Определение резонанс – суть явления, колебания и частота

Содержание

34.Условие и способы получения резонанса. Резонансная частота

Явление резонанса. Электрическая цепь, содержащая индуктивность и емкость, может служить колебательным контуром, где возникает процесс колебаний электрической энергии, переходящей из индуктивности в емкость и обратно. В идеальном колебательном контуре эти колебания будут незатухающими. При подсоединении колебательного контура к источнику переменного тока угловая частота источника ? может оказаться равной угловой частоте ?0, с которой происходят колебания электрической энергии в контуре. В этом случае имеет место явление резонанса, т. е. совпадения частоты свободных колебаний ?0, возникающих в какой-либо физической системе, с частотой вынужденных колебаний ?, сообщаемых этой системе внешними силами.

Резонанс в электрической цепи можно получить тремя способами: изменяя угловую частоту ? источника переменного тока, индуктивность L или емкость С. Различают резонанс при последовательном соединении L и С — резонанс напряжений и при параллельном их соединении — резонанс токов. Угловая частота ?0, при которой наступает резонанс, называется резонансной, или собственной частотой колебаний резонансного контура.

35. Резонанс в последовательном колебательном контуре. Добротность, векторная диаграмма. Характеристическое сопротивление, затухание контура.

Резонанс напряжений – явление, при котором цепь содержащая активные и реактивные сопротивления, будет только активное сопротивление (XL - XC = 0). При этом ток в цепи совпадает по фазе с напряжением. Условие возникновение резонанса напряжений – равенство нулю реактивного сопротивления.

- характеристическое сопротивление контура.

Таким образом:

резонансная частота

-резонансная для парралельного

При резонансе напряжений ток максимален, так как сопротивление минимально, а

и таким образом

Добротностью контура называется отношение модуля реактивной составляющей напряжения в цепи к модулю входного напряжения в момент резонанса.

Полосу частот вблизи резонанса, на границах которой ток снижается до величины принято называтьполосой пропускания резонансного тока.

Чем больше добротность, тем острее кривая и уже полоса пропускания

36. Резонанс (определение). Последовательный и параллельный колебательные контуры. Резонансные кривые в относительных единицах для последовательного колебательного контура.

резонанс напряжений в цепях переменного тока это такой процесс, при котором на отдельных элементах цепи возникает напряжение больше чем питающее. Такой процесс возникает в цепях, состоящих из последовательно соединённых емкости и индуктивности. В так называемом последовательном колебательном контуре.

Для наступления резонанса в цепи переменного тока необходимо чтобы выполнялись условия. Во-первых, реактивное сопротивление индуктивности должно быть равно реактивному сопротивления емкости. При этом активное сопротивление такого контура должно быть минимальным.

Рисунок 1 — последовательный колебательный контур

Во вторых собственная частота последовательного колебательного контура состоящего из индуктивности и емкости должна совпадать с частотой питающего напряжения. Тогда в цепи наступает резонанс напряжений. Энергия, накопленная в магнитном поле, полностью переходит в энергию электрического поля в конденсаторе и наоборот.

А для источника переменного напряжения такая цепь становится практически закороткой и в ней протекает максимально возможный ток. Ограниченный только активным сопротивлением контура. Поскольку реактивные сопротивления индуктивности и емкости на резонансной частоте становятся равные нулю и энергия в них не рассеивается. В отличии от активного сопротивления в котором по закону джоуля ленца выделяется тепло.

Рисунок 2 — Зависимость тока и полного реактивного сопротивления от частоты источника напряжения

При изменении частоты питающего напряжения или параметров контура резонанс исчезает. Напряжение на элементах цепи распределяется в соответствии с законом Ома. То есть падение напряжения на емкости и индуктивности будет равно току, умноженному на их реактивные сопротивления.

В случае резонанса напряжение на емкости или индуктивности будет в Q раз больше чем напряжение источника. Q это добротность контура величина обратная коэффициенту затухания колебаний в контуре. Таким образом, чем выше добротность контура, тем выше будет увеличение напряжения.

Резона́нс (фр. resonance, от лат. resono — откликаюсь) — явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами системы

studfiles.net

Резонанс - значение слова, определение слова, слово означает

Резонанс (франц. resonance, от лат.(латинский) resono — звучу в ответ, откликаюсь), явление резкого возрастания амплитуды

вынужденных колебаний в какой-либо колебательной системе, наступающее при приближении частоты периодического внешнего воздействия к некоторым значениям, определяемым свойствами самой системы. В простейших случаях Р. наступает при приближении частоты внешнего воздействия к одной из тех частот, с которыми происходят собственные колебания в системе, возникающие в результате начального толчка. Характер явления Р. существенно зависит от свойств колебательной системы. Наиболее просто Р. протекает в тех случаях, когда периодическому воздействию подвергается система с параметрами, не зависящими от состояния самой системы (т. н. линейные системы).

  Типичные черты Р. можно выяснить, рассматривая случай гармонического воздействия на систему с одной степенью свободы: например, на массу m, подвешенную на пружине, находящуюся под действием гармонической силы F = F0 coswt (рис. 1), или электрическую цепь, состоящую из последовательно соединённых индуктивности L, ёмкости С, сопротивления R и источника электродвижущей силы Е, меняющейся по гармоническому закону (

рис. 2). Для определенности в дальнейшем рассматривается первая из этих моделей, но всё сказанное ниже можно распространить и на вторую модель. Примем, что пружина подчиняется закону Гука (это предположение необходимо, чтобы система была линейна), т. е., что сила, действующая со стороны пружины на массу m, равна kx, где х — смещение массы от положения равновесия, k — коэффициент упругости (сила тяжести для простоты не принимается во внимание). Далее, пусть при движении масса испытывает со стороны окружающей среды сопротивление, пропорциональное её скорости  и коэффициенту трения b, т. е. равное k (это необходимо, чтобы система оставалась линейной). Тогда уравнение движения массы m при наличии гармонической внешней силы F имеет вид:

     (1)

где F0 амплитуда колебания, w — циклическая частота, равная 2p/Т, Т — период внешнего воздействия,   ускорение массы m. Решение этого уравнения может быть представлено в виде суммы двух решений. Первое из этих решений соответствует свободным колебаниям системы, возникающим под действием начального толчка, а второе — вынужденным колебаниям. Собственные колебания в системе вследствие наличия трения и сопротивления среды всегда затухают, поэтому по истечении достаточного промежутка времени (тем большего, чем меньше затухание собственных колебаний) в системе останутся одни только вынужденные колебания. Решение, соответствующее вынужденным колебаниям, имеет вид:

,     (2)

причём tgj = . Т. о., вынужденные колебания представляют собой гармонические колебания с частотой, равной частоте внешнего воздействия; амплитуда и фаза вынужденных колебаний зависят от соотношения между частотой внешнего воздействия и параметрами системы.

  Зависимость амплитуды смещений при вынужденных колебаниях от соотношения между величинами массы m и упругости k легче всего проследить, полагая, что m и k остаются неизменными, а изменяется частота внешнего воздействия. При очень медленном воздействии (w ® 0) амплитуда смещений x0 »F0/k. С увеличением частоты w амплитуда x0 растет, т. к. знаменатель в выражении (2) уменьшается. Когда w приближается к значению  (т. е. к значению частоты собственных колебаний при малом их затухании), амплитуда вынужденных колебаний достигает максимума — наступает Р. Далее с увеличением w амплитуда колебаний монотонно убывает и при w ® ¥ стремится к нулю.

  Амплитуду колебаний при Р. можно приближённо определить, полагая w = . Тогда x0 = F0/bw, т. е. амплитуда колебаний при Р. тем больше, чем меньше затухание b в системе (рис. 3). Наоборот, при увеличении затухания системы Р. становится всё менее резким, и если b очень велико, то Р. вообще перестаёт быть заметным. С энергетической точки зрения Р. объясняется тем, что между внешней силой и вынужденными колебаниями устанавливаются такие фазовые соотношения, при которых в систему поступает наибольшая мощность (т. к. скорость системы оказывается в фазе с внешней силой и создаются наиболее благоприятные условия для возбуждения вынужденных колебаний).

  Если на линейную систему действует периодическое, но не гармоническое внешнее воздействие, то Р. наступит только тогда, когда во внешнем воздействии содержатся гармонические составляющие с частотой, близкой к собственной частоте системы. При этом для каждой отдельной составляющей явление будет протекать так же, как рассмотрено выше. А если этих гармонических составляющих с частотами, близкими к собственной частоте системы, будет несколько, то каждая из них будет вызывать резонансные явления, и общий эффект, согласно

суперпозиции принципу, будет равен сумме эффектов от отдельных гармонических воздействий. Если же во внешнем воздействии не содержится гармонических составляющих с частотами, близкими к собственной частоте системы, то Р. вообще не наступает. Т. о., линейная система отзывается, «резонирует» только на гармонические внешние воздействия.

  В электрических колебательных системах, состоящих из последовательно соединённых ёмкости С и индуктивности L (рис. 2), Р. состоит в том, что при приближении частот внешней эдс(электродвижущая сила) к собственной частоте колебательной системы, амплитуды эдс(электродвижущая сила) на катушке и напряжения на конденсаторе порознь оказываются гораздо больше амплитуды эдс(электродвижущая сила), создаваемой источником, однако они равны по величине и противоположны по фазе. В случае воздействия гармонической эдс(электродвижущая сила) на цепь, состоящую из параллельно включенных ёмкости и индуктивности (

рис. 4), имеет место особый случай Р. (антирезонанс). При приближении частоты внешней эдс(электродвижущая сила) к собственной частоте контура LC происходит не возрастание амплитуды вынужденных колебаний в контуре, а наоборот, резкое уменьшение амплитуды силы тока во внешней цепи, питающей контур. В электротехнике это явление называется Р. токов или параллельным Р. Это явление объясняется тем, что при частоте внешнего воздействия, близкой к собственной частоте контура, реактивные сопротивления обеих параллельных ветвей (ёмкостной и индуктивной) оказываются одинаковыми по величине и поэтому в обеих ветвях контура текут токи примерно одинаковой амплитуды, но почти противоположные по фазе. Вследствие этого амплитуда тока во внешней цепи (равного алгебраической сумме токов в отдельных ветвях) оказывается гораздо меньшей, чем амплитуды тока в отдельных ветвях, которые при параллельном Р. достигают наибольшей величины. Параллельный Р., так же как и последовательный Р., выражается тем резче, чем меньше активное сопротивление ветвей контура Р. Последовательный и параллельный Р. называются соответственно Р. напряжений и Р. токов.

  В линейной системе с двумя степенями свободы, в частности в двух связанных системах (например, в двух связанных электрических контурах; рис. 5), явление Р. сохраняет указанные выше основные черты. Однако, т. к. в системе с двумя степенями свободы собственные колебания могут происходить с двумя различными частотами (т. н. нормальные частоты, см.(смотри) Нормальные колебания), то Р. наступает при совпадении частоты гармонического внешнего воздействия как с одной, так и с другой нормальной частотой системы. Поэтому, если нормальные частоты системы не очень близки друг к другу, то при плавном изменении частоты внешнего воздействия наблюдаются два максимума амплитуды вынужденных колебаний (рис. 6). Но если нормальные частоты системы близки друг к другу и затухание в системе достаточно велико, так что Р. на каждой из нормальных частот «тупой», то может случиться, что оба максимума сольются. В этом случае кривая Р. для системы с двумя степенями свободы теряет свой «двугорбый» характер и по внешнему виду лишь незначительно отличается от кривой Р. для линейного контура с одной степенью свободы. Т. о., в системе с двумя степенями свободы форма кривой Р. зависит не только от затухания контура (как в случае системы с одной степенью свободы), но и от степени связи между контурами.

  В связанных системах также существует явление, которое в известной мере аналогично явлению антирезонанса в системе с одной степенью свободы. Если в случае двух связанных контуров с различными собственными частотами настроить вторичный контур L2C2 на частоту внешней эдс(электродвижущая сила), включенной в первичный контур L1C1 (рис. 5), то сила тока в первичном контуре резко падает и тем резче, чем меньше затухание контуров. Объясняется это явление тем, что при настройке вторичного контура на частоту внешней эдс(электродвижущая сила) в этом контуре возникает как раз такой ток, который в первичном контуре наводит эдс(электродвижущая сила) индукции, примерно равную внешней эдс(электродвижущая сила) по амплитуде и противоположную ей по фазе.

  В линейных системах со многими степенями свободы и в сплошных системах Р. сохраняет те же основные черты, что и в системе с двумя степенями свободы. Однако в этом случае, в отличие от систем с одной степенью свободы, существенную роль играет распределение внешнего воздействия по отдельным координатам. При этом возможны такие специальные случаи распределения внешнего воздействия, при которых, несмотря на совпадения частоты внешнего воздействия с одной из нормальных частот системы, Р. всё же не наступает. С энергетической точки зрения это объясняется тем, что между внешней силой и вынужденными колебаниями устанавливаются такие фазовые соотношения, при которых мощность, поступающая в систему от источника возбуждения по одной координате, равна мощности, отдаваемой системой источнику по другой координате. Пример этого — возбуждение вынужденных колебаний в струне, когда внешняя сила, совпадающая по частоте с одной из нормальных частот струны, приложена в точке, которая соответствует узлу скоростей для данного нормального колебания (например, сила, совпадающая по частоте с основным тоном струны, приложена у самого конца струны). При этих условиях (вследствие того, что внешняя сила приложена к неподвижной точке струны) эта сила не совершает работы, мощность от источника внешней силы в систему не поступает и сколько-нибудь заметного возбуждения колебаний струны не возникает, т. е. Р. не наблюдается.

  Р. в колебательных системах, параметры которых зависят от состояния системы, т. е. в нелинейных системах, имеет более сложный характер, чем в системах линейных. Кривые Р. в нелинейных системах могут стать резко несимметричными, и явление Р. может наблюдаться при различных соотношениях частот воздействия и частот собственных малых колебаний системы (т. н. дробный, кратный и комбинационный Р.). Примером Р. в нелинейных системах может служить т. н. феррорезонанс, т. е. резонанс в электрической цепи, содержащей индуктивность с ферромагнитным сердечником, или ферромагнитный резонанс, представляющий собой явление, связанное с Р. элементарных (атомных) магнитов вещества при приложении высокочастотного магнитного поля (см. Радиоспектроскопия).

  Если внешнее воздействие производит периодические изменение энергоёмких параметров колебательной системы (например, ёмкости в электрическом контуре), то при определённых соотношениях частот изменения параметра и собственной частоты свободных колебаний системы возможно параметрическое возбуждение колебаний, или параметрический Р.

  Р. весьма часто наблюдается в природе и играет огромную роль в технике. Большинство сооружений и машин способны совершать собственные колебания, поэтому периодические внешние воздействия могут вызвать их Р.; например Р. моста под действием периодических толчков при прохождении поезда по стыкам рельсов, Р. фундамента сооружения или самой машины под действием не вполне уравновешенных вращающихся частей машин и т. д. Известны случаи, когда целые корабли входили в Р. при определённых числах оборотов гребного вала. Во всех случаях Р. приводит к резкому увеличению амплитуды вынужденных колебаний всей конструкции и может привести даже к разрушению сооружения. Это вредная роль Р., и для устранения его подбирают свойства системы так, чтобы её нормальные частоты были далеки от возможных частот внешнего воздействия, либо используют в том или ином виде явление антирезонанса (применяют т. н. поглотители колебаний, или успокоители). В др. случаях Р. играет положительную роль, например: в радиотехнике Р. — почти единственный метод, позволяющий отделить сигналы одной (нужной) радиостанции от сигналов всех остальных (мешающих) станций.

  Лит.: Стрелков С. П., Введение в теорию колебаний, 2 изд., М., 1964; Горелик Г. С., Колебания и волны, Введение в акустику, радиофизику и оптику 2 изд. М., 1959.

Рис. 1. Механическая колебательная система.

Рис. 5. Пример двух связанных электрических контуров.

Рис. 2. Электрическая колебательная система с последовательными включением емкости C и индуктивности L.

Рис. 4. Электрическая колебательная система с включенными параллельно емкостью и индуктивностью.

Рис. 6. Резонансная кривая с двумя максимумами.

Рис. 3. Зависимость амплитуд смещений от частоты внешнего воздействия для различных значений b (b6 < b5 < … < b1).

vseslova.com.ua

Слово РЕЗОНАНС - Что такое РЕЗОНАНС?

Слово резонанс английскими буквами(транслитом) - rezonans

Слово резонанс состоит из 8 букв: а е з н н о р с


Значения слова резонанс. Что такое резонанс?

Резонанс

РЕЗОНАНС (франц. resonance, от лат. resono - откликаюсь) - частотно-избирательный отклик колебат. системы на периодич. внеш. воздействие, при к-ром происходит резкое возрастание амплитуды стационарных колебаний.

Физическая энциклопедия. - 1988

РЕЗОНАНС (франц. resonance, от лат. resono — звучу в ответ, откликаюсь), относительно большой селективный (избирательный) отклик колебательной системы (осциллятора) на периодич. воздействие с частотой, близкой к частоте её собств. колебаний.

Физическая энциклопедия. - 1988

Резонанс (франц. resonance, от лат. resono — звучу в ответ, откликаюсь), явление резкого возрастания амплитуды вынужденных колебаний в какой-либо колебательной системе…

БСЭ. — 1969—1978

Резонансы

Резонанс — элементарная частица, представляющая собой возбуждённое состояние адрона. Большинство известных частиц являются резонансами.

ru.wikipedia.org

Резонансы, резонансные частицы, короткоживущие возбуждённые состояния сильно взаимодействующих элементарных частиц (адронов). В отличие от др. нестабильных частиц, Р. распадаются в основном за счёт сильных взаимодействий.

БСЭ. — 1969—1978

РЕЗОНАНСЫ (резонансные частицы) - короткоживу-щие возбуждённые состояния адронов. В отличие от др. нестабильных частиц, Р. распадаются в осн. за счёт сильного взаимодействия.

Физическая энциклопедия. - 1988

Резонанс токов

Резонанс токов — резонанс, происходящий в параллельном колебательном контуре при его подключении к источнику напряжения, частота которого совпадает с собственной частотой контура.

ru.wikipedia.org

РЕЗОНАНС ТОКОВ — параллельный резонанс, - резонанс в электрич. цепи из катушки индуктивности и конденсатора, соединённых параллельно относительно источника перем. тока.

Большой энциклопедический политехнический словарь

Резонанс Шумана

Резона́нсом Шу́мана называется явление образования стоячих электромагнитных волн низких и сверхнизких частот между поверхностью Земли и ионосферой. Земля и её ионосфера — это гигантский сферический резонатор...

ru.wikipedia.org

ШУМАНОВСКИЕ РЕЗОНАНСЫ (резонансы в полости Земля - ионосфера)-резонансное усиление эл.-магн. атм. шумов в сферич. полости между Землёй и ионосферой. Теоретически предсказаны в 1952 В. Шуманом (W. Schumann) и экспериментально обнаружены в 1960 M.

Физическая энциклопедия. - 1988

Резонанса теория

РЕЗОНАНСА ТЕОРИЯ, теория электронного строения хим. соединений, в основе к-рой лежит представление о том, что электронное распределение, геометрия и все др. физ. и хим. св-ва молекул должны быть описаны не одной возможной структурной ф-лой…

Химическая энциклопедия

Резонанса теория (в химии), концепция, дополняющая постулаты классической теории химического строения и утверждающая, что если для данного соединения классическая теория (см. Химического строения теория)…

БСЭ. — 1969—1978

РЕЗОНАНСА ТЕОРИЯ — теория электронного строения хим. соединений, в основе к-рой лежит представление о том, что электронное распределение, геометрия и все др. физ. и хим. св-ва молекул должны быть описаны не одной возможной структурной ф-лой…

Химическая энциклопедия. - 1988

Магнитный резонанс

Магнитный резонанс, избирательное поглощение веществом электромагнитных волн определённой длины волны, обусловленное изменением ориентации магнитных моментов электронов или атомных ядер.

БСЭ. — 1969—1978

МАГНИТНЫЙ РЕЗОНАНС, резонансное (избирательное) поглощение радиочастотного излучения некоторыми атомными частицами, помещенными в постоянное магнитное поле.

Энциклопедия Кругосвет

МАГНИТНЫЙ РЕЗОНАНС - избират. поглощение веществом эл.-магн. волн определённой частоты w, обусловленное изменением ориентации магн. моментов частиц вещества (электронов, ат. ядер).

Физическая энциклопедия. - 1988

Циклотронный резонанс

ЦИКЛОТРОННЫЙ РЕЗОНАНС, явление резонансного поглощения энергии переменного электрич. поля заряженной частицей, находящейся в магн. поле. Заряженная частица, помещенная в магн. поле напряженности Н и имеющая отличный от нуля импульс в плоскости…

Химическая энциклопедия

ЦИКЛОТРОННЫЙ РЕЗОНАНС - резонансное поглощение эл.-магн. энергии электронными проводниками (полупроводниками, металлами), помещёнными в пост. магн. поле, на частотах, равных или кратных циклотронной частоте носителей заряда (электронов и дырок).

Физическая энциклопедия. - 1988

Циклотронный резонанс (ЦР) — явление поглощения или отражения электромагнитных волн проводниками, помещёнными в постоянное магнитное поле, на частотах равных или кратных циклотронной частоте носителей заряда.

ru.wikipedia.org

Ферромагнитный резонанс

ФЕРРОМАГНИТНЫЙ РЕЗОНАНС - резонансное поглощение эл.-магн. энергии ферромагнетиком, один из видов электронного магнитного резонанса в твёрдом теле. От электронного парамагнитного резонанса (ЭПР) Ф. р. отличается тем…

Физическая энциклопедия. - 1988

Ферромагнитный резонанс, одна из разновидностей электронного магнитного резонанса; проявляется в избирательном поглощении ферромагнетиком энергии электромагнитного поля при частотах…

БСЭ. — 1969—1978

ФЕРРОМАГНИТНЫЙ РЕЗОНАНС — разновидность электронного магнитного резонанса в ферромагнетиках и ферримагнетиках; проявляется в избирательном поглощении ферромагнетиком энергии эл.-магн. поля при определ. (резонансных) значениях частоты w0 и внеш. магн…

Физическая энциклопедия. - 1988

Ядерный магнитный резонанс

ЯДЕРНЫЙ МАГНИТНЫЙ РЕЗОНАНС (ЯМР), избирательное поглощение эл.-магн. энергии в-вом, обусловленное ядерным парамагнетизмом. ЯМР — один из методов радиоспектроскопии, наблюдается…

Физическая энциклопедия. - 1988

ЯДЕРНЫЙ МАГНИТНЫЙ РЕЗОНАНС (ЯМР)-резонансное поглощение эл.-магн. энергии в веществах, обусловленное ядерным парамагнетизмом; частный случай магнитного резонанса.

Физическая энциклопедия. - 1988

Ядерный магнитный резонанс (ЯМР) избирательное поглощение веществом электромагнитного излучения, обусловленное переориентацией магнитных моментов атомных ядер, находящихся в постоянном магнитном поле.

Медицинская эциклопедия

Электронный парамагнитный резонанс

Электронный парамагнитный резонанс (ЭПР), резонансное поглощение электромагнитной энергии в сантиметровом или миллиметровом диапазоне длин волн веществами, содержащими парамагнитные частицы.

БСЭ. — 1969—1978

ЭЛЕКТРОННЫЙ ПАРАМАГНИТНЫЙ РЕЗОНАНС (ЭПР) - резонансное поглощение (излучение) эл.-магн. волн радиочастотного диапазона (10 9-10 12 Гц) парамагнетиками, парамагнетизм к-рых обусловлен электронами.

Физическая энциклопедия. - 1988

ЭЛЕКТРОННЫЙ ПАРАМАГНИТНЫЙ РЕЗОНАНС (ЭПР, электронный спиновый резонанс), явление резонансного поглощения электромагн. излучения парамагн. частицами, помещенными в постоянное магн. поле; один из методов радиоспектроскопии.

Химическая энциклопедия

Русский язык

Га́мма-резона́нс, -а.

Орфографический словарь. — 2004

Примеры употребления слова резонанс

То, что обсуждение будет бурным и возымеет огромный резонанс, не стало неожиданностью.

Напомним, решение о мастэктомии Джоли вызвало серьезный общественный резонанс.

Инцидент, вызвавший широкий общественный резонанс, произошел 10 мая в российской столице.

Это я трезво оцениваю комментарии СМИ, комментарии искусствоведов. Резонанс очень высок.

Предложение Минтруда по увеличению "декретного" стажа вызвало большой общественный резонанс.

Видеоролик с выступлением был выложен в интернет и вызвал большой общественный резонанс.

Речь идет о скандальных группах о "детской моде", вызвавших большой общественный резонанс.


  1. резолюция
  2. резол
  3. резонансный
  4. резонанс
  5. резонаторный
  6. резонаторщик
  7. резонатор

wordhelp.ru

Резонанс - это... Что такое Резонанс?

  • РЕЗОНАНС — (франц. resonance, от лат. resono звучу в ответ, откликаюсь), относительно большой селективный (избирательный) отклик колебательной системы (осциллятора) на периодич. воздействие с частотой, близкой к частоте её собств. колебаний. При Р.… …   Физическая энциклопедия

  • РЕЗОНАНС — (фр., от лат. resonare раздаваться). В акустике: условия полного распространения звука. Доска, служащая для усиления звучности струн в музыкальных инструментах. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910.… …   Словарь иностранных слов русского языка

  • Резонанс — Резонанс: а резонансные кривые линейных осцилляторов при различной добротности Q(Q3>Q2>Q1), x интенсивность колебаний; б зависимость фазы от частоты при резонансе. РЕЗОНАНС (французское resonance, от латинского resono откликаюсь), резкое… …   Иллюстрированный энциклопедический словарь

  • РЕЗОНАНС — РЕЗОНАНС, резонанса, мн. нет, муж. (от лат. resonans дающий отзвук). 1. Ответное звучание одного из двух тел, настроенных в унисон (физ.). 2. Способность увеличивать силу и длительность звука, свойственная помещениям, внутренняя поверхность… …   Толковый словарь Ушакова

  • резонанс — отзвук, резонон, мезомерия, отклик, адрон, частица, отголосок Словарь русских синонимов. резонанс см. отклик Словарь синонимов русского языка. Практический справочник. М.: Русский язык. З. Е. Александрова. 2 …   Словарь синонимов

  • РЕЗОНАНС — РЕЗОНАНС, резкое увеличение амплитуды колебаний механической или акустической системы, в случае вынужденных колебаний, вызванных внешним источником. Это явление возникает, когда ЧАСТОТА приложенной силы равна собственной частоте колебаний системы …   Научно-технический энциклопедический словарь

  • РЕЗОНАНС — (франц. resonance от лат. resono откликаюсь), резкое возрастание амплитуды установившихся вынужденных колебаний при приближении частоты внешнего гармонического воздействия к частоте одного из собственных колебаний системы …   Большой Энциклопедический словарь

  • РЕЗОНАНС — РЕЗОНАНС, а, муж. 1. Возбуждение колебаний одного тела колебаниями другого той же частоты, а также ответное звучание одного из двух тел, настроенных в унисон (спец.). 2. Способность усиливать звук, свойственная резонаторам или помещениям, стены к …   Толковый словарь Ожегова

  • РЕЗОНАНС — муж., франц. зык, гул, рай, отзвук, отгул, гул, отдача, наголосок; звучность голоса, по местности, по размерам комнаты; звучность, звонкость музыкального орудия, по устройству его. | В рояле, фортепиано, гуслях: дек, палуба, ·стар. полочка, доска …   Толковый словарь Даля

  • РЕЗОНАНС — (от лат. resonare – повторять) колебания одного из колеблющихся тел, «настроенных» на определенное число колебаний (все тела более или менее способны производить их), которые взаимодействуют с колебаниями, производимыми др. телом, колеблющимся с… …   Философская энциклопедия

  • РЕЗОНАНС — 1. В общем механическом смысле отклик тела, способного колебаться с определенным периодом (т. наз. собственным периодом колебаний), на дошедшие до него колебания того же периода. Явления Р. выражаются обычно в значительном увеличении амплитуды… …   Морской словарь

  • normative_reference_dictionary.academic.ru

    Резонанс токов: применение, принцип резонса тока, расчет контура

    Знание физики и теории этой науки напрямую связано с ведением домашнего хозяйства, ремонтом, строительство и машиностроением. Предлагаем рассмотреть, что такое резонанс токов и напряжений в последовательном контуре RLC, какое основное условие его образования, а также расчет.

    Что такое резонанс?

    Определение явления по ТОЭ: электрический резонанс происходит в электрической цепи при определенной резонансной частоте, когда некоторые части сопротивлений или проводимостей элементов схемы компенсируют друг друга. В некоторых схемах это происходит, когда импеданс между входом и выходом схемы почти равен нулю, и функция передачи сигнала близка к единице. При этом очень важна добротность данного контура.

    Соединение двух ветвей при резонансе

    Признаки резонанса:

    1. Составляющие реактивных ветвей тока равны между собой IPC = IPL, противофаза образовывается только при равенстве чистой активной энергии на входе;
    2. Ток в отдельных ветках, превышает весь ток определенной цепи, при этом ветви совпадают по фазе.

    Иными словами, резонанс в цепи переменного тока подразумевает специальную частоту, и определяется значениями сопротивления, емкости и индуктивности. Существует два типа резонанса токов:

    1. Последовательный;
    2. Параллельный.

    Для последовательного резонанса условие является простым и характеризуется минимальным сопротивлением и нулевой фазе, он используется в реактивных схемах, также его применяет разветвленная цепь. Параллельный резонанс или понятие RLC-контура происходит, когда индуктивные и емкостные данные равны по величине, но компенсируют друг друга, так как они находятся под углом 180 градусов друг от друга. Это соединение должно быть постоянно равным указанной величине. Он получил более широкое практическое применение. Резкий минимум импеданса, который ему свойствен, является полезным для многих электрических бытовых приборов. Резкость минимума зависит от величины сопротивления.

    Схема RLC (или контур) является электрической схемой, которая состоит из резистора, катушки индуктивности, и конденсатора, соединенных последовательно или параллельно. Параллельный колебательный контур RLC получил свое название из-за аббревиатуры физических величин, представляющих собой соответственно сопротивление, индуктивность и емкость. Схема образует гармонический осциллятор для тока. Любое колебание индуцированного в цепи тока, затухает с течением времени, если движение направленных частиц, прекращается источником. Этот эффект резистора называется затуханием. Наличие сопротивления также уменьшает пиковую резонансную частоту. Некоторые сопротивление являются неизбежными в реальных схемах, даже если резистор не включен в схему.

    Применение

    Практически вся силовая электротехника использует именно такой колебательный контур, скажем, силовой трансформатор. Также схема необходима для настройки работы телевизора, емкостного генератора, сварочного аппарата, радиоприемника, её применяет технология «согласование» антенн телевещания, где нужно выбрать узкий диапазон частот некоторых используемых волн. Схема RLC может быть использована в качестве полосового, режекторного фильтра, для датчиков для распределения нижних или верхних частот.

    Резонанс даже использует эстетическая медицина (микротоковая терапия), и биорезонансная диагностика.

    Принцип резонанса токов

    Мы можем сделать резонансную или колебательную схему в собственной частоте, скажем, для питания конденсатора, как демонстрирует следующая диаграмма:

    Схема для питания конденсатора

    Переключатель будет отвечать за направление колебаний.

    Схема: переключатель резонансной схемы

    Конденсатор сохраняет весь ток в тот момент, когда время = 0. Колебания в цепи измеряются при помощи амперметров.

    Схема: ток в резонансной схеме равен нулю

    Направленные частицы перемещаются в правую сторону. Катушка индуктивности принимает ток из конденсатора.

    Когда полярность схемы приобретает первоначальный вид, ток снова возвращается в теплообменный аппарат.

    Теперь направленная энергия снова переходит в конденсатор, и круг повторяется опять.

    В реальных схемах смешанной цепи всегда есть некоторое сопротивление, которое заставляет амплитуду направленных частиц расти меньше с каждым кругом. После нескольких смен полярности пластин, ток снижается до 0. Данный процесс называется синусоидальным затухающим волновым сигналом. Как быстро происходит этот процесс, зависит от сопротивления в цепи. Но при этом сопротивление не изменяет частоту синусоидальной волны. Если сопротивление достаточно высокой, ток не будет колебаться вообще.

    Обозначение переменного тока означает, что выходя из блока питания, энергия колеблется с определенной частотой. Увеличение сопротивления способствует к снижению максимального размера текущей амплитуды, но это не приводит к изменению частоты резонанса (резонансной). Зато может образоваться вихретоковый процесс. После его возникновения в сетях возможны перебои.

    Расчет резонансного контура

    Нужно отметить, что это явление требует весьма тщательного расчета, особенно, если используется параллельное соединение. Для того чтобы в технике не возникали помехи, нужно использовать различные формулы. Они же Вам пригодятся для решения любой задачи по физике из соответствующего раздела.

    Очень важно знать, значение мощности в цепи. Средняя мощность, рассеиваемая в резонансном контуре, может быть выражена в терминах среднеквадратичного напряжения и тока следующим образом:

    R ср= I2конт * R = (V2конт / Z2) * R.

    При этом, помните, что коэффициент мощности при резонансе равен cos φ = 1

    Сама же формула резонанса имеет следующий вид:

    ω0 = 1 / √L*C

    Нулевой импеданс в резонансе определяется при помощи такой формулы:

    Fрез = 1 / 2π √L*C

    Резонансная частота колебаний может быть аппроксимирована следующим образом:

    F = 1/2 р (LC) 0.5

    Где: F = частота

    L = индуктивность

    C = емкость

    Как правило, схема не будет колебаться, если сопротивление (R) не является достаточно низким, чтобы удовлетворять следующим требованиям:

    R = 2 (L / C) 0.5

    Для получения точных данных, нужно стараться не округлять полученные значения вследствие расчетов. Многие физики рекомендуют использовать метод, под названием векторная диаграмма активных токов. При правильном расчете и настройке приборов, у Вас получится хорошая экономия переменного тока.

    www.asutpp.ru

    Вынужденные колебания. Резонанс

    Вынужденные колебания

    В отличие от свободных колебаний, когда система получает энергию лишь один раз (при выведении системы из состояния равновесия), в случае вынужденных колебаний система поглощает эту энергию от источника внешней периодической силы непрерывно. Эта энергия восполняет потери, расходуемые на преодоление трения, и потому полная энергия колебательной системы no-прежнему остается неизменной.

    Вынужденные колебания в отличие от свободных могут происходить с любой частотой. Частота вынужденных колебаний совпадает с частотой внешней силы, действующей на колебательную систему. Таким образом, частота вынужденных колебаний определяется не свойствами самой системы, а частотой внешнего воздействия.

    Примерами вынужденных колебаний являются колебания детских качелей, колебания иглы в швейной машине, поршня в цилиндре автомобильного двигателя, рессор автомобиля, движущегося по неровной дороге и т.д.

    Резонанс

    Резонанс возникает из-за того, что при внешняя сила, действуя в такт со свободными колебаниями, все время имеет одинаковое направление со скоростью колеблющегося тела и совершает положительную работу: энергия колеблющегося тела увеличивается, и амплитуда его колебаний становится большой. Если же внешняя сила действует «не в такт», то эта силы попеременно совершает то отрицательную, то положительную работу и вследствие этого энергия системы меняется незначительно.

    На рис.1 показана зависимость амплитуды вынужденных колебаний от частоты вынуждающей силы. Видно, что эта амплитуда достигает максимума при определенном значении частоты, т.е. при , где собственная частота колебательной системы. Кривые 1 и 2 отличаются величиной силы трения. При малом трении (кривая 1) резонансная кривая имеет резкий максимум, при большей силе трения (кривая 2) такого резкого максимума нет.

    Рис.1. Резонансные кривые для различных значений силы трения.

    С явлением резонанса мы часто встречаемся в повседневной жизни. Если в комнате задрожали стекла при прохождении по улице тяжелого грузовика, это значит, что собственная частота колебаний стекол равна частоте колебаний машины. Если морские волны попадают в резонанс с периодом корабля, то качка становится особенно сильной.

    Явление резонанса необходимо учитывать при проектировании мостов, зданий и других сооружений, испытывающих вибрацию под нагрузкой, в противном случае при определенных условиях эти сооружения могут быть разрушены. Однако резонанс также может быть полезен. Явление резонанса используется при настройке радиоприемника на определенную частоту радиовещания, а также во многих других случаях.

    Примеры решения задач

    ru.solverbook.com

    Резонансная частота - это... Что такое Резонансная частота?

    Резона́нс (фр. resonance, от лат. resono — откликаюсь) — явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами системы. При помощи явления резонанса можно выделить и/или усилить даже весьма слабые периодические колебания. Резонанс — явление, заключающееся в том, что при некоторой частоте вынуждающей силы колебательная система оказывается особенно отзывчивой на действие этой силы.

    Но это далеко не полное определение явления резонанса. Для более детального восприятия этой категории необходимы некоторые факты из теории дифференциальных уравнений и математического анализа. В теории обыкновенных дифференциальных уравнений известна проблема собственных векторов и собственных значений. Резонанс в динамической системе, описываемой дифференциальными уравнениями (и не только ими), формально наступает, когда проблема собственных значений приводит к кратным собственным числам. При этом в математическом аспекте не очень существенно, являются ли собственные числа комплексными или действительными. В физическом аспекте явление резонанса обычно связывают только с колебательными динамическими системами. Наиболее ярко понятие явления резонанса развито в современной теории динамических систем. Примером является известная теория Колмогорова-Арнольда-Мозера. Центральная проблема этой теории — вопрос сохранения квазипериодического или условно-периодического движения на торе (теорема КАМ). Эта теорема дала мощный толчок к развитию современной теории нелинейных колебаний и волн. В частности, стало ясно, что резонанс может и не наступить, хоть собственные числа совпадают или близки. Напротив, резонанс может проявиться в системе, где никакие собственные числа не совпадают, а удовлетворяют лишь определенным резонансным соотношениям или условиям синхронизма.

    Увеличение амплитуды - это лишь следствие резонанса, а причина - совпадение внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы

    Механика

    Наиболее известная большинству людей механическая резонансная система — это обычные качели. Если вы будете подталкивать качели в соответствии с их резонансной частотой, размах движения будет увеличиваться, в противном случае движения будут затухать. Резонансную частоту такого маятника с достаточной точностью в диапазоне малых смещений от равновесного состояния, можно найти по формуле:

    ,

    где g это ускорение свободного падения (9,8 м/с² для поверхности Земли), а L — длина от точки подвешивания маятника до центра его масс. (Более точная формула довольно сложна, и включает эллиптический интеграл). Важно, что резонансная частота не зависит от массы маятника. Также важно, что раскачивать маятник нельзя на кратных частотах (высших гармониках), зато это можно делать на частотах, равных долям от основной (низших гармониках).

    Резонансные явления могут вызвать необратимые разрушения в различных механических системах, например, неправильно спроектированных мостах. Так, в 1905 году рухнул Египетский мост в Санкт-Петербурге, когда по нему проходил конный эскадрон, а в 1940 — разрушился Такомский мост в США. Чтобы предотвратить такие повреждения существует правило, заставляющее строй солдат сбивать шаг при прохождении мостов.

    В основе работы механических резонаторов лежит преобразование кинетической энергии в потенциальную и обратно. В случае простого маятника, вся его энергия содержится в потенциальной форме, когда он неподвижен и находится в верхних точках траектории, а при прохождении нижней точки на максимальной скорости, она преобразуется в кинетическую. Потенциальная энергия пропорциональна массе маятника и высоте подъёма относительно нижней точки, кинетическая — массе и квадрату скорости в точке измерения.

    Другие механические системы могут использовать запас потенциальной энергии в различных формах. Например, пружина запасает энергию сжатия, которая, фактически, является энергией связи её атомов.

    Электроника

    В электронных устройствах резонанс возникает на определённой частоте, когда индуктивная и ёмкостная составляющие реакции системы уравновешены, что позволяет энергии циркулировать между магнитным полем индуктивного элемента и электрическим полем конденсатора.

    Механизм резонанса заключается в том, что магнитное поле индуктивности генерирует электрический ток, заряжающий конденсатор, а разрядка конденсатора создаёт магнитное поле в индуктивности — процесс, который повторяется многократно, по аналогии с механическим маятником.

    Электрическое устройство, состоящее из ёмкости и индуктивности, называется колебательным контуром. Элементы колебательного контура могут быть включены как последовательно, так и параллельно. При достижении резонанса, импеданс последовательно соединённых индуктивности и ёмкости минимален, а при параллельном включении — максимален. Резонансные процессы в колебательных контурах используются в элементах настройки, электрических фильтрах. Частота, на которой происходит резонанс, определяется величинами (номиналами) используемых элементов. В то же время, резонанс может быть и вреден, если он возникает в неожиданном месте по причине повреждения, недостаточно качественного проектирования или производства электронного устройства. Такой резонанс может вызывать паразитный шум, искажения сигнала, и даже повреждение компонентов.

    Приняв, что в момент резонанса индуктивная и ёмкостная составляющие импеданса равны, резонансную частоту можно найти из выражения ωL = 1/ωC, где ω = 2πf; f — резонансная частота в герцах; L — индуктивность в генри; C — ёмкость в фарадах. Важно, что в реальных системах понятие резонансной частоты неразрывно связано с полосой пропускания, то есть диапазоном частот, в котором реакция системы мало отличается от реакции на резонансной частоте. Ширина полосы пропускания определяется добротностью системы.

    Акустика

    Резонанс — один из важнейших физических процессов, используемых при проектировании звуковых устройств, большинство из которых содержат резонаторы, например, струны и корпус скрипки, трубка у флейты, мембрана у барабанов.

    Струна

    Струны таких инструментов, как лютня, гитара, скрипка или пианино, имеют основную резонансную частоту, напрямую зависящую от длины и силы натяжения струны. Длина волны первого резонанса струны равна её удвоенной длине. При этом, его частота зависит от скорости v, с которой волна распространяется по струне:

    где L — длина струны (в случае, если она закреплена с обоих концов). Скорость распространения волны по струне зависит от её натяжения T и массы на единицу длины ρ:

    Таким образом, частота главного резонанса зависит от свойств струны и выражается следующим отношением:

    ,

    где T — сила натяжения, ρ — масса единицы длины струны, а m — полная масса струны.

    Увеличение натяжения струны и уменьшение её длины увеличивает её резонансную частоту. Помимо основного резонанса, струны также имеют резонансы на высших гармониках основной частоты f, например, 2f, 3f, 4f, и т. д. Если струне придать колебание коротким воздействием (щипком пальцев или ударом молоточка), струна начнёт колебания на всех частотах, присутствующих в воздействующем импульсе (теоретически, короткий импульс содержит все частоты). Однако частоты, не совпадающие с резонансными, быстро затухнут, и мы услышим только гармонические колебания, которые и воспринимаются как музыкальные ноты.

    Примечания

    См. также

    Ссылки

    Richardson LF (1922), Weather prediction by numerical process, Cambridge.

    Bretherton FP (1964), Resonant interactions between waves. J. Fluid Mech., 20, 457-472.

    Бломберген Н. (1965), Нелинейная оптика, М.: Мир - 424 с.

    Захаров В.Е. (1974), Гамильтонов формализм для волн в нелинейных средах с дисперсией, Изв. вузов СССР. Радиофизика, 17(4), 431-453.

    Арнольд В.И. (1979), Потеря устойчивости автоколебаний вблизи резонансов, Нелинейные волны, ред. А.В. Гапонов-Грехов, М.: Наука, 116-131.

    Kaup PJ, Reiman A and Bers A (1979), Space-time evolution of nonlinear three-wave interactions. Interactions in a homogeneous medium, Rev. of Modern Phys, 51(2), 275-309.

    Haken H (1983), Advanced Synergetics. Instability Hierarchies of Self-Organizing Systems and devices, Berlin, Springer-Verlag.

    Филлипс O.М. (1984), Взаимодействие волн. Эволюция идей, Современная гидродинамика. Успехи и проблемы. М.: Мир, 297-314.

    Журавлёв В.Ф., Климов Д.М. (1988), Прикладные методы в теории колебаний, М.:Наука

    Сухоруков А.П. (1988), Нелинейные волновые взаимодействия в оптике и радиофизике, М.: Наука - 232 с.

    Брюно А.Д. (1990), Ограниченная задача трех тел, М.:Наука

    Wikimedia Foundation. 2010.

    biograf.academic.ru