Определение сила архимеда – Как рассчитать архимедову силу 🚩 архимедова сила определение 🚩 Естественные науки

17. Закон Архимеда

Закон Архимеда формулируется следующим образом: на тело, погружённое в жидкость (или газ), действует выталкивающая сила, равная весу вытесненной этим телом жидкости (или газа). Сила называется силой Архимеда:

где — плотностьжидкости (газа), — ускорение свободного падения, а — объём погружённого тела (или часть объёма тела, находящаяся ниже поверхности). Если тело плаваетна поверхности или равномерно движется вверх или вниз, то выталкивающая сила (называемая также архимедовой силой) равна по модулю (и противоположна по направлению) силе тяжести, действовавшей на вытесненный телом объём жидкости (газа), и приложена кцентру тяжестиэтого объёма.

Тело плавает, если сила Архимеда уравновешивает силу тяжести тела.

Следует заметить, что тело должно быть полностью окружено жидкостью (либо пересекаться с поверхностью жидкости). Так, например, закон Архимеда нельзя применить к кубику, который лежит на дне резервуара, герметично касаясь дна.

Что касается тела, которое находится в газе, например в воздухе, то для нахождения подъёмной силы нужно заменить плотность жидкости на плотность газа. Например, шарик с гелием летит вверх из-за того, что плотность гелия меньше, чем плотность воздуха.

Закон Архимеда можно объяснить при помощи разности гидростатических давленийна примере прямоугольного тела.

где PA, PB — давления в точках A и B, ρ — плотность жидкости, h — разница уровней между точками A и B, S — площадь горизонтального поперечного сечения тела, V — объём погружённой части тела.

18. Равновесие тела в покоящейся жидкости

Тело, погруженное (полностью или частично) в жидкость, испытывает со стороны жидкости суммарное давление, направленное снизу вверх и равное весу жидкости в объеме погруженной части тела. Pвыт = ρжgVпогр

Для однородного тела плавающего на поверхности справедливо соотношение

где: V - объем плавающего тела; ρm - плотность тела.

Существующая теория плавающего тела довольно обширна, поэтому мы ограничимся рассмотрением лишь гидравлической сущности этой теории.

Способность плавающего тела, выведенного из состояния равновесия, вновь возвращаться в это состояние называется остойчивостью. Вес жидкости, взятой в объеме погруженной части судна называют водоизмещением, а точку приложения равнодействующей давления (т.е. центр давления) - центром водоизмещения. При нормальном положении судна центр тяжести С и центр водоизмещения d лежат на одной вертикальной прямой O'-O", представляющей ось симметрии судна и называемой осью плавания (рис.2.5).

Пусть под влиянием внешних сил судно наклонилось на некоторый угол α, часть судна KLM вышла из жидкости, а часть K'L'M', наоборот, погрузилось в нее. При этом получили новое положении центра водоизмещения d'. Приложим к точке d' подъемную силу R и линию ее действия продолжим до пересечения с осью симметрии O'-O". Полученная точка m

называется метацентром, а отрезок mC = h называется метацентрической высотой. Будем считать h положительным, если точка m лежит выше точки C, и отрицательным - в противном случае.

Рис. 2.5. Поперечный профиль судна

Теперь рассмотрим условия равновесия судна:

1)если h > 0, то судно возвращается в первоначальное положение; 2)если h = 0, то это случай безразличного равновесия; 3) если h<0, то это случай неостойчивого равновесия, при котором продолжается дальнейшее опрокидывание судна.

Следовательно, чем ниже расположен центр тяжести и, чем больше метацентрическая высота, тем больше будет остойчивость судна.

studfiles.net

Закон Архимеда

Закон Архимеда – закон статики жидкостей и газов, согласно которому на погруженное в жидкость (или газ) тело действует выталкивающая сила, равная весу жидкости в объеме тела.

История вопроса

«Эврика!» («Нашел!») – именно этот возглас, согласно легенде, издал древнегреческий ученый и философ Архимед, открыв принцип вытеснения. Легенда гласит, что сиракузский царь Герон II попросил мыслителя определить, из чистого ли золота сделана его корона, не причиняя вреда самому царскому венцу. Взвесить корону Архимеду труда не составило, но этого было мало – нужно было определить объем короны, чтобы рассчитать плотность металла, из которого она отлита, и определить, чистое ли это золото. Дальше, согласно легенде, Архимед, озабоченный мыслями о том, как определить объем короны, погрузился в ванну – и вдруг заметил, что уровень воды в ванне поднялся. И тут ученый осознал, что объем его тела вытеснил равный ему объем воды, следовательно, и корона, если ее опустить в заполненный до краев таз, вытеснит из него объем воды, равный ее объему. Решение задачи было найдено и, согласно самой расхожей версии легенды, ученый побежал докладывать о своей победе в царский дворец, даже не потрудившись одеться.

Однако, что правда – то правда: именно Архимед открыл принцип плавучести. Если твердое тело погрузить в жидкость, оно вытеснит объем жидкости, равный объему погруженной в жидкость части тела. Давление, которое ранее действовало на вытесненную жидкость, теперь будет действовать на твердое тело, вытеснившее ее. И, если действующая вертикально вверх выталкивающая сила окажется больше силы тяжести, тянущей тело вертикально вниз, тело будет всплывать; в противном случае оно пойдет ко дну (утонет). Говоря современным языком, тело плавает, если его средняя плотность меньше плотности жидкости, в которую оно погружено.

Закон Архимеда и молекулярно-кинетическая теория

В покоящейся жидкости давление производится посредством ударов движущихся молекул. Когда некий объем жидкости вымещается твердым телом, направленный вверх импульс ударов молекул будет приходиться не на вытесненные телом молекулы жидкости, а на само тело, чем и объясняется давление, оказываемое на него снизу и выталкивающее его в направлении поверхности жидкости. Если же тело погружено в жидкость полностью, выталкивающая сила будет по-прежнему действовать на него, поскольку давление нарастает с увеличением глубины, и нижняя часть тела подвергается большему давлению, чем верхняя, откуда и возникает выталкивающая сила. Таково объяснение выталкивающей силы на молекулярном уровне.

Такая картина выталкивания объясняет, почему судно, сделанное из стали, которая значительно плотнее воды, остается на плаву. Дело в том, что объем вытесненной судном воды равен объему погруженной в воду стали плюс объему воздуха, содержащегося внутри корпуса судна ниже ватерлинии. Если усреднить плотность оболочки корпуса и воздуха внутри нее, получится, что плотность судна (как физического тела) меньше плотности воды, поэтому выталкивающая сила, действующая на него в результате направленных вверх импульсов удара молекул воды, оказывается выше гравитационной силы притяжения Земли, тянущей судно ко дну, – и корабль плывет.

Формулировка и пояснения

Тот факт, что на погруженное в воду тело действует некая сила, всем хорошо известен: тяжелые тела как бы становятся более легкими – например, наше собственное тело при погружении в ванну. Купаясь в речке или в море, можно легко поднимать и передвигать по дну очень тяжелые камни – такие, которые не удается поднять на суше. В то же время легкие тела сопротивляются погружению в воду: чтобы утопить мяч размером с небольшой арбуз требуется и сила, и ловкость; погрузить мяч диаметром полметра скорее всего не удастся. Интуитивно ясно, что ответ на вопрос – почему тело плавает (а другое – тонет), тесно связан с действием жидкости на погруженное в нее тело; нельзя удовлетвориться ответом, что легкие тела плавают, а тяжелые – тонут: стальная пластинка, конечно, утонет в воде, но если из нее сделать коробочку, то она может плавать; при этом ее вес не изменился.

Существование гидростатического давления приводит к тому, что на любое тело, находящееся в жидкости или газе, действует выталкивающая сила. Впервые значение этой силы в жидкостях определил на опыте Архимед. Закон Архимеда формулируется так: на тело, погруженное в жидкость или газ, действует выталкивающая сила, равная весу того количества жидкости или газа, которое вытеснено погруженной частью тела.

Формула

Сила Архимеда, действующая на погруженное в жидкость тело, может быть рассчитана по формуле: FА = ρжgVпт,

где ρж – плотность жидкости,

g – ускорение свободного падения,

Vпт – объем погруженной в жидкость части тела.

Поведение тела, находящегося в жидкости или газе, зависит от соотношения между модулями силы тяжести Fт и архимедовой силы FA, которые действуют на это тело. Возможны следующие три случая:

1)    Fт > FA – тело тонет;

2)    Fт = FA – тело плавает в жидкости или газе;

3)    Fт < FA – тело всплывает до тех пор, пока не начнет плавать.

Видео


Источники

mfina.ru

СИЛА АРХИМЕДА (ВЫТАЛКИВАЮЩАЯ СИЛА)

СИЛА АРХИМЕДА (ВЫТАЛКИВАЮЩАЯ СИЛА)

Газдиев О.М. 1

1МО Г.о. Подольск МОУ СОШ пос. МИС

Яшина В.В. 1

1МО, Г.о. Подольск, МОУ СОШ пос. МИС

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Актуальность: Если внимательно присмотреться к окружающему миру, то можно открыть для себя множество событий, происходящих вокруг. Издревле человека окружает вода. Когда мы плаваем в ней, то наше тело выталкивает на поверхность какие-то силы. Я давно задаю себе вопрос: «Почему тела плавают или тонут? Вода выталкивает предметы?»

Моя исследовательская работа направлена на то, чтобы углубить полученные на уроке знания об архимедовой силе. Ответы на интересующие меня вопросы, используя жизненный опыт, наблюдения за окружающей действительностью, провести собственные эксперименты и объяснить их результаты, которые позволят расширить знания по данной теме. Все науки связаны между собой. А общий объект изучения всех наук - это человек «плюс» природа. Я уверен, что исследование действия архимедовой силы сегодня является актуальным.

Гипотеза: Я предполагаю, что в домашних условиях можно рассчитать величину выталкивающей силы действующей на погруженное в жидкость тело и определить зависит ли она от свойств жидкости, объема и формы тела.

Объект исследования: Выталкивающая сила в жидкостях.

Цель: Рассчитать величину выталкивающей силы действующей на погруженное в жидкость тело.

Задачи:

- изучить историю открытия архимедовой силы;

- изучить учебную литературу по вопросу действия архимедовой силы;

- выработать навыки проведения самостоятельного эксперимента;

- доказать, что значение выталкивающей силы зависит от плотности жидкости.

Методы исследования:

- исследовательские;

- расчетные;

- информационного поиска;

- наблюдений

1. Открытие силы Архимеда

Существует знаменитая легенда о том, как Архимед бежал по улице и кричал «Эврика!» Это как раз повествует об открытии им того, что выталкивающая сила воды равна по модулю весу вытесненной им воды, объем которой равен объему погруженного в нее тела. Это открытие названо законом Архимеда.

В III веке до нашей эры жил Гиерон - царь древнегреческого города Сиракузы и захотел он сделать себе новую корону из чистого золота. Отмерил его строго сколько нужно, и дал ювелиру заказ. Через месяц мастер вернул золото в виде короны и весила она столько, сколько и масса данного золота. Но ведь всякое бывает и мастер мог схитрить, добавив серебро или того хуже – медь, ведь на глаз не отличишь, а масса такая, какая и должна быть. А царю узнать охота: честно ль сделана работа? И тогда, попросил он ученого Архимеда, проверить из чистого ли золота сделал мастер ему корону. Как известно, масса тела равна произведению плотности вещества, из которого сделано тело, на его объем: . Если у разных тел одинаковая масса, но они сделаны из разных веществ, то значит, у них будет разный объем. Если бы мастер вернул царю не ювелирно сделанную корону, объем которой определить невозможно из-за ее сложности, а такой же по форме кусок металла, который дал ему царь, то сразу было бы ясно, подмешал он туда другого металла или нет. И вот принимая ванну, Архимед обратил внимание, что вода из нее выливается. Он заподозрил, что выливается она именно в том объеме, какой объем занимают его части тела, погруженные в воду. И Архимеда осенило, что объем короны можно определить по объему вытесненной ей воды. Ну а коли можно измерить объем короны, то его можно сравнить с объемом куска золота, равного по массе. Архимед погрузил в воду корону и измерил, как увеличился объем воды. Также он погрузил в воду кусок золота, у которого масса была такая же, как у короны. И тут он измерил, как увеличился объем воды. Объемы вытесненной в двух случаях воды оказались разными. Тем самым мастер был изобличен в обмане, а наука обогатилась замечательным открытием.

Из истории известно, что задача о золотой короне побудила Архимеда заняться вопросом о плавании тел. Опыты, проведенные Архимедом, были описаны в сочинении «О плавающих телах», которое дошло до нас. Седьмое предложение (теорема) этого сочинения сформулировано Архимедом следующим образом: тела более тяжелые, чем жидкость, опущенные в эту жидкость, будут опускаться пока не дойдут до самого низа, и в жидкости станут легче на величину веса жидкости в объеме, равном объему погруженного тела.

Интересно, что сила Архимеда равна нулю, когда погруженное в жидкость тело плотно, всем основанием прижато ко дну.

Открытие основного закона гидростатики - крупнейшее завоевание античной науки.

2. Формулировка и пояснения закона Архимеда

Закон Архимеда описывает действие жидкостей и газов на погруженное в них тело, и является одним из главных законов гидростатики и статики газов.

Закон Архимеда формулируется следующим образом: на тело, погружённое в жидкость (или газ), действует выталкивающая сила, равная весу жидкости (или газа) в объёме погруженной части тела – эта сила называется силой Архимеда:

,

где – плотность жидкости (газа), - ускорение свободного падения, - объём погружённой части тела (или часть объёма тела, находящаяся ниже поверхности).

Следовательно, архимедова сила зависит только от плотности жидкости, в которую погружено тело, и от объема этого тела. Но она не зависит, например, от плотности вещества тела, погруженного в жидкость, так как эта величина не входит в полученную формулу.

Следует заметить, что тело должно быть полностью окружено жидкостью (либо пересекаться с поверхностью жидкости). Так, например, закон Архимеда нельзя применить к кубику, который лежит на дне резервуара, герметично касаясь дна.

3. Определение силы Архимеда

Силу, с которой тело, находящееся в жидкости, выталкивается ею, можно определить на опыте используя данный прибор:

Небольшое ведерко и тело цилиндрической формы подвешиваем на пружине, закрепленной в штативе. Растяжение пружины отмечаем стрелкой на штативе, показывая вес тела в воздухе. Приподняв тело, под него подставляем стакан с отливной трубкой, наполненный жидкостью до уровня отливной трубки. После чего тело погружают целиком в жидкость. При этом часть жидкости, объём которой равен объёму тела, выливается из отливного сосуда в стакан. Указатель пружины поднимается вверх, пружина сокращается, показывая уменьшение веса тела в жидкости. В данном случае на тело, наряду с силой тяжести, действует еще и сила, выталкивающая его из жидкости. Если в ведёрко налить жидкость из стакана (т.е. ту, которую вытеснило тело), то указатель пружины возвратится к своему начальному положению.

На основании этого опыта можно заключить, что сила, выталкивающая тело, целиком погруженное в жидкость, равна весу жидкости в объёме этого тела. Зависимость давления в жидкости (газе) от глубины погружения тела приводит к появлению выталкивающей силы (силы Архимеда), действующей на любое тело, погруженное в жидкость или газ. Тело при погружении двигается вниз под действием силы тяжести. Архимедова сила направлена всегда противоположно силе тяжести, поэтому вес тела в жидкости или газе всегда меньше веса этого тела в вакууме.

Данный опыт подтверждает, что архимедова сила равна весу жидкости в объёме тела.

4. Условие плавания тел

На тело, находящееся внутри жидкости, действуют две силы: сила тяжести, направленная вертикально вниз, и архимедова сила, направленная вертикально вверх. Рассмотрим, что будет происходить с телом под действием этих сил, если вначале оно было неподвижно.

При этом возможны три случая:

1) Если сила тяжести больше архимедовой силы, то тело опускается вниз, то есть тонет:

, то тело тонет;

2) Если модуль силы тяжести равен модулю архимедовой силы, то тело может находиться в равновесии внутри жидкости на любой глубине:

, то тело плавает;

3) Если архимедова сила больше силы тяжести, то тело будет поднимается из жидкости – всплывать:

, то тело плавает.

Если всплывающее тело частично выступает над поверхностью жидкости, то объем погруженной части плавающего тела такой, что вес вытесненной жидкости равен весу плавающего тела.

Архимедова сила больше силы тяжести, если плотность жидкости больше плотности погруженного в жидкость тела, если

1) =— тело плавает в жидкости или газе,2) >— тело тонет,3) < — тело всплывает до тех пор, пока не начнет плавать.

Именно эти принципы соотношения силы тяжести и силы Архимеда применяются в судоходостронии. Однако на воде держатся громадные речные и морские суда, изготовленные из стали, плотность которой почти в 8 раз больше плотности воды. Объясняется это тем, что из стали делают лишь сравнительно тонкий корпус судна, а большая часть его объема занята воздухом. Среднее значение плотности судна при этом оказывается значительно меньше плотности воды; поэтому оно не только не тонет, но и может принимать для перевозки большое количество грузов. Суда, плавающие по рекам, озерам, морям и океанам, построены из разных материалов с различной плотностью. Корпус судов обычно делают из стальных листов. Все внутренние крепления, придающие судам прочность, также изготавливают из металлов. Для постройки судов используют разные материалы, имеющие по сравнению с водой как большую, так и меньшую плотность. Вес воды, вытесненной подводной частью судна, равен весу судна с грузом в воздухе или силе тяжести, действующей на судно с грузом.

Для воздухоплавания вначале использовали воздушные шары, которые раньше наполняли нагретым воздухом, сейчас – водородом или гелием. Для того чтобы шар поднялся в воздух, необходимо, чтобы архимедова сила (выталкивающая), действующая на шар, была больше силы тяжести.

5. Проведение эксперимента

  1. Исследовать поведение сырого яйца в жидкостях разного рода.

Задача: доказать, что значение выталкивающей силы зависит от плотности жидкости.

Я взял одно сырое яйцо и жидкости разного рода (приложение 1):

- вода чистая;

- вода, насыщенная солью;

- подсолнечное масло.

Сначала я опустил сырое яйцо в чистую воду – яйцо утонуло - «пошло ко дну» (приложение 2). Потом в стакан с чистой водой я добавил столовую ложку поваренной соли, в результате яйцо плавает (приложение 3). И наконец, я опустил яйцо в стакан с подсолнечным маслом - яйцо опустилось на дно (приложение 4).

Название жидкости

Плотность жидкости,

Поведение тела в жидкости

Чистая вода

1000

Тело утонуло

Соленая вода

1030

Тело плавает

Подсолнечное масло

930

Тело утонуло

Вывод: в первом случае плотность яйца больше плотности воды и поэтому яйцо утонуло. Во втором случае плотность солёной воды больше плотности яйца, поэтому яйцо плавает в жидкости. В третьем случае плотность яйца также больше плотности подсолнечного масла, поэтому яйцо утонуло. Следовательно, чем больше плотность жидкости, тем сила тяжести меньше.

2. Действие Архимедовой силы на тело человека в воде.

Задачи:

- определить на опыте плотность тела человека, сравнить ее с плотностью пресной и морской воды и сделать вывод о принципиальной возможности человека плавать;

- вычислить вес человека в воздухе, архимедову силу, действующую на человека в воде.

Для начала с помощью весов я измерил массу своего тела. Затем измерил объем тела (без объема головы). Для этого я налил в ванну воды столько, чтобы при погружении в воду я был полностью в воде (за исключением головы). Далее с помощью сантиметровой ленты отметил от верхнего края ванны расстояние до уровня воды ℓ1, а затем – при погружении в воду ℓ2. После этого с помощью предварительно проградуированной трехлитровой банки стал наливать в ванну воду от уровня ℓ1 до уровня ℓ2 – так я измерил объем вытесненной мной воды (приложение 5). Плотность я рассчитал с помощью формулы:

.

Сила тяжести, действующая на тело в воздухе, была рассчитана по формуле: , где – ускорение свободного падения ≈ 10 . Значение выталкивающей силы было рассчитано с помощью формулы описанной в пункте 2.

Масса испытуемого (без учета массы головы), кг

53

Объем тела человека (без объема головы), м3

0,052

Плотность тела человека (без учета головы),

1019

Плотность пресной воды,

1000

Плотность морской воды,

1030

Сила тяжести, действующая на тело в воздухе, Н

530

Значение выталкивающей силы в пресной воде, Н

520

Значение выталкивающей силы в морской воде, Н

536

Вывод:Тело человекаплотнее пресной воды, а, значит, оно в ней тонет. Человеку легче плавать в море, чем в реке, так как плотность морской воды больше, а следовательно больше значение выталкивающей силы.

Заключение

В процессе работы над этой темой мы узнали для себя много нового и интересного. Круг наших познаний увеличился не только в области действия силы Архимеда, но и применении ее в жизни. Перед началом работы мы имели о ней далеко неподробное представление. При проведении опытов мы подтвердили экспериментально справедливость закона Архимеда и выяснили, что выталкивающая силазависит от объема тела и плотности жидкости, чем больше плотность жидкости, тем архимедова сила больше. Результирующая сила, которая определяет поведение тела в жидкости, зависит от массы, объёма тела и плотности жидкости.

Помимо проделанных экспериментов, была изучена дополнительная литература об открытии силы Архимеда, о плавании тел, воздухоплавании.

Каждый из Вас может сделать удивительные открытия, и для этого не нужно обладать ни особенными знаниями, ни мощным оборудованием. Нужно лишь немного внимательней посмотреть на окружающий нас мир, быть чуть более независимым в своих суждениях, и открытия не заставят себя ждать. Нежелание большинства людей познавать окружающий мир оставляет большой простор любознательным в самых неожиданных местах.

Список литературы

1.Большая книга экспериментов для школьников – М.: Росмэн, 2009. – 264 с.

2. Википедия: https://ru.wikipedia.org/wiki/Закон_Архимеда.

3. Перельман Я.И. Занимательная физика. - книга 1. - Екатеринбург.: Тезис, 1994.

4. Перельман Я.И. Занимательная физика. - книга 2.- Екатеринбург.: Тезис, 1994.

5. Перышкин А.В. Физика: 7 класс: учебник для общеобразовательных учреждений / А.В. Перышкин. - 16-е изд., стереотип. - М.: Дрофа, 2013. – 192 с.: ил.

Приложение 1

Приложение 2

Приложение 3

Приложение 4

Приложение 5

 

Просмотров работы: 5318

school-science.ru

ЗАКОН АРХИМЕДА | Энциклопедия Кругосвет

ЗАКОН АРХИМЕДА закон статики жидкостей и газов, согласно которому на погруженное в жидкость (или газ) тело действует выталкивающая сила, равная весу жидкости в объеме тела.

Тот факт, что на погруженное в воду тело действует некая сила, всем хорошо известен: тяжелые тела как бы становятся более легкими – например, наше собственное тело при погружении в ванну. Купаясь в речке или в море, можно легко поднимать и передвигать по дну очень тяжелые камни – такие, которые не удается можем поднять на суше; то же явление наблюдается, когда по каким-либо причинам выброшенным на берегу оказывается кит – вне водной среды животное не может передвигаться – его вес превосходит возможности его мышечной системы. В то же время легкие тела сопротивляются погружению в воду: чтобы утопить мяч размером с небольшой арбуз требуется и сила, и ловкость; погрузить мяч диаметром полметра скорее всего не удастся. Интуитивно ясно, что ответ на вопрос – почему тело плавает (а другое – тонет), тесно связан с действием жидкости на погруженное в нее тело; нельзя удовлетвориться ответом, что легкие тела плавают, а тяжелые – тонут: стальная пластинка, конечно, утонет в воде, но если из нее сделать коробочку, то она может плавать; при этом ее вес не изменился. Чтобы понять природу силы, действующей на погруженное тело со стороны жидкости, достаточно рассмотреть простой пример (рис. 1).

Кубик с ребром a погружен в воду, причем и вода, и кубик неподвижны. Известно, что давление в тяжелой жидкости увеличивается пропорционально глубине – очевидно, что более высокий столбик жидкости более сильно давит на основание. Гораздо менее очевидно (или совсем не очевидно), что это давление действует не только вниз, но и в стороны, и вверх с той же интенсивностью – это закон Паскаля.

Если рассмотреть силы, действующие на кубик (рис. 1), то в силу очевидной симметрии силы, действующие на противоположные боковые грани, равны и противоположно направлены – они стараются сжать кубик, но не могут влиять на его равновесие или движение. Остаются силы, действующие на верхнюю и на нижнюю грани. Пусть h – глубина погружения верхней грани, r – плотность жидкости, g – ускорение силы тяжести; тогда давление на верхнюю грань равно

r · g · h = p1

а на нижнюю

r · g(h+a) = p2

Сила давления равна давлению, умноженному на площадь, т.е.

F1 = p1 · a\up122, F2 = p2 · a\up122 , где a – ребро кубика,

причем сила F1 направлена вниз, а сила F2 – вверх. Таким образом, действие жидкости на кубик сводится к двум силам – F1 и F2 и определяется их разностью, которая и является выталкивающей силой:

F2F1 =r · g · (h+a) a\up122 – rgha ·a2 = pga2

Сила – выталкивающая, так как нижняя грань, естественно, расположена ниже верхней и сила, действующая вверх, больше, чем сила, действующая вниз. Величина F2F1= pga3 равна объему тела (кубика) a3, умноженному на вес одного кубического сантиметра жидкости (если принять за единицу длины 1 см). Другими словами, выталкивающая сила, которую часто называют архимедовой силой, равна весу жидкости в объеме тела и направлена вверх. Этот закон установил античный греческий ученый Архимед, один из величайших ученых Земли.

Если тело произвольной формы (рис. 2) занимает внутри жидкости объем V, то действие жидкости на тело полностью определяется давлением, распределенным по поверхности тела, причем заметим, что это давление совершенно не зависит от материала тела – («жидкости все равно на что давить»).

Для определения результирующей силы давления на поверхность тела нужно мысленно удалить из объема V данное тело и заполнить (мысленно) этот объем той же жидкостью. С одной стороны, есть сосуд с жидкостью, находящейся в покое, с другой стороны внутри объема V – тело, состоящее из данной жидкости, причем это тело находится в равновесии под действием собственного веса (жидкость тяжелая) и давления жидкости на поверхность объема V. Так как вес жидкости в объеме тела равен pgV и уравновешивается равнодействующей сил давления, то величина ее равна весу жидкости в объеме V, т.е. pgV.

Сделав мысленно обратную замену – поместив в объеме V данное тело и отметив, что эта замена никак не скажется на распределении сил давления на поверхность объема V, можно сделать вывод: на погруженное в покоящуюся тяжелую жидкость тело действуют направленная вверх сила (архимедова сила), равная весу жидкости в объеме данного тела.

Аналогично можно показать, что если тело частично погружено в жидкость, то архимедова сила равна весу жидкости в объеме погруженной части тела. Если в этом случае архимедова сила равна весу, то тело плавает на поверхности жидкости. Очевидно, что если при полном погружении архимедова сила окажется меньше веса тела, то оно утонет. Архимед ввел понятие «удельного веса» g, т.е. веса единицы объема вещества: g = pg; если принять, что для воды g = 1, то сплошное тело из вещества, у которого g > 1 утонет, а при g < 1 будет плавать на поверхности; при g = 1 тело может плавать (зависать) внутри жидкости. В заключение заметим, что закон Архимеда описывает поведение аэростатов в воздухе (в покое при малых скоростях движения).

Владимир Кузнецов

www.krugosvet.ru

Сила Архимеда

В этой статье представляю задачи, связанные с плаванием тел и силой Архимеда. Как обычно, сначала пытаемся решить задачи простые, а затем перейдем к более сложным, которые вы найдете в следующей статье.

Задача 1. В воду погружен стеклянный кубик с ребром 10 см. Нижняя его грань находится на глубине 30 см. Рассчитайте силу давления, действующую: а) на верхнюю грань кубика; б) на нижнюю грань кубика; в) на правую грань; г) на левую грань; д) на переднюю и заднюю грани. Найдите равнодействующую всех этих сил.


 

Давление на грани кубика

Давление столба жидкости может быть вычислено по формуле , а сила давления может быть найдена из формулы , из которой находим: .

Не забываем, что очень важно помнить про перевод всех данных задачи в систему СИ, поэтому все расстояния и глубины из сантиметров переводим в метры.

Тогда сила давления на грань: , где – длина ребра кубика в метрах, – глубина, причем для боковых граней возьмем среднее значение () так как давление у верхнего края боковых граней и у нижнего – разное.

Сила давления на верхнюю грань, Н:

   

Сила давления на нижнюю грань, Н:

   

Сила давления на боковые грани, заднюю и переднюю, Н:

   

Понятно, что все силы, действующие на боковые, заднюю и переднюю грани друг друга компенсируют, а равнодействующая всех сил будет в итоге суммой сил давления на нижнюю и верхнюю грани:

   

Так как сила давления на нижнюю грань больше, чем на верхнюю, то равнодействующая направлена вверх.

 

Задача 2. Определите объем куска алюминия, на который в керосине действует архимедова сила величиной 120 Н.


 

Сила Архимеда может быть вычислена как , где – плотность жидкости, а – объем самого тела. То есть сила Архимеда не зависит  от того, из чего сделано тело, а только от его объема. Вы спросите: почему тогда одинаковые по объему тела, например, шарики равных радиусов, сделанные из дерева и какого-либо металла, по-разному себя ведут в воде: один плавает, второй – тонет? Да просто есть ведь и сила тяжести, которая зависит как раз от массы тела, и в случае деревянного шарика сила Архимеда достаточна, чтобы компенсировать силу тяжести, а в случае с металлическим шариком – нет.

Рассчитаем объем: м

 

Задача 3. Плавающий деревянный брусок вытесняет 0,5 л воды. Сколько весит брусок?


 

Так как брусок плавает, то сила Архимеда равна силе тяжести. Нас спрашивают в задаче про вес бруска. Так как система в покое и ускорения нет, то вес бруска равен силе тяжести:

   

   

Можно эту задачу решить иначе: вес тела равен весу воды, вытесняемой им. Брусок вытеснил 0,5 литра воды. Воспользовавшись формулой  плотности вещества, определяем, что масса такого количества воды равна 0,5 кг, а вес, значит, 5Н.

 

Задача 4. Тела изготовлены из дерева, пробки и стали. Они имеют объем 100 см каждое. Найдите архимедову силу, действующую на каждое тело, если его погрузить в воду.


 

Как было показано в одной из предыдущих задач, неважно, из чего изготовлено тело, а важен его объем, поэтому, раз тела обладают одним и тем же объемом, то и сила Архимеда на них действует одинаковая:

   

Ответ: 1 Н

Задача 5.Тело при погружении в воду становится легче в 5 раз, чем в воздухе. Определите плотность этого тела.


 

Мы с вами помним, конечно, что на всякое тело, погруженное как в жидкость, так и в газ, действует сила Архимеда. Поэтому в воздухе она также будет действовать на тело. Однако плотность воздуха так мала по сравнению с плотностью воды, что, я думаю, мы этой силой пренебрежем, и примем вес тела в воздухе равным силе тяжести.

Тогда вес тела – на воздухе, а вес тела в воде . А уменьшился вес этого тела в воде благодаря силе Архимеда: , откуда получаем, что

   

   

   

Масса тела равна произведению его плотности на объем:

Подставим:

   

   

Откуда и найдем плотность тела:

   

Ответ: плотность тела 1250 кг/м

 

Задача 6. На предмет, целиком погруженный в керосин, действует выталкивающая сила величиной 2 кН. Какой будет архимедова сила, действующая на него в воде? А в спирте?


 

Чтобы узнать, какой будет Архимедова сила, нужно знать объем предмета. Определим его, зная Архимедову силу в керосине:  , откуда получаем, что .

Зная объем, определяем Архимедову силу в воде, Н:

   

Так как плотность спирта равна плотности керосина, то и Архимедовы силы в этих жидкостях будут одинаковы.

Задача 7.Цинковый шар имеет массу 360 г. При погружении в воду его вес становится равным 2,8 Н. Сплошной этот шар или полый?


 

Определим объем шара в предположении, что полости в нем нет, по формуле плотности (то есть найдем объем куска цинка массой 360 г):

   

Плотность цинка равна кг/м, объем получается м

Теперь определим реальный объем шара, то есть  тот, который он вытесняет, по известному весу в жидкости. Вес шара Н, вес в жидкости равен , откуда объем вытесняемой жидкости (и объем шара)

   

мы получили больший объем, чем в первом случае, то есть шар имеет полость внутри, которая и влияет на его внешний объем.

 

Задача 8. Камень имеет объем 7,5 дм и массу 18,7 кг. Какую силу придется приложить, чтобы удерживать его в воздухе и в воде?


 

Чтобы удержать такой камень в воздухе, нужно преодолеть силу тяжести, то есть Н.

Теперь определим, какую силу достаточно будет приложить в воде, ведь там нам поможет сила Архимеда!

   

Тогда сила, которую нужно приложить в воде для удержания камня (или, проще, вес этого камня в воде) равна Н

 

Задача 9. Сплошное однородное тело, будучи погруженным в воду, весит 170 мН, а в глицерин – 144 мН. Каким будет вес этого тела, если его погрузить в четыреххлористый углерод?


 

Запишем систему уравнений по тем условиям, что описаны в задаче. Вес тела в воде равен весу тела на воздухе, уменьшенному на силу Архимеда:

   

Вес тела в глицерине равен весу тела на воздухе, уменьшенному на силу Архимеда – только в глицерине сила Архимеда отличается от той, что действовала на тело в воде:

   

Из этих двух уравнений, объединив их в систему, можно найти объем тела. Вычтем второе уравнение из первого:

   

   

   

Подставляем числа:

   

Теперь, когда мы знаем объем тела и плотность четыреххлористого  углерода, можно найти силу Архимеда в нем:

   

Ответ: 110 мН

 

Задача 10. Кусок парафина толщиной 5 см плавает в воде. Он имеет форму прямоугольного параллелепипеда. Какая часть куска выступает над водой?


 

Если кусок парафина плавает, а не тонет, значит, сила Архимеда достаточна для того, чтобы компенсировать силу тяжести. Тогда можно записать:

   

Представим массу куска через его объем и плотность:

   

Здесь – объем всего куска, а – объем погруженной части.

Тогда:

   

   

Так как объем – это произведение площади основания на высоту, то можно сократить площадь:

   

   

Откуда делаем вывод, что , то есть из пяти см выступает 0,5 см.

Задача 11. Прямоугольная баржа после приема груза осела на 0,5 м. Принимая длину баржи 5 м, а ширину – 3 м, рассчитать вес принятого ею груза.


 

Рассчитаем объем воды, который был вытеснен баржей после осадки:

м

Такой объем воды весит 7,5 тонн – это легко понять, помня величину плотности воды.

То есть вес груза, принятого баржей, равен , или 75 кН.

 

Задача 12. Плот состоит из 12 бревен, каждое из которых имеет объем 0,8 м. Бревна сосновые. Можно ли на этом плоту переправить на другой берег автомобиль массой 1,5 тонны?


 

Рассчитаем вес плота: Н

К этому весу будет еще добавлен вес автомобиля: Н

Определим силу Архимеда. Если она окажется больше, чем суммарный вес плота и автомобиля, то плот выдержит (не будет затоплен при переправе), а если меньше, то переправлять автомобиль нельзя. Предположим, весь объем плота оказывается в воде при погрузке автомобиля. Тогда сила Архимеда: Н.

Так как , то делаем вывод, что плот может переправить автомобиль и даже не  погрузится при переправе целиком в воду, то есть колеса не намокнут.

 

Задача 13. Теплоход, вес которого вместе с оборудованием составляет 20 МН, имеет объем подводной части при погружении до ватерлинии 6000 м. Как велика грузоподъемность теплохода?


 

Сразу вычислим силу Архимеда, так как знаем водоизмещение судна:

   

Н.

Часть этой силы пойдет на компенсацию веса самого судна с оборудованием:

, или 40 МН – такого веса груз можно нагрузить на теплоход.

 

Задача 14. В сообщающиеся сосуды диаметром каждый налита жидкость плотностью . В один сосуд опустили тело массой , которое стало плавать в жидкости. Как и на сколько изменится уровень жидкости в сосудах?


 

Тело в одном из двух сосудов

Так как тело плавает, то заключаем, что сила Архимеда достаточна, чтобы скомпенсировать вес тела. Тогда запишем это формулой:

   

   

   

Так как сосудов два, и по закону уровень воды в них одинаков, то, если общий объем воды увеличивается на благодаря телу, то в каждом сосуде он поднимется на .

Высота подъема воды равна

Или

easy-physic.ru

Физика 7 класс. Сила Архимеда. Закон Архимеда :: Класс!ная физика

Физика 7 класс. СИЛА АРХИМЕДА

Зависимость давления в жидкости или газе от глубины погружения тела приводит к появлению выталкивающей силы / или иначе силы Архимеда /, действующей на любое тело, погруженное в жидкость или газ.

Архимедова сила направлена всегда противоположно силе тяжести, поэтому вес тела в жидкости или газе всегда меньше веса этого тела в вакууме. Величина Архимедовой силы определяется по закону Архимеда.

Закон назван в честь древнегреческого ученого Архимеда, жившего в 3 веке до нашей эры.

Открытие основного закона гидростатики - крупнейшее завоевание античной науки. Скорее всего вы уже знаете легенду о том, как Архимед открыл свой закон: "Вызвал его однажды сиракузский царь Гиерон и говорит .... А что было дальше? ...

Закон Архимеда, впервые был упомянут им в трактате " О плавающих телах". Архимед писал: " тела более тяжелые, чем жидкость, опущенные в эту жидкость, будут опускаться пока не дойдут до самого низа, и в жидкости станут легче на величину веса жидкости в объеме, равном объему погруженного тела".

Еще одна формула для определения Архимедовой силы:

ИНТЕРЕСНО, что сила Архимеда равна нулю, когда погруженное в жидкость тело плотно, всем основанием прижато ко дну.

ВЕС ТЕЛА, ПОГРУЖЕННОГО В ЖИДКОСТЬ (ИЛИ ГАЗ)

Вес тела в вакууме Pо=mg.
Если тело погружено в жидкость или газ,
то P = Pо - Fа = Ро - Pж

Вес тела, погруженного в жидкость или газ, уменьшается на величину выталкивающей силы, действующей на тело.

Или иначе:


Устали? - Отдыхаем!

class-fizika.narod.ru

Закон Архимеда для неподвижных т

Закон Архимеда для неподвижных т

Закон Архимеда для неподвижных тел

Любое тело, погруженное в жидкость, подвергается сжимающему и выталкивающему действию со стороны жидкости.

Представим такую ситуацию: ученый, владеющий современными приборами и мощным математическим аппаратом, решил вычислить силу, выталкивающую из жидкости погруженное в нее тело.

Он экспериментально установит, что на единицу поверхности тела, погруженного в жидкость с плотностью rдействует по нормали к поверхности сила гидростатического давления p, зависящая от глубины погружения h по определенному закону (rgh) и не зависящая от ориентации поверхности.

Он сложит векторы сил давления, действующих на различные элементы поверхности тела и направленные по нормали к ним; для этого потребуется вычислить так называемый поверхностный интеграл от некоторой векторной функции по поверхности тела сложной формы. С помощью современного математического аппарата и мощных компьютеров этот интеграл может быть вычислен. Но каково же будет изумление этого ученого, когда окажется, что полученный результат численно равен весу жидкости в объеме погруженной части тела! Этот результат был получен греческим ученым Архимедом 2200 лет назад, причем в общем виде - для тел любой формы!

Попробуем восстановить ход рассуждений Архимеда и вывести его закон.


На рис. 1, изображено тело, помещенное в жидкость. На это тело со стороны жидкости действует описанная выше сила гидростатического давления. Для нахождения этой силы вместо вычисления сложных интегралов проведем мысленный эксперимент: уберем тело и рассмотрим жидкость в объеме V, который занимала погруженная часть тела (рис. 2). На эту жидкость действует сила тяжести mg= Vg и сила гидростатического давления F. Выделенный объем находится в равновесии, следовательно, сила, действующих на жидкость в этом объеме, равны: F=rVg.

Отсюда следует выражение для силы гидростатического давления: F=rVg.

Мы нашли силу, действующую на поверхность жидкости, заполняющей объем V. Но поверхность тела, погруженного в жидкость, совпадает с поверхностью жидкости в нашем мысленном эксперименте, следовательно, найденное выражение и есть "выталкивающая" сила - сила Архимеда
                                                       FАрх=rgV.                       

Это равенство и носит название закон Архимеда.

 

Сила Архимеда. Условие плавания тел.

 

1.В сосуде с водой плавает брусок из льда, на котором лежит деревянный шар. Плотность вещества шара меньше плотности воды. Изменится ли уровень воды в сосуде, если лед растает?

2.В сосуде с водой плавает железный коробок, ко дну которого при помощи нити подвешен стальной шар. Шар не касается дна сосуда. Как изменится высота уровня воды в сосуде, если нить, удерживающая шар, оборвется?

3.В сосуде с водой плавает деревянный диск, в центре которого укреплен шарик из свинца (см.рис.) Из-менится ли уровень воды в сосуде относительно его дна, если диск перевернуть?

4.Кусок льда, внутри которого вморожен шарик из свинца, плавает в цилиндрическом сосуде с водой. Пло-щадь дна сосуда S. Какова масса шарика, если после полного таяния льда уровень воды в сосуде понизился на h? Плотность свинца r1, воды r2.

5.На левой чаше весов находится сосуд с водой, а на правой—штатив, к перекладине которого подвешено на нити какое-нибудь тело. Пока тело не погружено в воду, весы находятся в равновесии (см. рис.). Затем нить удлиняют так, что тело полностью погружается в воду (не касаясь дна сосуда). При этом равновесие весов нарушается. Какой груз и на какую чашу весов нужно положить, чтобы восстановить равновесие?

Решение задачи №1

Способ №1

Вспомним условие плавание тел: вес вытесненной жидкости равен весу плавающего тело. На основе этого в данной задаче можно утверждать, что:

  1. Когда в сосуд опустили лед с шариком, уровень воды в нем поднялся на столько, чтобы вытеснялся вес воды равный весу льда и шарика.
  2. Вес той части воды, которая вытеснялась за счет веса льда, имеет равный ему вес.

Поэтому:

  1. когда лед растает, и соответствующая часть воды уже не будет вытесняться, ее место займет равное количество талой воды.
  2. Вода, вытесненная за счет веса шарика, останется в прежнем количестве.

Следовательно, уровень воды останется прежним

Способ №2

Рассуждаем так:

  1. Уровень воды в сосуде определяет давление на дно по формуле:
    p=rgh.
  2. Давление определяет силу давления на дно сосуда по формуле:
    F=pS, где S – площадь дна сосуда.
  3. Сила давления на дно сосуда - это просто вес его содержимого.

Так как вес содержимого не изменился после того, как лед растаял, то сила давления на дно осталась прежней, и, следовательно, давление на дно осталось прежним, и, следовательно, уровень воды остался прежним.

Решение задачи №2

Так как тело плавает, вес вытесненной воды будет равен весу шарика с диском (условие плавания тел).

Будем считать, что при перевороте диска, свинцовый шарик продолжает плавать вместе с ним. Следовательно, вес вытесненной воды не изменится и уровень воды в сосуде тоже.

Решение задачи №3

Шар и коробок плавают вместе: они вытесняют вес воды равный сумме веса коробка и веса шара.

Коробок плавает, а шар лежит на дне: вытесняется вес воды равный весу коробка и вес воды в объеме шара.

Вес стального шара больше веса воды в объеме этого шара. Следовательно, в первом случае вытесняется больше воды, чем во втором и уровень воды понизится.

Решение задачи №5

Что происходит с правой чашкой весов?

После полного погружения тела в воду, на него будет действовать выталкивающая сила (сила Архимеда) и оно станет легче на величину веса воды в объеме тела (закон Архимеда). Следовательно, вес на правой чашке на эту величину станет меньше.

Что происходит с левой чашкой весов?

Уровень воды в сосуде повысится, увеличится давление на дно, следовательно, возрастет сила давления на дно сосуда и, следовательно, вес на левой чашке возрастет.

На какую величину возрастет вес на левой чашке?

Полностью погруженное тело вытесняет вес воды в объеме тела. Легко сообразить, что именно вытесненная вода оказывает дополнительное давление на дно сосуда и создает дополнительный вес равный собственному весу. Следовательно, вес на левой чашке увеличится на вес воды в объеме погруженного тела.

(К такому же выводу можно прийти и быстрее: на тело со стороны воды действует выталкивающая сила равная весу в объеме тела, но действие одного тела на другое всегда носит характер взаимодействия. Следовательно, со стороны тела на жидкость действует такая же по величине сила, направленная в противоположную сторону.)

Поэтому, чтобы уравновесить весы надо на правую чашку положить гирю, имеющую удвоенный вес воды в объеме погруженного тела.

Решение задачи №4

Так как содержимое сосуда не меняется, то остается неизменной сила давления на дно сосуда. Посчитаем силу давления на дно до того, как растаял лед:

F=pS, p=r 2gH

F=Sr 2gH (где H – уровень воды в сосуде до того, как лед растаял).

После того, как лед растает, сила давления на дно складывается из силы гидростатического давления(F1)и веса шарика, лежащего на дне (F2):

F= F1+ F2

F1= Sr 2g(H-h), уровень воды понизился на h по условию задачи.

Вес шарика, полностью погруженного в воду (F2), вычисляется как разность силы тяжести (Mg=r1gVшарика) и действующей на него силы Архимеда (Fарх=r 2gVшарика), поэтому :

F2=Mg - r2gVшарика=r1gVшарика-r2gVшарика=(r1-r2)gVшарика

Но силы давления на дно до и после равны, поэтому получаем следующее уравнение:

Sr 2gH = Sr2g(H-h)+(r1-r2)gVшарика

Из этого уравнения можно легко найти объем шарика (Vшарика), а потом и его массу:

M=r1Vшарика

Некоторые формулы и законы

Запомни, пожалуйста, как связаны между собой масса (M), плотность (r )и объем (V):

M=r V, r =M/V, V=M/r

Сила тяжести

F=Mg, где g=9,8Н/кг

Вес тела

Вес тела – сила, действующая на опору или подвес. Мы ее, пока, вычисляем по формуле:

P=mg

Закон Архимеда (сила Архимеда)

На тело в жидкости или газе действует выталкивающая сила равная весу газа или жидкости в погруженном в жидкость или газ объеме тела.

Если жидкость (газ) одна (однородна), то формула получается такой:

F=r gV,

где V – объем части тела, погруженной в жидкость (газ).

Если тело находится на границе двух жидкостей (газов), тогда формула получается такой:

F=r 1gV1+r 2gV2,

где r 1 и V1 – плотность первой жидкости и часть объема тела, погруженного в нее, а r 2 и V2плотность второй жидкости и часть объема тела, погруженного в нее.

Подъемная сила

Подъемной силой называется равнодействующая силы Архимеда и силы тяжести, действующих на тело. Формула получается такой:

Fпод=Fарх - Mg

Механическая работа

Механическая работа:

A=Fs, где F- сила, s – путь в направлении действия силы

Если сила противоположна перемещению тела, то формула будет такой:

A=-Fs

Если сила перпендикулярна перемещению, то

A=0

К уроку

Сайт создан в системе uCoz

homefizika.narod.ru