзно занимающимся математикой. Есть над чем подумать, выбирая темы и направления исследовательских работ.

matematika88888.blogspot.com

20 вещей, которые вы (возможно) не знали о... математике

Уравнения, которые работают по таинственным причинам, простые числа, подчиняющиеся скрытым закономерностям и логические выражения, которые не могут быть истинными или ложными…

1. Средний балл за “Школьный оценочный тест’’ (SAT) прошедших в высшие учебные заведения США в 2011 году составил около 510 из 800. Таким образом, это доказывает то, что в математике существует много нерешенных проблем.

2. Великий математик XIX-го века Карл Фридрих Гаусс назвал свою область деятельности “царицей наук’’. (примеч. В свое время в кабинете математики моей провинциальной школы над доской висело именно это высказывание Гаусса: “Математика — царица всех наук, арифметика — царица математики’’, а в Америке это неизвестно )

3. Если математика является царицей, она Белая Королева из “Алисы в стране чудес’’, которая хвасталась, что она успевает поверить в “целых шесть невозможных вещей до завтрака’’. (Неудивительно, что Льюис Кэрролл также писал о плоской алгебраической геометрии.)

4. Например, уравнения Навье — Стокса постоянно используются для приближенного описания турбулентных течений жидкости вокруг самолета и в крови, но математика, которая стоит за ними, до сих пор непонятна.

5. И странные математические вещи часто оказываются полезными. Кватернионы, с помощью которых можно описать вращение трехмерных объектов, были обнаружены в 1843 году. Они считались красивыми, но бесполезными до 1985 года, когда применили их к созданию цифровых мультфильмов.

6. Некоторые математические понятия ставят в тупик, например, придуманное британским философом Бертраном Расселом “множество всех множеств, не являющихся элементами самих себя’’. Если множество Рассела не является элементом самого себя, то по определению оно является элементом самого себя.

7. Рассел использовал математические аргументы для проверки внешних границ логики (и здравого смысла).

8. Курт Гёдель, известный австрийский логик, усугубил ситуацию в 1931 году своей первой теоремой о неполноте, в которой говорится, что любая достаточно мощная математическая система должна содержать верные утверждения, которые невозможно доказать. Гёдель довел себя голодом до смерти в 1978 году.

9. Однако решатели задач на посту. Они 358 лет сражались с последней теоремой Ферма, которая, как известно, не была доказана. Ее математик и политический деятель XVII века Пьер де Ферма нацарапал на полях книги.

10. Вы знаете, что ? Ферма утверждал, что нет чисел, удовлетворяющих уравнению , когда степень больше .

11. Наконец, в 1995 году английский математик Эндрю Уайлс доказал, что Ферма был прав, но сделать это он должен был с помощью математики, которую Ферма не знал. Во введении к 109-страничному доказательству Уайлс также приводит имена десятков коллег, живых и мертвых, на плечах которых он стоит.

12. На конференции в Париже в 1900 году немецкий математик Давид Гильберт решил прояснить некоторые нерешенные в течение довольно большого времени математические проблемы, создав список из 23 ключевых задач. К 2000 году математиками были решены все проблемы Гильберта кроме одной — гипотезы, сформулированной в 1859 году Бернардом Риманом. (примеч. Как совершенно справедливо было указано в комментариях Сашей, здесь все несколько иначе: http://ru.wikipedia.org/wiki/Проблемы_Гильберта).

13. Гипотеза Римана в настоящее время считается наиболее значимой нерешенной математической проблемой. Она утверждает, есть скрытая закономерность в распределении простых чисел — тех чисел, которые не могут быть разложены на множители, например, и, ох, .

14. Гипотеза экспериментально подтверждена для первых 100 млрд. случаев, что было бы достаточным доказательством для бухгалтера или даже физика. Но не для математика.

15. В 2000 году институт математики Клея объявил о премиях в 1 миллион долларов за решение семи обсуждаемых задач — “Millennium Prize Problems’’. Десять лет спустя институт предложил свою первую награду русскому математику Григорию Перельману за доказательство гипотезы Пуанкаре, задачи, которая была поставлена в 1904 году.

16. Доказав, что математики не понимают семизначных чисел, Перельман отказался от миллиона долларов, потому что чувствовал, что еще один математик в равной степени его достоин. В настоящее время Перельман живет в уединении в России.

17. В юности Эварист Галуа придумал совершенно новый раздело математики, который называется теорией групп, чтобы доказать, что “квинтика’’ — уравнение, содержащее член — не разрешимо с использованием никакой формулы.

18. Галуа умер в Париже в 1832 году в возрасте 20 лет, он был убит на дуэли из-за женщины. Предвидя свою смерть, он провел последнюю ночь, отчаянно внося исправления и дополнения в в свои работы по математике.

19. В один прекрасный день 1939 года аспирант Джордж Данциг опоздал на занятия по статистике в Беркли. Он скопировал написанные на доске две задачи. Через несколько дней он принес решение, извиняясь, что задачи были тяжелее, чем обычно.

20. “Домашнее задание’’ было фактически двумя известными недоказанными теоремами. История Данцига стала известной и была использована создателями фильма “Умница Уилл Хантинг’’.

Источник: http://discovermagazine.com/2012/mar/09-things-you-didnt-know-about-math

hijos.ru