Правило лопиталя калькулятор онлайн – Калькулятор решения пределов – 14 Июля 2013 – Примеры решений задач

Правило Лопиталя · Калькулятор Онлайн

Введите функцию и точку для предела, которому надо применить правило Лопиталя

Вычислим предел функции с помощью правила Лопиталя. Вы введёте функцию, для которой требуется вычислить предел и точку в которой предел должен сходиться.

Правила ввода выражений и функций

Выражения могут состоять из функций (обозначения даны в алфавитном порядке):

absolute(x)
Абсолютное значение x
(модуль x или |x|)
arccos(x)
Функция – арккосинус от x
arccosh(x)
Арккосинус гиперболический от x
arcsin(x)
Арксинус от x
arcsinh(x)
Арксинус гиперболический от x
arctg(x)
Функция – арктангенс от x
arctgh(x)
Арктангенс гиперболический от x
e
e число, которое примерно равно 2.7
exp(x)
Функция – экспонента от x (что и e^x)
log(x) or ln(x)
Натуральный логарифм от x
(Чтобы получить log7(x), надо ввести log(x)/log(7) (или, например для log10(x)=log(x)/log(10))
pi
Число – “Пи”, которое примерно равно 3.14
sin(x)
Функция – Синус от x
cos(x)
Функция – Косинус от x
sinh(x)
Функция – Синус гиперболический от x
cosh(x)
Функция – Косинус гиперболический от x
sqrt(x)
Функция – квадратный корень из x
sqr(x) или x^2
Функция – Квадрат x
tg(x)
Функция – Тангенс от x
tgh(x)
Функция – Тангенс гиперболический от x
cbrt(x)
Функция – кубический корень из x
floor(x)
Функция – округление x в меньшую сторону (пример floor(4.5)==4.0)
sign(x)
Функция – Знак x
erf(x)
Функция ошибок (Лапласа или интеграл вероятности)

В выражениях можно применять следующие операции:

Действительные числа
вводить в виде 7.5, не 7,5
2*x
– умножение
3/x
– деление
x^3
– возведение в степень
x + 7
– сложение
x – 6
– вычитание

www.kontrolnaya-rabota.ru

Нахождение предела функции в точке по правилу Лопиталя

Калькулятор ниже находит предел функции по правилу Лопиталя (через производные числителя и знаменателя). Описание правила смотри ниже.

Допустимые операции: + – / * ^ Константы: pi Функции: sin cosec cos tg ctg sech sec arcsin arccosec arccos arctg arcctg arcsec exp lb lg ln versin vercos haversin exsec excsc sqrt sh ch th cth csch

Точка в которой необходимо посчитать предел

Точность вычисления

Знаков после запятой: 2

Правило Лопиталя

 

Предел функции в точке

 

Сохранить share extension

Правило Лопиталя

Если выполняются следующие условия:

  • пределы функций f(x) и g(x) равны между собой и равны нулю или бесконечности:
    или ;
  • функции g(x) и f(x) дифференцируемы в проколотой окрестности a;
  • производная функции g(x) не равна нулю в проколотой окрестности a
  • и существует предел отношения производной f(x) к производной g(x):

Тогда существует предел отношения функций f(x) и g(x):
,

И он равен пределу отношения производной функции f(x) к производной функции g(x):

В формуле допускается использование числа пи (pi), экспоненты (e), следующих математических операторов:

+ — сложение
— вычитание
* — умножение
/ — деление
^ — возведение в степень

и следующих функций:

  • sqrt — квадратный корень
  • rootp — корень степени p, например root3(x) – кубический корень
  • exp — e в указанной степени
  • lb — логарифм по основанию 2
  • lg — логарифм по основанию 10
  • ln — натуральный логарифм (по основанию e)
  • logp — логарифм по основанию p, например log7(x) — логарифм по основанию 7
  • sin — синус
  • cos — косинус
  • tg — тангенс
  • ctg — котангенс
  • sec — секанс
  • cosec — косеканс
  • arcsin — арксинус
  • arccos — арккосинус
  • arctg — арктангенс
  • arcctg — арккотангенс
  • arcsec — арксеканс
  • arccosec — арккосеканс
  • versin — версинус
  • vercos — коверсинус
  • haversin — гаверсинус
  • exsec — экссеканс
  • excsc — экскосеканс
  • sh — гиперболический синус
  • ch — гиперболический косинус
  • th — гиперболический тангенс
  • cth — гиперболический котангенс
  • sech — гиперболический секанс
  • csch — гиперболический косеканс
  • abs — абсолютное значение (модуль)
  • sgn — сигнум (знак)

planetcalc.ru

Вычислить предел (лимит) онлайн

Выберите переменную: x y z n k m и предел Ввести самому + Бесконечность – Бесконечность 0

xyπe123÷триг. функции
a2ababexp456×

стереть

()|a|ln789
3Cloga0.+
TRIG:sincostancotcscsecназад
INVERSE:arcsinarccosarctanacotacscasec

стереть

HYPERB:sinhcoshtanhcothxπ
OTHER:,y=<>

Данный калькулятор по вычислению пределов онлайн построен на основе системы WolframAlpha Mathematica. Все права на его использование принадлежат компании Wolfram Alpha LLC!

Вычисление пределов функций онлайн

Предел функции

Решение пределов функции онлайн. Найти предельное значение функции либо функциональной последовательности в точке, вычислить предельное значение функции на бесконечности. определить сходимость числового ряда и многое другое можно выполнить благодаря нашему онлайн сервису – вычислить предел функции онлайн. Мы позволяем находить лимиты функций онлайн быстро и безошибочно. Вы сами вводите переменную функции и предел, к которому она стремится, анаш сервис проводит все вычисления за вас, выдавая точный и простой ответ. Причем для нахождения предела онлайн вы можете вводить как числовые ряды, так и аналитические функции, содержащие константы в буквенном выражении. В этом случае найденный предел функции будет содержать эти константы как постоянные аргументы в выражении. Нашим сервисом решаются любые сложные задачи по нахождению

пределов онлайн, достаточно указать функцию и точку в которой необходимо вычислить предельное значение функции. Вычисляя пределы онлайн, можно пользоваться различными методами и правилами их решения, при этом сверяя полученный результат с решением пределов онлайн на www.matematikam.ru, что приведет с успешному выполнению задачи – вы избежите собственных ошибок и описок. Либо вы полностью можете довериться нам и использовать наш результат в своей работе, не затрачивая лишних усилий и времени на самостоятельные вычисления предела функции. Мы допускаем ввод таких предельных значений, как бесконечность. Необходимо ввести общий член числовой последовательности и www.matematikam.ru вычислит значение предела онлайн на плюс или минус бесконечности.

Одним из основных понятий математического анализа является

лимит функции и предел последовательности в точке и на бесконечности, важно уметь правильно решать пределы. С нашим сервисом это не составит никакого труда. Производится решение пределов онлайн в течение нескольких секунд, ответ точный и полный. Изучение математического анализа начинается с предельного перехода, пределы используются практически во всех разделах высшей математики, поэтому полезно иметь под рукой сервер для решения лимитов онлайн, каковым является matematikam.ru.

Похожие сервисы:

Вычисление предела онлайн
Calculate limit online

matematikam.ru

Решение предела функции · Калькулятор Онлайн

Введите функцию и точку, для которых надо вычислить предел

Сайт предоставляет ПОДРОБНОЕ решение по нахождению предела функции.

Займемся вычислением (решением) пределов функций в точке. Дана функция

f(x). Вычислим ее предел в точке x0

Правила ввода выражений и функций

Выражения могут состоять из функций (обозначения даны в алфавитном порядке):

absolute(x)
Абсолютное значение x
(модуль x или |x|)
arccos(x)
Функция – арккосинус от x
arccosh(x)
Арккосинус гиперболический от x
arcsin(x)
Арксинус от x
arcsinh(x)
Арксинус гиперболический от x
arctg(x)
Функция – арктангенс от x
arctgh(x)
Арктангенс гиперболический от x
e
e число, которое примерно равно 2.7
exp(x)
Функция – экспонента от
x
(что и e^x)
log(x) or ln(x)
Натуральный логарифм от x
(Чтобы получить log7(x), надо ввести log(x)/log(7) (или, например для log10(x)=log(x)/log(10))
pi
Число – “Пи”, которое примерно равно 3.14
sin(x)
Функция – Синус от x
cos(x)
Функция – Косинус от x
sinh(x)
Функция – Синус гиперболический от x
cosh(x)
Функция – Косинус гиперболический от x
sqrt(x)
Функция – квадратный корень из x
sqr(x) или x^2
Функция – Квадрат x
tg(x)
Функция – Тангенс от x
tgh(x)
Функция – Тангенс гиперболический от x
cbrt(x)
Функция – кубический корень из x
floor(x)
Функция – округление x в меньшую сторону (пример floor(4.5)==4.0)
sign(x)
Функция – Знак x
erf(x)
Функция ошибок (Лапласа или интеграл вероятности)

В выражениях можно применять следующие операции:

Действительные числа
вводить в виде 7.5, не 7,5
2*x
– умножение
3/x
– деление
x^3
– возведение в степень
x + 7
– сложение
x – 6
– вычитание

www.kontrolnaya-rabota.ru

Предел функции по правилу Лопиталя

Калькулятор вам найдет предел функции по правилу Лопиталя ( напомним что это некий способ нахождения предела функции, раскрывающий такие неопределенности как 0/0 и бесконечность ∞/∞ ). Кому интересно больше узнать о методике данного способа, то вы это можете сделать на данной странице:

The field is not filled.

‘%1’ is not a valid e-mail address.

Please fill in this field.

The field must contain at least% 1 characters.

The value must not be longer than% 1 characters.

Field value does not coincide with the field ‘%1’

An invalid character. Valid characters:’%1′.

Expected number.

It is expected a positive number.

Expected integer.

It is expected a positive integer.

The value should be in the range of [%1 .. %2]

The ‘% 1’ is already present in the set of valid characters.

The field must be less than 1%.

The first character must be a letter of the Latin alphabet.

Su

Mo

Tu

We

Th

Fr

Sa

January

February

March

April

May

June

July

August

September

October

November

December

century

B.C.

%1 century

An error occurred while importing data on line% 1. Value: ‘%2’. Error: %3

Unable to determine the field separator. To separate fields, you can use the following characters: Tab, semicolon (;) or comma (,).

%3.%2.%1%4

%3.%2.%1%4 %6:%7

s.sh.

u.sh.

v.d.

z.d.

yes

no

Wrong file format. Only the following formats: %1

Please leave your phone number and / or email.

hostciti.net

Правило Лопиталя: теория и примеры решений

Раскрытие неопределённостей вида 0/0 или ∞/∞ и некоторых других неопределённостей, возникающих при вычислении предела отношения двух бесконечно малых или бесконечно больших функций значительно упрощается с помощью правила Лопиталя (на самом деле двух правил и замечаний к ним).

Суть правил Лопиталя состоит в том, что в случае, когда вычисление предела отношений двух бесконечно малых или бесконечно больших функций даёт неопределённости видов 0/0 или ∞/∞, предел отношения двух функций можно заменить пределом отношения их производных и, таким образом, получить определённный результат.

Перейдём к формулировкам правил Лопиталя.

Правило Лопиталя для случая предела двух бесконечно малых величин. Если функции f(x) и g(x) дифференцируемы в некоторой окрестности точки a, за исключением, может быть, самой точки a, причём в этой окрестности g‘(x)≠0 и если и если пределы этих функций при стремлении икса к значению функции в точке a равны между собой и равны нулю

(),

то предел отношения этих функций равен пределу отношения их производных

().

Правило Лопиталя для случая предела двух бесконечно больших величин. Если функции f(x) и g(x) дифференцируемы в некоторой окрестности точки a, за исключением, может быть, самой точки a, причём в этой окрестности g‘(x)≠0 и если и если пределы этих функций при стремлении икса к значению функции в точке a равны между собой и равны бесконечности

(),

то предел отношения этих функций равен пределу отношения их производных

().

Иными словами, для неопределённостей вида 0/0 или ∞/∞ предел отношения двух функций равен пределу отношения их производных, если последний существует (конечный или бесконечный).

Замечания.

1. Правила Лопиталя применимы и тогда, когда функции f(x) и g(x) не определены при x = a.

2. Если при вычисления предела отношения производных функций f(x) и g(x) снова приходим к неопределённости вида 0/0 или ∞/∞, то правила Лопиталя следует применять многократно (минимум дважды).

3. Правила Лопиталя применимы и тогда, когда аргумент функций (икс) стремится не к конечному числу a, а к бесконечности (x → ∞).

К неопределённостям видов 0/0 и ∞/∞ могут быть сведены и неопределённости других видов.


Пример 1. Вычислить предел отношения двух функций, пользуясь правилом Лопиталя:

Решение. Подстановка в заданную функцию значения x=2 приводит к неопределённости вида 0/0. Поэтому производную каждой функции и получаем

В числителе вычисляли производную многочлена, а в знаменателе – производную сложной логарифмической функции. Перед последним знаком равенства вычисляли обычный предел, подставляя вместо икса двойку.

Пример 2. Вычислить предел отношения двух функций, пользуясь правилом Лопиталя:

.

Решение. Подстановка в заданную функцию значения x=0 приводит к неопределённости вида 0/0. Поэтому вычисляем производные функций в числителе и знаменателе и получаем:

Пример 3. Вычислить предел отношения двух функций, пользуясь правилом Лопиталя:

.

Решение. Подстановка в заданную функцию значения x=0 приводит к неопределённости вида 0/0. Поэтому вычисляем производные функций в числителе и знаменателе и получаем:

Пример 4. Вычислить

.

Решение. Подстановка в заданную функцию значения икса, равного плюс бесконечности, приводит к неопределённости вида ∞/∞. Поэтому применим правило Лопиталя:


Замечание. Переходим к примерам, в которых правило Лопиталя приходится применять дважды, то есть приходить к пределу отношений вторых производных, так как предел отношения первых производных представляет собой неопределённость вида 0/0 или ∞/∞.

Пример 5. Вычислить предел отношения двух функций, пользуясь правилом Лопиталя:

.

Решение. Находим

Здесь правило Лопиталя применено дважды, поскольку и предел отношения функций, и предел отношения производных дают неопределённость вида ∞/∞.

Пример 6. Вычислить

.

Решение. Находим

Здесь правило Лопиталя применено дважды, поскольку и предел отношения функций, и предел отношения производных дают неопределённость вида 0/0.

Пример 7. Вычислить

.

Решение. Находим

Здесь правило Лопиталя применено дважды, поскольку и предел отношения функций, и предел отношения производных сначала дают неопределённость вида – ∞/∞, а затем неопределённость вида 0/0.

Пример 8. Вычислить

.

Решение. Находим

Здесь правило Лопиталя применено дважды, поскольку и предел отношения функций, и предел отношения производных сначала дают неопределённость вида ∞/∞, а затем неопределённость вида 0/0.

Применить правило Лопиталя самостоятельно, а затем посмотреть решение


Пример 11. Вычислить

.

Решение. Получаем

(здесь неопределённость вида 0∙∞ мы преобразовали к виду ∞/∞, так как

а затем применили правила Лопиталя).

Пример 12. Вычислить

.

Решение. Получаем

В этом примере использовано тригонометрическое тождество .


Неопределённости вида , или обычно приводятся к виду 0/0 или ∞/∞ с помощью логарифмирования функции вида

Чтобы вычислить предел выражения , следует использовать логарифмическое тождество , частным случаем которого является и свойство логарифма .

Используя логарифмическое тождество и свойство непрерывности функции (для перехода за знак предела), предел следует вычислять следующим образом:

Отдельно следует находить предел выражения в показателе степени и возводить e в найденную степень.

Пример 13. Вычислить, пользуясь правилом Лопиталя

.

Решение. Получаем

Вычисляем предел выражения в показателе степени

.

Итак,

.

Пример 14. Вычислить, пользуясь правилом Лопиталя

.

Решение. Получаем

Вычисляем предел выражения в показателе степени

.

Итак,

.

Пример 15. Вычислить, пользуясь правилом Лопиталя

.

Решение. Получаем

Вычисляем предел выражения в показателе степени

Итак,

.

Это случаи, когда вычисление предела разности функций приводит к неопределённости “бесконечность минус бесконечность”: .

Вычисление такого предела по правилу Лопиталя в общем виде выглядит следующим образом:

В результате таких преобразований часто получаются сложные выражения, поэтому целесообразно использовать такие преобразования разности функций, как приведение к общему знаменателю, умножение и деление на одно и то же число, использование тригонометрических тождеств и т.д.

Пример 16. Вычислить, пользуясь правилом Лопиталя

.

Решение. Пользуясь вышеперечисленными рекомендациями, получаем

Пример 17. Вычислить, пользуясь правилом Лопиталя

.

Решение. Пользуясь вышеперечисленными рекомендациями, получаем

Весь блок “Производная”

function-x.ru

Вычислить пределы используя правило Лопиталя

Чтобы вычислить пределы, используя правило Лопиталя, вспомним его сущность:
Если при непосредственной подстановке вместо х значения, к которому он стремится, получают неопределенность вида бесконечность на бесконечность или ноль на ноль, то их можно раскрыть с помощью вычисления вместо функций числителя и знаменателя их производных.
 
Пример 1.
Найдем .
 
Решение.
Подставим вместо х значение, к которому он стремится (то есть ):

   

В этом случае мы можем воспользоваться правилом Лопиталя и избавиться от этой неопределенности:

   

 
Ответ. .
 
Применив правило Лопиталя, можно опять получить неопределенность этих двух видов (, ). Тогда это правило можно применять еще сколько угодно раз.
 
Пример 2.
Найдем .
 
Решение.
Подставим значение х:

   

Избавимся от полученной неопределенности, вычислив предел от частного производных числителя и знаменателя:

   

   

Получили снова неопределенность . Можем применить правило Лопиталя еще раз:

   

Обратим внимание, что когда применяете правило Лопиталя не один раз, то нужно каждый раз проверять раскрылась ли неопределенность. В противном случае получится неправильный результат.
 

ru.solverbook.com