Реферат генератор постоянного тока – Реферат – Принцип действия и элементы конструкции генератора постоянного тока смешанного возбуждения

Содержание

Генераторы постоянного тока » Привет Студент!

Вращение витка провода в магнитном поле вызывает появление тока. При соединении витка с двумя полукольцами, действующими как коммутатор, ток выпрямляется. Коммутатор или коллектор выполняется в виде пластин, с которыми соприкасаются неподвижные щетки. Для увеличения силы тока на выходе генератора увеличивают число витков провода в обмотке и применяют добавочное магнитное поле. При работе генератора между токосъемными щетками и коллектором появляется искрение, которое можно устранить, расположив щетки таким образом, чтобы они замыкали только соседние пластины коллектора. Широко распространен другой способ улучшения условий коммутации с помощью дополнительных полюсов: полярность дополнительного полюса должна быть такой же, как главного полюса, в сторону которого следовало бы смещать щетки для улучшения условий коммутации. Магнитное поле между полюсами создается обмоткой возбуждения. Сердечник катушки, изготавливаемый из электротехнической стали, сохраняет некоторый остаточный магнетизм, из-за которого может создаться напряжение на нагрузке. Характеристики генераторов постоянного тока зависят от числа и способа подключения обмоток возбуждения.

В зависимости от способа возбуждения различают: генераторы параллельного возбуждения; генераторы последовательного возбуждения; генераторы смешанного возбуждения.

Наибольшее применение нашли генераторы смешанного возбуждения, так как их работа обеспечивает лучшие энергетические характеристики. Генератор смешанного возбуждения имеет две обмотки возбуждения (рис. 14.1, а). Обмотка параллельного возбуждения изготовляется из провода относительно малого диаметра, имеет сравнительно большое число витков и большое сопротивление. В отличие от нее обмотка последовательного возбуждения изготавливается из провода относительно большего диаметра, имеет небольшое число витков и небольшое сопротивление. Применение обмотки параллельного возбуждения позволяет получить в режиме холостого хода на выходе полное напряжение, которое непрерывно снижается при- увеличении нагрузки потребителя. Применение последовательной обмотки позволяет увеличивать выходное напряжение с ростом нагрузки. Поэтому на выходе генератора можно получить небольшое изменение напряжения на всем диапазоне нагрузок (рис. 14.1, б).

Распределительная система постоянного тока. Выходное напряжение генератора для питания электрооборудования поступает на шины, расположенные позади главных распределительных щитов. Далее электроэнергия поступает через автоматический выключатель к вспомогательным механизмам или к распределительному щиту. Главный распределительный щит — это распределительное устройство, осуществляющее подачу питания к потребителям электроэнергии. Через распределительные щиты осуществляется питание маломощных потребителей, например таких, как освещение. Схема распределительной системы электроэнергии показана на рис. 14.2.

Двухпроводная система питания обеспечивает подачу электроэнергии к каждому отдельному потребителю. Заземляющий провод является единственным электрическим соединением с корпусом судна. В генераторах со смешанным возбуждением третья шина является уравнительным соединением между электрическими машинами.

 

Рис. 14.1. Генератор смешанного возбуждения:

а — схема соединения обмоток возбуждения; 1 — якорь; 2 — реостат; 3 — обмотка последовательного возбуждения; 4 — автоматический выключатель; 5 — обмотка параллельного возбуждения; б — вольт-амперные характеристики: 1 — напряжение от смешанного возбуждения; 2 — номинальное напряжение; 3— напряжение от обмотки параллельного возбуждения; 4 — напряжение от обмотки последовательного возбуждения; 5 — номинальный ток нагрузки

 

Рис. 14.2. Схема распределительной системы электроэнергии постоянного тока:

1 — цепи питания неответственных потребителей; 2 — распределительный щит; 3 — групповой распределительный щит; 4 — цепи питания вспомогательных механизмов; 5 — цепи питания грузового оборудования; 6 — шины питания; 7 — автоматический выключатель; 8 — цепи питания навигационного оборудования

 

 

 Для предотвращения выхода из строя электрооборудования в случае появления больших токов применяются предохранители. После определения причины, вызвавшей перегрузку, для восстановления цепи необходимо заменить предохранитель или возвратить его в исходное состояние. На судах нашли применение предохранители трех типов. Предохранитель первого типа — это полузакрытый, или восстанавливаемый, предохранитель, который имеет набор запасных элементов на случай его выхода из строя. Правильный выбор плавкой вставки определяет нормальную работу электрической цепи. Предохранитель второго типа — это патронный предохранитель, представляющий собой керамический изолятор, внутри которого расположена плавкая вставка. Этот предохранитель не является взаимозаменяемым, и в случае выхода из строя его необходимо заменить новым. Использование таких предохранителей предпочтительнее, так как они имеют более точный диапазон срабатывания. Предохранитель третьего типа — это контакторный прерыватель, представляющий собой изолированный переключатель, который работает как предохранитель. Он имеет две рабочие характеристики: нормальный рабочий режим; перегрузочный рабочий режим.

Прерыватель срабатывает с выдержкой времени для того, чтобы не происходило отключение цепи питания при кратковременных перегрузках по току. Время срабатывания при перегрузке определяет уставка. Прерыватель срабатывает, если его характеристика выходит за пределы допустимых значений. Устройство имеет переключатель режимов автоматическое — ручное управление. Контакторный прерыватель обычно подсоединяется к источнику питания по двухпроводной схеме. Там, где может быть сильное магнитное поле, для уменьшения искажений входного сигнала используют трехпроводную схему с компенсационным проводом. Для поддержания заданной нагрузки в выходной цепи генератора используется приоритетная система, отключающая неответственные потребители при перегрузке. Цель этой системы — уменьшить нагрузку на генератор, чтобы обеспечить безаварийную работу ответственных потребителей, таких как рулевое устройство, навигационные огни и т. п.

 

Рис. 14.3. Схема соединения ламп с заземленной средней точкой:

1 — лампа; 2 — шины питания; 3 — земля

 

 

О состоянии изоляции шин можно судить по индикаторным лампам. Это две лампы, соединенные последовательно с заземленной средней точкой. Яркость свечения каждой из ламп характеризует напряжение на шине питания (рис. 14.3). Если система имеет хорошую изоляцию, то обе лампы горят в полнакала. Для удобства лампы располагают ря

дом, чтобы иметь возможность сравнивать яркость их свечения. Пробой изоляции определяют по разности в яркости свечения ламп. Если одна из шин замкнута на корпус, то соответствующая лампа погаснет, а другая будет гореть ярко. В той цепи, где есть замыкание на «землю», автоматический выключатель должен быть выключен. После этого необходимо подключать последовательно одну за другой исследуемые цепи через распределительную установку для нахождения и устранения неисправности.

Электрические системы постоянного тока. Питание распределительных систем осуществляется от двух и более параллельно работающих генераторов. Каждый генератор должен иметь устройство защиты от обратных токов, минимального напряжения и перегрузок. Система двух параллельно работающих генераторов показана на рис. 14.4.

Питание цепей нагрузки от шин осуществляется через автоматические выключатели. В случае протекания больших токов должно быть предусмотрено отключение каждой шины. Реле обратного тока предотвращает переход генератора в двигательный режим, например, при остановке первичного двигателя. Контроль за параллельно работающими генераторами обеспечивается с помощью приборов — амперметров и вольтметров.

 

Рис. 14.4. Схема параллельной работы двух генераторов постоянного тока:

1 — реостат; 2 — обмотка параллельного возбуждения; 3 — обмотка последовательного возбуждения; 4 — размыкающее реле обратного тока; 5 — максимальный расщепитель; 6 — автоматический выключатель; 7 — амперметр; 8 — реле минимального напряжения; 9 — шины питания; 10 — уравнительная шина; 11 — вольтметры; 12 — якоря

 

 

Если при работе одного генератора в цепи появляется перегрузка, то необходимо подключить к параллельно работающему генератору еще один генератор. С этой целью после запуска второго генератора возбуждают его до достижения равенства напряжений на обоих генераторах. Затем подключают второй генератор к шинам и, изменяя ток возбуждения, производят перераспределение нагрузки. Уравнительное соединение генераторов обеспечивает стабильную работу при изменении нагрузки сети.

 

Используемая литература: “Основы судовой техники” Автор: Д.А. Тейлор

 

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера. КАК ТУТ СКАЧИВАТЬ

Пароль на архив: privetstudent.com

privetstudent.com

ГЕНЕРАТОР ПОСТОЯННОГО ТОКА

Генератор постоянного тока — это машина, способная преобразовывать механическую энергию вращения в электрическую энергию постоянного тока.

История создания генераторов постоянного тока

В 1831 г. Майкл Фарадей открыл закон магнитной индукции, что положило начало самой идее создания таких генераторов. В 1832 г. произошла первая попытка сконструировать генератор постоянного тока, но в практическом отношении эта машина была слишком несовершенна и не получила применения. В 1834 г. русский ученый Б. С. Якоби создал первую пригодную для использования машину постоянного тока. В 40-е гт. XIX в. Э. X. Ленц начал изучение теории работы генераторов постоянного тока. В 1860 г. А. Пачинотти решил использовать кольцевой якорь, который позднее получил очень широкое применение. Дальнейшее развитие генераторов постоянного тока проходило по пути улучшения эксплуатационных качеств генераторов при сокращении их объема. В 80-х гг. XIX в. А. Г. Столетовым была создана научно обоснованная теория генераторов постоянного тока. В конце 20-х гг. XX в. шло ускоренное развитие генераторов постоянного тока. В это же время в их конструкцию был внесен целый ряд усовершенствований, что, в свою очередь, делало их более выгодными в использовании.

Генератор постоянного тока состоит из неподвижной станины, внутри которой располагаются полюсы электромагнитов разной полярности. Другая часть — вращающийся ротор или якорь, выполненный из электротехнической стали, — изолирует один лист якоря генератора от другого лаковой пленкой или папиросной бумагой.

Спрессованные листы образуют цилиндр, который крепится на валу. С внешней стороны цилиндра штампуются отверстия, которые образуют пазы, предназначенные для укладки обмотки якоря. Переменная ЭДС в обмотке, приводящая к получению напряжения на зажимах генератора при помощи механического выпрямителя — коллектора, совершает выпрямление. Как любая электрическая машина, генератор постоянного тока имеет свойства обратимости электрической энергии постоянного тока в механическую энергию вращательного движения. При нагрузке генератора постоянного тока напряжение на щетках меняется из-за падения напряжения в обмотке якоря. Ток нагрузки протекает по проводникам обмотки якоря и создает механические силы, которые мешают вращению.

Существует два способа возбуждения электромагнитов станины: независимая от тока нагрузки и зависимая от тока нагрузки. Способ зависимого тока нагрузки происходит при помощи параллельного включения обмотки возбуждения, последовательного включения и комбинированного включения, а также имеет место самовозбуждение генератора постоянного тока. Независимое возбуждение тока нагрузки происходит за счет питания от иного источника тока, не связанного с током нагрузки. Напряжение генераторов обычно равняется нескольким сотням вольт. При воздействии автоматического управления на ток возбуждения генератор-регулятор добавляет в регулируемую им цепь ЭДС определенной величины и знака. Процесс преобразования механической энергии в электрическую постоянно связан с потерей энергии, рассеивающей тепло. Во избежание перегрева генератора постоянного тока создается система воздушного
охлаждения, которая непосредственно связана с вращающимся якорем.

enciklopediya-tehniki.ru

Генераторы постоянного тока

Генераторы постоянного тока являются источниками постоянного тока, в которых осуществляется преобразование механической энергии в электрическую. Якорь генератора приводится во вращение каким-либо двигателем, в качестве которого могут быть использованы электрические двигатели внутреннего сгорания и т.д. Генераторы постоянного тока находят применение в тех отраслях промышленности, где по условиям производства необходим или является предпочтительным постоянный ток (на предприятиях металлургической и электролизной промышленности, на транспорте, на судах и др.). Используются они и на электростанциях в качестве возбудителей синхронных генераторов и источников постоянного тока.

В последнее время в связи с развитием полупроводниковой техники для получения постоянного тока часто применяются выпрямительные установки, но несмотря на это генераторы постоянного тока продолжают находить широкое применение.

Генераторы постоянного тока выпускаются на мощности от нескольких киловатт до 10 000 кВт.

Режим работы электрической машины в условиях, для которых она предназначена заводом-изготовителем, называется номинальным. Величины, соответствующие этому режиму работы (мощность, ток, напряжение, частота вращения и др.), являются номинальными данными машины. Они указываются в каталогах и выбиваются на табличке, прикрепленной к станине машины.

Рассмотрим принцип действия генератора постоянного тока, где подводимая механическая энергия преобразуется в электрическую энергию постоянного тока. Для этого воспользуемся упрощенной схемой генератора постоянного тока (рис. 5.2). В магнитном поле постоянного магнита вращается стальной сердечник, в продольных пазах которого расположен диаметральный виток abcd Начало d конец а этого витка присоединены к двум взаимно изолиро­ванным медным полукольцам. Образующим коллектор, который вращается вместе со стальным цилиндром. По коллектору сколь­зят неподвижные контактные щетки А и В, от которых отходят провода к потребителю энергии R. Стальной сердечник с витком (обмоткой) и коллектором обра­зует вращающуюся часть машины постоянного тока — якорь.

Если с помощью какой-либо внешней силы вращать якорь, то стороны витка будут пересекать магнитное поле и в обмотке якоря будет возникать ЭДС:

e = 2Blu

гдеВ — индукция; l — длина стороны витка; u — скорость переме­щения пазовых сторон витка.

Рис. 5.2. Упрощенная схема генератора постоянного тока.

Так как длина и скорость перемещения пазовых сторон обмотки якоря неизменны, то е обмотки якоря прямо пропорциональна В, а форма графика ЭДС определяется законом распределения магнит­ной индукции S, размещенной в воздушном зазоре между поверх­ностью якоря и полюсом самого магнита. Так, например, магнитная индукция в точках зазора, лежащих на оси полюсов, имеет макси­мальные значения (рис. 5.3, а): под северным магнитным полюсом (N) — положительное значение и под южным магнитным полюсом (S) — отрицательное. В точках n и n’ лежащих на линии, проходя­щей через середину межполисного пространства, магнитная индук­ция равна нулю.

Допустим, что магнитная индукция в воздушном зазоре рас­сматриваемой схемы распределяется синусоидально:B=Bmaxsin£. Тогда ЭДС витка при вращении якоря будет также изменяться по синусоидальному закону. Угол а определяет изменение положения якоря относительно исходного положения. На рис. 3.3, а показан ряд положений витка abcd (обмотки) в различные моменты времени за один оборот якоря. При а, равном 360°, ЭДС якоря равна нулю, а при а, равном 270°, имеет максимальное значение, причем отрица­тельное. Таким образом, в обмотке якоря генератора постоянного тока наводится переменная ЭДС, и, следовательно, при подключении нагрузки в обмотке будет переменный ток (рис. 3.3, б, линия 7). За время второго полуоборота якоря, когда ЭДС и ток в обмотке якоря отрицательны, ЭДС и ток во внешней цепи генератора (в на­грузке) не меняют своего направления, т. е. остаются положитель­ными, как и в течение первой половины оборота якоря.

Рис. 5.3. Принцип действия генератора постоянного тока: а — различные поло­жения витка обмотки; б — преобразование переменного тока якоря в постоян­ный ток внешней цепи; 1 — ток в обмотке якоря; 2 — ток во внешней цепи

 Действительно, приa = 90° щетка А соприкасается с коллектор­ной пластиной проводника d, расположенного под полюсом N, и имеет положительный потенциал, а щетка В — отрицательный, так как она соприкасается с пластиной коллектора, соединенной со стороной а витка, находящейся под полюсом S. При a = 270°, когда стороны а и d поменялись местами, щетки А и В сохраняют неиз­менной свою полярность, так как полукольца коллектора также по­менялись местами и щетка А по-прежнему имеет контакт с коллек­торной пластиной, связанной со стороной, находящейся под полю­сом N9 а щетка Вс коллекторной пластиной, связанной со стороной, находящейся под полюсом 5. В результате ток во внеш­ней цепи не изменяет своего направления (рис. 5.3, б, линия 2), т. е. переменный ток обмотки якоря с помощью коллектора и щеток преобразуется в постоянный. Ток во внешней цепи постоянен лишь по па-правлению, а его величина изменяется, т. е. ток пульсирует.

Рис. 5.4. Генератор с двумя витками в обмотке якоря:a — схема генератора; б — пульса­ция тока; 1,2 — ток в обмот­ках якоря; 3 — ток во внеш­ней цепи

Пульсации тока и ЭДС значительно ослабляются, если обмотку якоря вы­полнить из большого числа равномерно распределенных по поверхности сер­дечника витков и увеличить соответст­венно число коллекторных пластин. Например, при двух витках на сердеч­нике якоря (четырех пазовых сторо­нах), оси которых смещены относи­тельно друг друга на угол 90°, и четырех пластинах в коллекторе (рис. 5.4, а). В этом случае ток во внешней цепи ге­нератора пульсирует с удвоенной часто­той, но глубина пульсации значительно меньше (рис. 5.4, б). Если витков в об­мотке якоря от 12 до 16, то ток на выхо­де генератора практически постоянен.

На рис. 5.5 представлена конструк­ция генератора постоянного тока.

Рис. 5.5. Генератор постоянного тока: 1 и 16 — крышки; 2 и 12 — шариковые подшипники; 3 и 10 —масленки; 4 — корпус; 5 — соединительный провод; 6 — защитная лента; 7 и 11 — стяжные болты; 8 — щеткодержатель положительной щетки; 9 и 25— уплотнительные манжеты; 13 — защитный колпачок; 14— отра­жательная шайба; 15— отрицательная щетка; 17 — щеткодержатель отрицатель­ной щетки; 18— коллектор; 19 — обмотка якоря; 20— конец обмотки возбужде­ния; 21 — сердечник якоря; 22 — вал якоря; 23 — полюсный сердечник; 24 — ка­тушка обмотки возбуждения; 26— крыльчатка шкива; 27— шкив.

studfiles.net

Реферат Генераторы переменного тока

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РФ

ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ

Кафедра «Эксплуатация автомобильного транспорта»

РЕФЕРАТ

По дисциплине: «Устройство автомобиля»

На тему:

Генераторы переменного тока

Выполнил:

студент группы ___________

Relax

Проверил:

Тюмень 2001

Содержание

Стр.

Введение

3

I. Устройство и работа генератора переменного тока

3

II. Т.О. генератора

8

III. Диагностика генератора

9

Список использованной литературы

10

Введение

Генератор служит для преобразования меха­нической энергии в электрическую, не­обходимую для питания всех приборов электрооборудования автомобиля (кро­ме стартера) и для заряда аккумуляторной батареи.

Он является основным источником электри­ческой энергии на автомобиле.

В настоящее время на автомо­билях получили широкое распространение генераторы переменного тока, что вызвано преимущества­ми их конструкции перед генераторами постоян­ного тока: меньшая масса при той же мощности, большой срок службы, меньший расход меди (в 2—2,5 раза), возможность повышения передаточного числа от двигателя к генератору до 2,5— 3,0. В этом случае на оборотах холостого хода двигателя генератор отдает до 25—50% своей мощности, что улучшает условия заряда аккумуляторной батареи на автомобиле, а, следовательно, и ее срок службы.

I. УСТРОЙСТВО И РАБОТА ГЕНЕРАТОРА

ПЕРЕМЕННОГО ТОКА

Вал генера­тора приводится во вращение от шкива, установ­ленного на коленчатом валу двигателя, клиновид­ным ремнем. Передаточное число клиноременной передачи 1,7—2,0. При движении автомобиля час­тота вращения коленчатого вала при холостом ходе у современных двигателей составляет 500—600 об/мин, максимальная частота 4000—5000 об/мин. Таким образом, кратность изменения частоты вра­щения двигателя, а, следовательно, и вала генера­тора может достигать 8 — 10. Напряжение генера­тора зависит от частоты вращения его вала. Чем выше частота, тем больше напряжение генератора. Однако все приборы электрооборудования автомо­биля, особенно лампы и контрольно-измерительные

приборы, рассчитаны на питание от постоянного напряжения 12 или 24 В. Поддержание постоянства напряжения генератора независимо от изменения частоты вращения и нагрузки генератора (включе­ния потребителей) выполняет специальный прибор, называемый регулятором напряжения.

При снижении частоты вращения коленчатого вала двигателя ниже 500-700 -об /мин напряжение генератора становится меньше напряжения акку­муляторной батареи. Если батарею не отключить от генератора, она начнет разряжаться на генера­тор, что может привести к перегреву изоляции обмоток генератора и разряду аккумуляторной ба­тареи. При увеличении частоты вращения коленча­того вала двигателя необходимо вновь включить ге­нератор в систему электрооборудования. Включе­ние генератора в систему электрооборудования, когда его напряжение выше напряжения аккумуля­торной батареи, и отключение генератора от сети, когда его напряжение ниже напряжения аккумуля­торной батареи, выполняет специальный прибор, на­зываемый реле обратного тока.

Генератор рассчитан на отдачу определенной максимальной для данного генератора величины тока, однако при неисправности в системе электро­оборудования (разряженная аккумуляторная бата­рея, короткое замыкание и т. д.) генератор может отдавать ток больший, чем тот, на который он рас­считан. Длительная работа генератора в таком ре­жиме приведет к его перегреву и сгоранию изоля­ции обмоток. Для защиты генератора от перегрузки служит специальный прибор, называемый огра­ничителем тока.

Все три прибора — регулятор напряжения, реле обратного тока и ограничитель тока—объединены в одном устройстве, называемом реле-регуля­тором.

В некоторых генераторах, например Г-250, пере­менного тока реле обратного тока и ограничитель тока могут отсутствовать, но в конструкции генератора имеются устройства, выполняющие функ­ции этих приборов.

На рис. 1 показано устройство генератора пе­ременного тока Г-250. Генератор имеет статор 6 с трехфазной обмоткой, выполненной в виде отдельных катушек, насаженных, на зубцы статора. В каждой фазе имеется по шесть катушек, соеди­ненных последовательно. Фазные обмотки статора соединены звездой, и их выходные зажимы под­ключены к выпрямительному блоку 10.

Рис. 1

Устройство генератора переменного тока Г-250

Корпус статора набран из отдельных пластин электротехнической стали. Обмотка возбуждения 4 генератора выполнена в виде катушки и по­мещена на стальной втулке клювообразных полю­сов ротора 13. Втулка, клювообразные полюсы ро­тора и контактные кольца 5 жестко закреплены на валу 3 ротора (прессовая посадка на накатку). Магнитное поле, создаваемое обмоткой возбуждения, проходя через торцы клювообразных полюсов, образует северные и южные полюсы на роторе (рис. 2) (Е.В. Михайловский, «Устройство автомобиля», с. 163).

Рис.2

Ротор

При вращении ротора магнитное поле по­люсов ротора пересекает витки катушек обмотки статора, индуктируя в каждой фазе переменную э.д.с.

(рис. 3,б).

Рис. 3

Схема выпрямления переменного тока

Ток в обмотке возбуждения подводится через щетки 8 (рис.1) и контактные кольца 5, к кото­рым припаяны концы обмотки возбуждения. Щёт­ки укреплены в щеткодержателе 9.

Статор генератора с помощью стяжных болтов закреплен между крышками 1 и 7, которые имеют кронштейны крепления генератора к двигателю. В крышке 1 со стороны привода вверху имеется резь­бовое отверстие для крепления натяжной планки, с помощью которой регулируется натяжение приводного ремня генератора. Крышки отлиты из алю­миниевого сплава.

С целью уменьшения износа посадочное место под шарикоподшипник в задней крышке 7 и отвер­стия в кронштейнах крышек армированы стальны­ми втулками.

В крышках установлены шариковые подшипники 2 и 12 с двусторонним уплотнением и смазкой, за­ложенной на весь срок службы подшипника.

На выступающий конец вала 3 ротора крепится наружный вентилятор 14 (рис. 1) и шкив 15. В крышках имеются вентиляционные окна, через которые проходит охлаждающий воздух. Направле­ние движения охлаждающего воздуха — от крыш­ки со стороны контактных колец к вентилятору.

В крышке со стороны контактных колец уста­навливается выпрямительный блок 10, собранный из кремниевых вентилей (диодов), допускающих рабочую температуру корпуса плюс 150°С.

Рис. 4

Типы выпрямительных блоков

Выпрямительный блок ВБГ-1. (рис. 4) состоит из трех моноблоков, соединенных в схему двухполупериодного трехфазного выпрямителя

(рис. 3,а)

Каждые два вентиля выпрямителя размещены в моноблоке, выполняющем одновременно роль ра­диатора и токопроводящего зажила средней точки схемы 3. В корпусе моноблока-радиатора 4 имеются два гнезда, в которых собраны р-п-переходы выпрямительных вентилей. В одном гнезде р-п-переход имеет на корпусе р-зону, а в другом — п-зону. Противоположные зоны переходов имеют гибкие выводы 9, которые соединяют моноблок с соедини­тельными шинами 2. Отрицательная шина выпря­мительного блока соединена с корпусом генера­тора. В более поздних конструкциях выпрямительных блоков БПВ-4-45 (рис. 4,б) на ток 45 А применя­ют кремниевые вентили типа ВА-20, которые за­прессованы в теплоотводы 12 отрицательной и по­ложительной полярности по три вентиля в каждый. Теплоотводы изолированы один от другого пласт­массовыми втулками-изоляторами 13. Обратный ток вентилей не превышает 3 мА, а собранного блока —10 мА. Для генераторов с максимальной мощностью до 1200 Bт (Г-228) применяют кремниевые выпрямительные блоки ВБГ-7-Г на ток 80 А (рис. 4, в) или БПВ-7-100. В блоках БПВ-7Т и БПВ-7-100 применены вентили ВА-20 по два параллельно в каждом плече, по шесть вентилей в каждом теплоотводе. Блок БПВ-7-100 на ток 100 A и его электрическая схема показаны на рис. 4, г.

Для снижения уровня радиопомех в блоках, ВБР-7-Г и, БПВ-7-100 установлен параллельно зажимам «+», и «—» генератора конденсатор ёмкостью 4,7 мкФ. Общий вид вентиля BA-20 показан на рис. 5. Номинальный ток вентиля 20 А., Для упро­щения схемы, электрических соединений вентиливыпускаются в двух исполнениях — с прямой и обратной полярностью корпусам (рис. 5, б). В вентилях прямой полярности «+» выпрямленного будет на корпусе, в вентилях обратной полярнос­ти будет «—» выпрямленного тока.

Вентили прямой и обратной полярности различаются цветом маркировки, наносимой краской на донышке корпуса. Вентили прямой полярности: («+» на корпус) помечают красной краской, а вентили обратной полярности ( «—» на корпус) — черной.

Рис. 5

Кремниевый вентиль ВА-20

Электрическая схема соединения обмоток гене­ратора и выпрямителей показана на рис 3, а. При вращении ротора генератора в каждой фазе индуктируется переменное напряжение изменение кото­рого за один период показано на рис. 3, б. После выпрямления кривые фазного напряжения примут вид изображенный на рис. 3,в. Выпрямленное напряжение будет почти постоянным, (линия 1 на рис. 3,в), причем частота пульсаций выпрямленного напряжения будет в шесть раз больше, чем частота в фазных обмотках (Ю.И. Боровских, «Устройство автомобилей», с. 183).

С увеличением, частоты вращения повышается частота тока, индуктированного в фазных отмотках генератора переменного тока, и возрастает индуктивное сопротивление обмоток. Поэтому при большой частоте, вращения ротора, когда генератор может отдавать максимальную мощность, не возни­кает опасности его перегрузки, поскольку сила тока генератора ограничивается повышенным индуктив­ным сопротивлением его обмоток. Это явление в генераторах переменного тока называется свойством самоограничения. Автомобильные генераторы Г-250, Г-270, Г-221 и другие сконструированы таким образом, что не нуждаются в ограничителе тока.

Свойство вентилей пропускать ток только в одном направлении (от генератора к аккумуляторной батарее) исключает необходимость установки в реле-регуляторе реле обратного тока. Таким образом, реле-регуляторе работающем с автомобильным генератором переменного тока, может применяться только регулятор напряжения. Это значительно упрощает конструкцию и снижает разме­ры, вес и стоимость реле-регулятора. Пути тока через вентили выпрямителя при прохождении обмотками первой фазы северного и южного полюсов ротора показаны на рис. 3, а стрелками. Как видно из схемы, при наличии в обмотках первой фазы переменного по направлению тока ток в цепи нагрузки (Rн) будет постоянным. Аналогично происходит процесс и в других фазах.

II. Т.О. ГЕНЕРАТОРА

Отказами и неисправностями генератора являются: обрыв или короткое замыкание в обмотке статора генератора или в обмотке возбуждения, нарушение контакта щеток с кольцами и искрение щеток, износ подшипников генератора, поломка или ослабление пружины щеткодержателей, пробой диодов в выпрямителе, ослабление натяжения (чрезмерное натяжение) приводного ремня.

Неисправности генератора обнаруживаются по показаниям амперметра или сигнальной лампы. Амперметр при неисправном генераторе будет показывать разряд, а сигнальная лампа будет гореть при работающем двигателе. Нарушение контакта щеток с кольцами возникает от загрязнения, обгорания или их износа, выкрашивания или износа щеток, а также ослабления или поломки нажимных пружин щеток. Загрязнение кольца следует протереть чистой тряпкой, обгоревшие кольца прочистить стеклянной бумагой, изношенную щетку заменить новой и притереть ее по кольцу.

III. ДИАГНОСТИКА ГЕНЕРАТОРА

Диагностирование генераторов сводится к проверке ограничивающего напряжения и работоспособности генератора. Для выполнения этой операции необходимо включить вольтметр параллельно потребителям тока. Ограничивающее напряжение проверяют при включенных потребителях тока (подфарниках и габаритных фонарях) и повышенной частоте вращения коленчатого вала двигателя. Оно должно быть в диапазоне 13,5-14,2 В. Работоспособность генератора оценивают по напряжению при включении всех потребителей на частоте вращения, соответствующей полной отдаче генератора, которое должно быть не ниже 12 В. Однако подобная методика проверки не может выявить характерные, хотя и редко встречающиеся неисправности генератора, такие, как обрыв или замыкание обмоток статора на массу, обрыв или пробой диодов выпрямителя, ввиду значительных резервов работоспособности генератора.

Эти неисправности легко выявляются по характерному виду осциллограмм, связанному в первую очередь с увеличением диапазона колебания напряжения. При исправной работе генератора диапазон колебаний напряжения в сети не превышает 1-1,2 В, который обусловливается периодическим включением в цепь нагрузки первичной обмотки катушки зажигания. Это легко читается по осциллограмме осциллографа мотортестера (Элкон S-300, Элкон S-100А, К-461, К-488).

При одном пробитом (закороченном) диоде в результате его выпрямляющих свойств диапазон колебания напряжения возрастает до 2,5-3 В. при общем снижении частоты его колебаний. Средний уровень напряжения, показываемый вольтметром, при этом не меняется, однако выбросы напряжения приводят к снижению долговечности аккумуляторной батареи и других элементов электрооборудования (В.Л. Роговцев, «Устройство и эксплуатация автотранспортных средств», с.391).

Таким образом, одновременное применение осциллографа и вольтметра позволяет быстро и объективно проводить диагностирование генераторов и реле-регуляторов переменного тока. Повышение напряжения генератора более расчетного на 10-12% снижает срок службы аккумуляторной батарей в 2-3 раза.

Неисправный генератор заменяют или ремонтируют в условиях электроцеха, ограничивающее напряжение реле-регулятора регулируют натяжением пружины якорька, а при отсутствии таковой возможности реле-регулятор также заменяют. Бесконтактно-транзисторные реле-регуляторы регулируют только в условиях электроцеха.

Список использованной литературы:

  1. Е.В. Михайловский, К.Б. Серебряков, Е.Я. Тур,

Устройство автомобиля, Учебник. – М.: «Машиностроение»

1987.- 350 с.

  1. Ю.И. Боровских, В.М. Кленников, А.А. Сабинин,

Устройство автомобилей, Учебник. –­­ М.: «Машиностроение»

1983.- 320 с.

3. Сборники «Автомобилист», Журнал. – М.: «Машиностроение»

1984.- 95 с.

  1. С.И. Румянцев, Ремонт автомобилей, Учебник. – М.: «Машиностроение» 1981.- 230 с.

  1. Автомобиль ГАЗ-24 «Волга», Учебник. – М.: «Машиностроение» 1976г.- 200 с.

  1. Автомобиль ЗИЛ-130, Учебник. – М.: «Машиностроение»

1978г.- 180 с.

  1. В.Л. Роговцев, А.Г. Пузанков, В.Д. Олдфильд,

Устройство и эксплуатация автотранспортных средств,

Учебник. – М.: «Транспорт» 1996. – 430с.

Билеты: Техническое обслуживание летательных аппаратов (шпаргалки) Для обеспечения жизнедеятельности на самолете необходимо поддерживать в заданных пределах следующие параметры внутри кабины: давление воздуха не менее 300 мм рт. ст.; парциальное давление кислорода вдыхаемого воздуха не менее 110 мм’рт.

Реферат Электродвигатели Электрические машины широко применяют на электрических станциях, в промышленности, на транспорте, в авиации, в системах автоматического регулирования и управления, в быту. Электрические машины преобразуют механическую энергию в электрическую, и наоборот. Машина, преобразующая механическую энергию в электрическую, называются генератором.

Практические занятия и отчеты: Испытания генераторов постоянного тока методом взаимной индукции Испытания электрических машин под нагрузкой проводятся для определения КПД непосредственным методом, при настройке коммутации и её проверке в машинах постоянного тока и коллекторных машинах переменного тока, при испытаниях на нагревание и часто при проведении испытаний на надёжность. В соответствии с ГОСТ-25000-81 при испытаниях используются методы непосредственной или косвенной нагрузки.

Реферат Электропривод XXI век – это мир техники. Могучие машины добывают из недр земли миллионы тонн угля, руды, нефти. Мощные электростанции вырабатывают миллиарды киловатт-часов электроэнергии. Тысячи фабрик и заводов изготавливают одежду, радиоприемники, телевизоры, велосипеды, автомобили, часы и другую необходимую продукцию. Телеграф, телефон и радио соединяет нас со всем миром.

Курсовая: Расчёт мощности судовой электростанции Насос осушительный Р = 4кВт, насос пожарный Р = 10кВт, насос санитарный Р = 4кВт, вентилятор МО Р = 6кВт, вентилятор жилых помещений – 2шт. Р = 0,1кВт. Р/станция «Линда-М», Р = 0,5кВт; УКВ Р/станция, Р = 0,5кВт; НВУ, Р = 0,2кВт; Р/локатор «Донец», Р = 0,4кВт; эхолот, Р = 0,3кВт; плита камбузная, Р = 7кВт; Эл.кипятильник, Р = 2,5кВт; освещение и бытовые приемники, Р =3,5кВт.

Курсовая: Аккумулятор и генератор для автомобиля На автомобилях и автобусах при меняются стартерные свинцово-кислотные аккумуляторные батареи. Батареи служат для питания всех потребителей электрической энергии систем зажигания, пуска, Для питания потребителей совместно с генератором, когда потребляемая

Контрольная: Генератор индукторного типа с жидкостным охлаждением Электрооборудование автомобилей- комплекс приборов, устройств и электромашин объединенных общей электрической сетью. На автомобилях применяется однопроводная система включения приборов электрооборудования, при которой вторым проводом является масса (“-“пр

Реферат КПД трансформатора. Устройство и работа Трансформаторы – один из основных видов электротехнического оборудования. Благодаря им можно получать электрическую энергию, при наиболее удобном напряжении, передавать ее с минимальными потерями напряжения и использовать при напрядении, рассчитанном на л

nreferat.ru

Реферат – «Генератор» – Остальные рефераты

Министерство образования республики Карелия

Профессиональное училище № 8

Реферат на тему

«Генератор»

Выполнил:

учащийся группы № 25

Ильин Виталий

Петрозаводск, 2011

Содержание

История появления… 3

Динамо-машина… 4

Другие электрические генераторы, использующие вращение… 5

Датчик Холла… 6

МГД генератор… 7

Генератор переменного тока… 8

Генератор постоянного тока… 9

Виды генераторов… 10

Автомобильный генератор… 11

Литература… 15

Первый генератор был построен в 1832 г. парижскими техниками братьями Пиксии. Этим генератором трудно было пользоваться, так как приходилось вращать тяжелый постоянный магнит, чтобы в двух проволочных катушках, укрепленных неподвижно вблизи его полюсов, возникал переменный электрический ток. Генератор был снабжен устройством для выпрямления тока. Стремясь повысить мощность электрических машин, изобретатели увеличивали число магнитов и катушек. Одной из таких машин, построенной в 1843 г., был генератор Эмиля Штерера. У этой машины было три сильных подвижных магнита и шесть катушек, вращавшихся от рук вокруг вертикально оси. Таким образом, на первом этапе развития электромагнитных генераторов тока (до 1851 г.) для получения магнитного поля применяли постоянные магниты. На втором этапе (1851-1867 гг.) создавались генераторы у которых для увеличения мощности постоянные магниты были заменены электромагнитами. Их обмотка питалась током от самостоятельного небольшого генератора тока с постоянными магнитами.

При эксплуатации этой машины выяснилось, что генераторы, снабжая электроэнергией потребителя, могут одновременно питать током и собственные магниты. Оказалось, что сердечники электромагнитов сохраняют остаточный магнетизм после выключения тока. Благодаря этому генератор с самовозбуждением дает ток и тогда, когда его запускают из состояния покоя. В.1866-1867 гг. ряд изобретателей получили патенты на машины с самовозбуждением.

В 1870 г. бельгиец Зеноб Грамм, работавший во Франции, создал генератор, получивший широкое применение в промышленности. В своей динамо-машине он использовал принцип самовозбуждения и усовершенствовал кольцевой якорь, изобретенный еще в 1860 г. А. Пачинотти.

В одной из первых машин Грамма кольцевой якорь, укрепленный на горизонтальном валу, вращался между полюсными наконечниками двух электромагнитов. Якорь приводился во вращение через приводной шкив, обмотки электромагнитов были включены последовательно с обмоткой якоря. Генератор Грамма давал постоянный ток, который отводится с помощью металлических щеток, скользивших по поверхности коллектора. Который при езде вырабатовал ток.

Первая динамо-машина была изобретена А. Йедликом в 1827 году. Он сформулировал концепцию динамо на шесть лет раньше, чем она была озвучена Сименсом, но не запатентовал ее.

Динамо-машина или динамо — это устаревшее название генератора, служащего для выработки постоянного электрического тока из механической работы. Динамо-машина была первым электрическим генератором, который стал применяться в промышленности. В дальнейшем ее вытеснили генераторы переменного тока, так как переменный ток легче поддается трансформированию.

Динамо-машина состоит из катушки с проводом, вращающейся в магнитном поле, создаваемом статором. Энергия вращения, согласно закону Фарадея преобразуется в переменный ток, но поскольку первые изобретатели динамо не умели работать с переменным током, то они использовали коммутатор для того, чтобы инвертировать полярность. В результате получался пульсирующий ток постоянной полярности.

Без коммутатора динамо-машина является примером генератора переменного тока. С электромеханическим коммутатором динамо-машина — классический генератор постоянного тока. Генератор переменного тока должен всегда иметь постоянную частоту вращения ротора и быть синхронизирован с другими генераторами в сети распределения электропитания. Генератор постоянного тока может работать при любой частоте ротора в допустимых для него пределах, но вырабатывает постоянный ток.

Генераторы постоянного тока являются источниками постоянного тока, в которых осуществляется преобразование механической энергии в электрическую. Якорь генератора приводится во вращение каким-либо двигателем, в качестве которого могут быть использованы электрические двигатели внутреннего сгорания и т.д. Генераторы постоянного тока находят применение в тех отраслях промышленности, где по условиям производства необходим или является предпочтительным постоянный ток (на предприятиях металлургической и электролизной промышленности, на транспорте, на судах и др.). Используются они и на электростанциях в качестве возбудителей синхронных генераторов и источников постоянного тока.

В последнее время в связи с развитием полупроводниковой техники для получения постоянного тока часто применяются выпрямительные установки, но несмотря на это генераторы постоянного тока продолжают находить широкое применение.

Коммутатор п редназначен для коммутирования тока в первичной обмотке катушки зажигания в соответствии с управляющими импульсами датчика Холла Д-Р.

Магнитоэлектрический датчик Холла получил свое название по имени Э.Холла, американского физика, открывшего в 1879 г. важное гальваномагнитное явление. Достоинства этого переключателя — высокая надежность и долговечность, малые габариты, а недостатки — постоянное потребление энергии

Датчик Холла имеет щелевую конструкцию. С одной стороны щели расположен полупроводник, по которому при включенном зажигании протекает ток, а с другой стороны — постоянный магнит. В щель датчика входит стальной цилиндрический экран с прорезями. При вращении экрана, когда его прорези оказываются в щели датчика, магнитный поток воздействует на полупроводник с протекающим по нему током и управляющие импульсы датчика Холла подаются в коммутатор, в котором они преобразуются в импульсы тока в первичной обмотке катушки зажигания.

а — нет магнитного поля, по полупроводнику протекает ток питания — АВ;

б — под действием магнитного поля — Н появляется ЭДС Холла — ЕF;

в — датчик Холла

Проверку датчика Холла проще всего производить заменой на заведомо исправный, но можно воспользоваться и обыкновенным вольтметром (тестером). У исправного датчика Холла вольтметр, включенный на измерения постоянного напряжения и подключенный к выходу датчика, по мере вращения вала датчика-распределителя должен резко менять показания от примерно 0,4 В до величины, не более чем на 3 В отличающейся от напряжения питания.

Магнитогидродинамический генератор напрямую вырабатывает электроэнергию из энергии движущейся через магнитное поле плазмы или другой подобной проводящей среды (например, жидкого электролита) без использования вращающихся частей. Разработка генераторов этого типа началась потому, что на его выходе получаются высокотемпературные продукты сгорания, которые можно использовать для нагрева пара в парогазовых электростанциях и таким образом, повысить общий КПД МГТ генератор является обратимым устройством, то есть может быть использован и как двигатель.

Генератор переменного тока является электромеханическим устройством, которое преобразует механическую энергию в электрическую энергию переменного тока. Большинство генераторов переменного тока используют вращающееся магнитное поле.

Большой двухфазный генератор переменного тока был построен британским электриком Джеймсом Эдвардом Генри Гордоном в 1882 году.

Принцип действия генератора основан на явлении электромагнитной индукции.

В основе работы генератора лежит эффект электромагнитной индукции. Если катушку например, из медного провода, пронизывает магнитный поток, то при его изменении на выводах катушки появляется переменное электрическое напряжение. И наоборот, для образования магнитного потока достаточно пропустить через катушку электрический ток. Таким образом, для получения переменного электрического тока требуются катушка, по которой протекает постоянный электрический ток, образуя магнитный поток, называемая обмоткой возбуждения и стальная полюсная система, назначение которой — подвести магнитный поток к катушкам, называемым обмоткой статора, в которых наводится переменное напряжение. Эти катушки помещены в пазы стальной конструкции, магнитопровода (пакета железа) статора. Обмотка статора с его магнитопроводом образует собственно статор генератора, его важнейшую неподвижную часть, в которой образуется электрический ток, а обмотка возбуждения с полюсной системой и некоторыми другими деталями (валом, контактными кольцами) – ротор, его важнейшую вращающуюся часть. Питание обмотки возбуждения может осуществляться от самого генератора. В этом случае генератор работает на самовозбуждении. При этом остаточный магнитный поток в генераторе, т. е. поток, который образуют стальные части магнитопровода при отсутствии тока в обмотке возбуждения, невелик и обеспечивает самовозбуждение генератора только на слишком высоких частотах вращения. Поэтому в схему генераторной установки, там где обмотки возбуждения не соединены с аккумуляторной батареей, вводят такое внешнее соединение, обычно через лампу контроля работоспособного состояния генераторной установки. Ток, поступающий через эту лампу в обмотку возбуждения после включения выключателя зажигания и обеспечивает первоначальное возбуждение генератора. Сила этого тока не должна быть слишком большой, чтобы не разряжать аккумуляторную батарею, но и не слишком малой, т. к. в этом случае генератор возбуждается при слишком высоких частотах вращения, поэтому фирмы-изготовители оговаривают необходимую мощность контрольной лампы — обычно 2…3 Вт.

Генератор постоянного тока преобразует механическую энергию в электрическую. В зависимости от способов соединения обмоток возбуждения с якорем генераторы.

Генераторы постоянного тока являются источниками постоянного тока, в которых осуществляется преобразование механической энергии в электрическую. Якорь генератора приводится во вращение каким-либо двигателем, в качестве которого могут быть использованы электрические двигатели внутреннего сгорания и т.д. Генераторы постоянного тока находят применение в тех отраслях промышленности, где по условиям производства необходим или является предпочтительным постоянный ток (на предприятиях металлургической и электролизной промышленности, на транспорте, на судах и др.). Используются они и на электростанциях в качестве возбудителей синхронных генераторов и источников постоянного тока.

В последнее время в связи с развитием полупроводниковой техники для получения постоянного тока часто применяются выпрямительные установки, но несмотря на это генераторы постоянного тока продолжают находить широкое применение.

Генераторы постоянного тока выпускаются на мощности от нескольких киловатт до 10 000 кВт.

1. Генератор независимого возбуждения. В генераторе с независимым возбуждением ток возбуждения, не зависит от тока якоря, который равен току нагрузки . Обычно ток возбуждения невелик .

2. Генератор с самовозбуждением. Генератор с самовозбуждением представляет собой резонансный усилитель с цепью обратной связи, по которой часть напряжения выходных колебаний подается обратно ко входу — на управляющую сетку. Принцип самовозбуждения состоит в следующем. Если к лампе усилителя приложить управляющее напряжение, то в анодном контуре возникнут усиленные колебания.

3. Генераторы последовательного возбуждения. У генераторов последовательного возбуждения ток возбуждения равен току якоря .

4. Генераторы смешанного возбуждения. В генераторе со смешанным возбуждением имеются две обмотки возбуждения: основная (параллельная) и вспомогательная (последовательная). Наличие двух обмоток при их согласном включении позволяет получать приблизительно постоянное напряжение генератора при изменении нагрузки.

5. Генератор параллельного возбуждения. У генератора параллельного возбуждения обмотка возбуждения питается от собственного якоря Электродвижущая сила в якоре появляется в результате самовозбуждения машины, происходящего под действием остаточного магнетизма в полюсах и ярме статора. Для того чтобы в машине появился магнитный поток остаточного магнетизма, она хотя бы один раз должна быть намагничена путем пропускания тока через обмотку возбуждения oт постороннего источника. Так как обмотка воз¬буждения подключена к якорю, то ЭДС создает в ней небольшой ток. Этот ток, протекая по обмотке возбуждения, увеличивает магнитный поток полюсов, который в свою очередь увеличивает ЭДС в якоре. Увеличение ЭДС вызывает повышение тока в обмотке возбуждения, который еще сильнее увеличивает магнитный поток полюсов и ЭДС, наводимую в якоре, что вызывает дальнейшее возрастание тока возбуждения.

Автомобильный генератор — устройство, обеспечивающее преобразование механической энергии вращения, двигателя автомобиля в электрическую. Автомобильный генератор используется для зарядки аккумуляторной батареи автомобиля, а также для питания штатных электропотребителей таких как бортовой компьютер, габаритные огни и другие. К автомобильным генераторам предъявляют высокие требования по надежности, так как генератор обеспечивает бесперебойную работу большинства компонентов современного автомобиля.

В современных автомобилях применяются вентильные генераторы. Это синхронные трехфазные электрические машины переменного тока, которые — как отечественные, так и зарубежные — имеют очень похожие конструкции и отличаются, если оставить в стороне качество изготовления, только габаритами, расположением присоединительных мест и отдельных узлов.

Статор автомобильного генератора представляет собой кольцо с 18 обмотками: по 6 на каждую фазу. Каждая обмотка имеет 5 витков.

На валу ротора установлены контактные кольца, на которые с помощью щёток подается напряжение с АКБ. В результате, через обмотку возбуждения ротора начинает протекать ток, который создаёт магнитное поле.

После запуска двигателя ротор приводится во вращение, и вращающееся магнитное поле ротора начинает пересекать обмотки статора, в результате чего в каждой обмотке возникает электродвижущая сила и переменный ток.

С помощью выпрямительного блока переменный ток обмоток статора преобразуется в постоянный. Выпрямительный блок состоит из двух алюминиевых пластин, в которые запрессовано по три диода.

Напряжение, вырабатываемое генератором, в наибольшей степени зависит от частоты вращения ротора и силы тока в обмотках возбуждения.

Для нормальной работы потребителей напряжение, вырабатываемое генератором, должно быть в пределах 13,7 – 14,5 В.

При большой частоте вращения коленчатого вала напряжение, вырабатываемое генератором, растёт. Для того чтобы выдаваемое генератором напряжение удерживалось в пределах 13,7 – 14,5 В, используются реле-регуляторы напряжения. Если напряжение превышает допустимые 14,5 В, реле-регулятор прерывает цепь обмотки возбуждения ротора и ток через обмотку возбуждения не идёт. В результате, напряжение, выдаваемое генератором начинает падать, и когда оно вновь попадает в интервал 13,7 – 14,5 В, подача тока в обмотку возбуждения ротора возобновляется.

Корпус (5) и передняя крышка генератора (2) служат опорами для подшипников (9 и 10), в которых вращается якорь (4). На обмотку возбуждения якоря напряжение от аккумулятора подается через щетки (7) и контактные кольца (11). Якорь приводится в движение посредством клинового ремня через шкив (1). При запуске двигателя, как только якорь начинает вращаться, создаваемое им электромагнитное поле индуцирует переменный электрический ток в обмотке статора (3). В выпрямительном блоке (6) этот ток становится постоянным. Далее ток через совмещенный с выпрямительным блоком регулятор напряжения поступает в электросеть автомобиля для питания системы зажигания, освещения и сигнализации, контрольно-измерительных приборов и др. Аккумуляторная батарея подключится к числу этих приборов и начнет подзаряжаться чуть позднее, как только электроэнергии, вырабатываемой генераторной установкой, станет достаточно, чтобы обеспечить бесперебойное функционирование всех потребителей.

1. ru.wikipedia.org/wiki

2. principact.ru/content/view/57/37/

3. www.vsdi.ru/princip_raboty_generator

4. www.opel.auto.ru/info/alternators.html

5. www.unilib.neva.ru/dl/059/CHAPTER5/Chapter5.html

6. dic.academic.ru/dic.nsf/stroitel/7625

7. pda./

www.ronl.ru

Принцип действия генератора постоянного тока



Электрические машины постоянного тока

Электрические машины постоянного тока по своему назначению делятся на электрические генераторы (или просто генераторы), преобразующие механическую энергию в электрическую при постоян­ном напряжении (генераторы являются источниками электрической энергии), и электрические двигатели (электродвигатели), преобразую­щие электрическую энергию постоянного тока в механическую энер­гию. Эта механическая энергия используется для приведения во вра­щение какого-либо исполнительного механизма (станок, лебедка, колеса трамвая, электропоезда и т. д.).

Кроме того, существуют некоторые специальные виды машин, например машины, предназначенные для преобразования электроэнергии постоянного тока в электроэнергию переменного тока или наоборот; микромашины, используемые в системах автоматического регулирования, в измерительных и счетно-решающих устройствах в качестве датчиков (например, датчиков скорости) и др.

Электротехнической промышленностью выпускаются машины …
постоянного тока различной мощности и напряжения. Условно их можно подразделить на следующие группы по мощности:

1) микромашины, мощность которых измеряется от долей ватта до 500 Вт;

2) машины малой мощности – 0,5 ÷ 10 кВт;

3) машины средней мощности – от 10 до нескольких сотен киловатт;

4) машины большой мощности – свыше нескольких сотен киловатт.

Напряжение машин постоянного тока изменяется от 6-12 В для используемых на автотранспорте до 30 кВ для используемых в радиотехнических установках.

Большое применение находят машины постоянного тока мощностью до 200 кВт на напряжение 110-440 В с частотой вращения 550-2870 об/мин. Микромашины имеют частоты вращения от нескольких оборотов до 30000 об/мин.

В промышленности, на транспорте и в сельском хозяйстве наиболее широко используют электродвигатели. Генераторы применяют для питания устройств связи, радиотехнических установок и т.д. В последние годы в качестве источников постоянного тока все более широко применяют более экономичные и простые в эксплуатации статические полупроводниковые преобразователи.

 

Работа генератора основана на использовании закона электромагнитной индукции, согласно которому в проводнике, движущемся в магнитном поле ипересекающем магнитный поток, индуцируется ЭДС.

Одной из основных частей машины постоянного тока является магнитопровод, по которому замыкается магнитный поток. Магнитная цепь машины постоянного тока состоит из неподвижной части — статора 1 и вращающейся части – ротора 4. Статор представляет собой стальной корпус, к которому крепятся другие детали машины, в том числе магнитные полюсы 2. На магнитные полюсы насаживается обмотка возбуждения 3, питаемая постоянным током и создающая основной магнитный поток Ф0.

Ротор машины набирают из стальных штампованных листов с па­зами по окружности и с отверстиями для вала и вентиляции.В пазы 5 ротора закладывается рабочая обмотка ма­шины постоянного тока, т. е. обмотка, в которой основным магнит­ным потоком индуцируется ЭДС. Эту обмотку называют обмоткой якоря (поэтому ротор машины постоянного тока принято называть якорем).

Полюсы постоянного магнита создают магнитный поток. Пред­ставим, что обмотка якоря состоит из одного витка, концы которого присоединены к различным полукольцам, изолированным друг от друга. Эти полукольца образуют коллектор, который вращается вмес­те с витком обмотки якоря. По коллектору при этом скользят не­подвижные щетки.

При вращении витка в магнитном поле в нем индуцируется э. д. с

где В – магнитная индукция; l – длина проводника; v – его линей­ная скорость.

Когда плоскость витка совпадает с плоскостью осевой линии полю­сов (виток расположен вертикально), проводники пересекают макси­мальный магнитный поток и в них индуцируется максимальное зна­чение ЭДС. Когда виток занимает горизонтальное положение, ЭДС в проводниках равна нулю.

Направление ЭДС в проводнике определяется по правилу пра­вой руки. Когда при вращении витка проводник переходит под другой полюс, направление ЭДС в нем меняется на обратное. Но так как вместе с витком вращается кол­лектор, а щетки неподвижны, то с верхней щеткой всегда соединен про­водник, находящийся под северным полюсом, ЭДС которого направ­лена от щетки. В результате полярность щеток остается неизменной, а следовательно, остается неизменной по направлению ЭДС на щет­ках — ещ.

Хотя ЭДС простейшего генератора постоянного тока постоянна по направлению, по значению она изменяется, принимая за один обо­рот витка два раза максимальное и два раза нулевое значения. ЭДС с такой большой пульсацией непригодна для большинства приемников постоянного тока и в строгом смысле слова ее нельзя назвать посто­янной.

Для уменьшения пульсаций обмотку якоря генератора постоян­ного тока выполняют из большого числа витков (катушек), а коллек­тор – из большого числа коллекторных пластин, изолированных друг от друга. В результате этого пульсации ЭДС обмотки якоря уменьшаются. При увеличении числа витков и коллекторных пластин можно получить практически постоянную ЭДС обмотки якоря.

 


refac.ru

Генераторы постоянного тока — реферат

Влияние реакции якоря  можно ослабить увеличением воздушного зазора между полюсами и якорем, но это приведет (как и в синхронной машине) к излишнему расходу меди и увеличению размеров машины. Для  ослабления влияния реакции якоря  в машинах постоянного тока применяют  дополнительные полюсы, одновременно улучшающие коммутацию тока.

 

 

Коммутация

 

 

 

Во время работы машины постоянного тока происходит непрерывное  переключение секций обмотки из одной  параллельной ветви в другую, при  этом ток в переключенных секциях  изменяет свое направление на противоположное. Так как время этого перехода очень мало, то скорость изменения тока в секции велика. Если учесть, что секция размещена на стальном сердечнике (индуктивность велика), то процесс переключения секции может сопровождаться появлением в ней значительной ЭДС самоиндукции и, возможно, искрением.

Процесс переключения секций обмотки из одной параллельной ветви  в другую и все сопутствующие  этому переключению явления называют процессом коммутации, а продолжительность  этого процесса – периодом коммутации.

Рассмотрим этот процесс  несколько подробнее на примере  обмотки с двумя параллельными  ветвями.

Перед началом коммутации, когда щетка соприкасается только с коллекторной пластиной 1 (Рис.6-8, а), ток нагрузки I, протекает от пластины 1 до точки а, где разветвляется  в обе параллельные ветви. Интересующая нас секция (на чертеже выделена жирной линией) находится в правой параллельной ветви. Как только правый край щетки коснется пластины 2, начнется процесс коммутации, который будет продолжаться, пока левый край щетки не сойдет с пластины 1, при этом в течение всего периода коммутации выделенная нами секция будет замкнута накоротко щеткой (Рис.6-8, б) Так как за все время коммутации значение и направление токов в проводах 2 и 3 не изменится, то по мере перехода щетки коллекторной пластины 1 на пластину 2 ток под набегающим краем будет увеличиваться, а под сбегающим – уменьшаться, распределяясь обратно пропорционально площади соприкосновения, плотность тока при этом будет везде постоянной. Но так было бы при очень медленном движении коллектора относительно щетки. На самом же деле период коммутации длится лишь тысячные доли секунды, за это время ток в выделенной секции (провода 1-4) изменяется от + до нуля и от нуля до – . Так как секция имеет большую индуктивность, то под действием ЭДС самоиндукции в ней появится дополнительный ток, направление которого (по закону Ленца) совпадет с убывающим током в секции. Этот дополнительный ток сильно увеличит плотность тока под сбегающим краем щетки, и в момент схождения щетки с пластины I между этой пластиной и щеткой произойдет искрение.

Теперь, когда щетка стала  касаться только пластины 2 (Рис.6-8, в), выделенная нами секция 1-4 оказалась в левой  параллельной ветви, ток в ней  изменил свое направление на противоположное. После этого начнется коммутация следующей секции, т.е. под щеткой снова будет наблюдаться искрение.

Мы рассмотрели коммутацию под щеткой одной полярности. Точно  в таких же условиях находится  и щетка другой полярности, где  направление токов во всех проводниках  будет противоположным. Для уменьшения добавочного тока, возникающего в  коммутируемых секциях, в машинах  высокого напряжения применяют твердые  угольные щетки, образующие большие  контактные сопротивления в замыкаемых секциях. Улучшение условий коммутации в машинах постоянного тока главным  образом осуществляется с помощью  дополнительных полюсов. Этот метод  основан на следующем.

 

 

ЭДС самоиндукции в коммутируемых  секциях возникает при прохождении  этих секций вблизи геометрической нейтрали и зависит от значения тока нагрузки. Если в это время каким-нибудь дополнительным полем в коммутируемой секции создать равную и противоположную ЭДС, то дополнительный ток при этом может исчезнуть. Именно так и поступают на практике. Дополнительные полюсы размещают на геометрической нейтрали и снабжают обмотками, включенными последовательно в цепь нагрузки (Рис.6-9). Дополнительные полюсы своим полем индуцируют в коммутирующих секциях коммутирующую ЭДС, пропорциональную току нагрузки, и компенсирующую ЭДС самоиндукции в секции, при этом поле дополнительных

Рис.6-9полюсов одновременно ослабляет и влияние реакции  якоря. У генераторов за главным  полюсом по направлению его вращения ставят дополнительный полюс противоположной  полярности, а у двигателя – такой  же полярности. Это условие автоматически  выполняется при переходе машины из режима работы генератора в режим  двигателя, так как направление  тока изменяется на противоположное.

 

У большинства машин постоянного  тока делают по два дополнительных полюса на каждую пару главных полюсов. У маломощных машин (до 5 кВт) на каждую пару главных полюсов делают один дополнительный полюс.

 

 

Способы возбуждения  генераторов постоянного тока

 

Возбуждением генератора называют создание рабочего магнитного потока, благодаря которому во вращающемся  якоре создается ЭДС. Генераторы постоянного тока в зависимости  от способа подключения обмоток  возбуждения различают: независимого, параллельного, последовательного  и смешанного возбуждения.

 

 

Генератор независимого возбуждения  имеет обмотку возбуждения ОВ, подключаемую к постороннему источнику  тока через регулировочный реостат (Рис.6-10, а). Напряжение на зажимах такого генератора (кривая I на Рис.6-11) с увеличением  тока нагрузки несколько уменьшается  в результате падения напряжения на внутреннем сопротивлении якоря, причем напряжения получаются всегда устойчивыми. Это свойство оказывается весьма ценным в электрохимии (питание электролитических ванн).

Генератор параллельного  возбуждения является генератором  с самовозбуждением: обмотку возбуждения  ОВ подключают через регулировочный реостат к зажимам того же генератора (Рис.6-10, б). Такое включение приводит к тому, что при увеличении тока нагрузки I, напряжение на зажимах генератора U” уменьшается из-за падения напряжения на обмотке якоря. Это, в свою очередь, вызывает уменьшение тока возбуждения  и ЭДС в якоре. Поэтому напряжение на зажимах генератора UB уменьшается  несколько быстрее (кривая 2 на Рис.6-11), чем у генератора независимого возбуждения.

Дальнейшее увеличение нагрузки приводит к настолько сильному уменьшению тока возбуждения, что при коротком замыкании цепи нагрузки напряжение падает до нуля (небольшой ток короткого  замыкания обусловлен лишь остаточной индукцией в машине). Поэтому считают, что генератор параллельного  возбуждения не боится короткого  замыкания.

Генератор последовательного  возбуждения имеет обмотку возбуждения  ОВ, включаемую последовательно с  якорем (Рис.6-10, в). При отсутствии нагрузки ( =0) в якоре все же возбуждается небольшая ЭДС за счет остаточной индукции в машине (кривая 3 на Рис.6-11). С ростом нагрузки напряжение на зажимах генератора сначала растет, а после достижения магнитного насыщения магнитной системы машины оно начинает быстро уменьшаться из-за падения напряжения на сопротивлении якоря и из-за размагничивающего действия реакции якоря.

Из-за большого непостоянства  напряжения с изменением нагрузки генераторы с последовательным возбуждением в  настоящее время не применяют.

Генератор смешанного возбуждения  имеет две обмотки: 0ВУ – включаемую параллельно якорю, ОВ2 (дополнительную) – последовательно (Рис.6-10, г). Обмотки включают так, чтобы они создавали магнитные потоки одного направления, а число витков в обмотках выбирают таким, чтобы падение напряжения на внутреннем сопротивлении генератора и ЭДС реакции якоря были бы скомпенсированы ЭДС от потока параллельной обмотки.

 

 

Обратимость машин  постоянного тока

 

Электрические машины постоянного  тока, как и машины переменного  тока, обратимы, т.е. они могут работать как генераторы и как двигатели. Переход генератора в режим работы двигателя можно пояснить следующим  образом.

Если генератор включить в сеть постоянного тока, то в  обмотках якоря и электромагнитов  установится ток, при этом электромагниты создадут постоянное магнитное поле и на каждый проводник обмотки якоря с током начнет действовать сила, стремящаяся повернуть якорь в сторону действия силы (Рис.6-12, и). Таким образом, взаимодействие магнитного поля якоря с полем обмотки возбуждения приводит якорь во вращение.

 

 

Применяя правило левой  руки, можно легко заметить, что  при изменении направления тока только в якоре (Рис.6-12, б) или только в обмотке возбуждения (Рис.6-12, б) направление вращения якоря изменяется на противоположное, а одновременное  изменение направления тока в  обеих обмотках не изменяет направления  вращения якоря (Рис.6-12, г)

Электродвигатели конструктивно  не отличаются от генераторов постоянного  тока, т.е. они имеют точно такое  же устройство (за исключением немногих типов двигателей специального назначения).

Рассмотрим некоторые  особенности двигателей. Если двигатель  постоянного тока с сопротивлением обмотки якоря  включить в сеть с напряжением U, то в момент пуска в якоре установится ток , значение которого может быть определено по закону Ома:

 

. (17)

 

Так как сопротивление  обмотки якоря мощных двигателей составляет лишь десятые и сотые  доли ома, а рабочее напряжение – порядка сотен вольт, то пусковой ток может составить сотни и тысячи ампер, превышая номинальное значение тока для данного двигателя в 10-30 раз. Такой ток не только не желателен, но и опасен для двигателя, так как может разрушиться коллектор и сгореть обмотка двигателя. Очевидно, что ограничение пускового тока можно осуществить включением пускового реостата в цепь якоря. Тогда пусковой ток уменьшится и будет равен:

 

. (18)

 

Сопротивление пускового  реостата выбирают таким, чтобы пусковой ток не превышал номинальный более  чем в 1,1 – 1,5 раза.

В результате взаимодействия якоря с полем полюсов якорь  придет во вращение, обмотка его  будет вращаться в магнитном  поле и в ней индуцируется ЭДС  самоиндукции , полярность которой противоположна полярности напряжения сети. Эта ЭДС вызывает ослабление тока в якоре, а ее значение пропорционально скорости вращения якоря, т.е. по мере разгона двигателя ток будет уменьшаться и пусковой реостат можно выводить.

Иначе говоря, у нормально  вращающегося двигателя основная часть  подводимого напряжения уравновешивается ЭДС самоиндукции. Ток в якоре  при выведенном пусковом реостате можно  выразить уравнением:

 

. (19)

 

Для выяснения роли ЭДС  самоиндукции в преобразовании электрической  энергии в механическую в двигателе постоянного тока уравнение (19) представим в следующем виде:

 

. (20)

 

Получили уравнение электрического равновесия, согласно которому приложенное  к зажимам двигателя напряжение сети U уравновешивается суммой ЭДС  самоиндукции  и падением напряжения на сопротивлении якоря 

Умножив обе части уравнения (20) на I, получим:

 

. (21)

 

В этом новом уравнении (21) левая часть I U представляет собой не что иное, как электрическую мощность, потребляемую двигателем из сети, а последний член правой части – мощность, поглощаемую сопротивлением якоря (электрические потери в якоре). Очевидно, что член представляет собой электрическую мощность, преобразуемую в другой вид энергии. Следовательно, и есть та часть потребляемой из сети электрической мощности,, которая преобразуется в механическую (включая механические потери).

 

Таким образом, ЭДС самоиндукции в двигателе постоянного тока влияет на преобразование потребляемой из сети электрической энергии в  механическую. При неподвижном якоре = 0 преобразование (полезное) отсутствует ( = 0), хотя потребляемая из сети мощность максимальна. Наоборот, при номинальном режиме работы двигателя ( 0) потребляемая из сети мощность     ( ) уменьшается, а преобразованная мощность становится отличной от нуля     ( 0).

Для получения формулы  скорости двигателя подставим в  уравнение (19) значение ЭДС из соотношения (7). После преобразования получим:

 

. (22)

 

Учитывая, что падение  напряжения на сопротивлении якоря  значительно меньше напряжения сети U, можно считать, что скорость вращения двигателя практически прямо пропорциональна подводимому напряжению U и обратно пропорциональна магнитному потоку Ф. Отсюда следует, что регулирование скорости вращения двигателя можно осуществлять изменением сопротивления цепи якоря (при постоянном напряжении сети) либо изменением магнитного потока. На первый взгляд может показаться странным, что увеличение магнитного потока двигателя снижает скорость его вращения (и наоборот).

Действительно, если при  установившемся токе в якоре и  скорости вращения уменьшить магнитный  поток, то ЭДС самоиндукции уменьшится и электрическое равновесие (20) нарушится. Для восстановления этого равновесия при меньшем магнитном потоке якорь будет вращаться, быстрее, так как ЭДС самоиндукции пропорциональна  его скорости вращения. Значение вращающего момента двигателя может быть выражено той же формулой, что и  для генератора (13).

 

yaneuch.ru