Решение диф уравнений первого порядка – Дифференциальные уравнения первого порядка. Примеры решений. Дифференциальные уравнения с разделяющимися переменными

Содержание

Однородные дифференциальные уравнения первого порядка

Дифференциальное уравение первого порядка называется однородным, если и – однородные функции одной и то же степени.

Функция называется однородной функцией k-й степени, если для любого t выполняется равенство .

В частном случае, если однородная функция имеет нулевую степень, то выполняется равенство

Пример 1. Установить, являются ли однородными функции

1) ;

2) ;

Решение. Находим

Следовательно, – однородная функция третьей степени.

Аналогично устанавливается, что – однородная функция четвёртой степени:

Отношение двух однородных функций одинаковых степеней также есть однородная функция, но нулевой степени. Пусть и – однородные функции

k-й степени. Это означает, что , а . Их отношение – некоторая функция , так как .

Как решить однородное дифференциальное уравнение первого порядка?

Решение однородного дифференциального уравнения первого порядка сводится к решению дифференциального уравнения с разделяющимися переменными.

Для этого преобразуем уравнение к виду

или ,   (1)

где – однородная функция нулевой степени как отношение однородных функций одинаковых степеней. Это равенство справедливо при любом t. В частности, если , то , или , т. е. функция представлена в виде функции от .

Обозначим это отношение через z, т. е. , откуда . Тогда

и уравнение (1) преобразуется так:

Это уравнение с разделяющимися переменными. Разделив переменные и выполнив почленное интегрирование, затем следует заменить z на .

Пример 5. Решить однородное дифференциальное уравнение

Решение. Поделим почленно уравнение на dx и получим

или

.

Произведём подстановку , откуда . Тогда уравнение примет вид

.

Путём дальнейших преобразований получаем

Итак, или
.

Почленное интегрирование даёт

.

Заменяя z на , получим

Чтобы избавиться от дробности, умножим обе части выражения на

x в кубе и получим

– общий интеграл данного уравнения.

Выводы. Чтобы решать однородные дифференциальные уравнения, необходимо хорошо владеть методами интегрирования – путём замены переменной и по частям. В практических задачах на этот вид дифференциальных уравнений нередко после преобразований получаются выражения, интегрируя которые, требуется применять как один, так и другой метод интегрирования дважды или даже трижды.

Всё по теме “Дифференциальные уравнения”

Поделиться с друзьями

function-x.ru

Однородные дифференциальные уравнения первого порядка

Однородное дифференциальное уравнение первого порядка – это уравнение вида
, где f – функция.

Как определить однородное дифференциальное уравнение

Для того, чтобы определить, является ли дифференциальное уравнение первого порядка однородным, нужно ввести постоянную t и заменить y на ty и x на tx:   y → ty, x → tx. Если t сократится, то это

однородное дифференциальное уравнение. Производная y′ при таком преобразовании не меняется.
.

Пример

Определить, является ли данное уравнение однородным

Решение

Делаем замену y → ty, x → tx.


Делим на t 2.

.
Уравнение не содержит t. Следовательно, это однородное уравнение.

Метод решения однородного дифференциального уравнения

Однородное дифференциальное уравнение первого порядка приводится к уравнению с разделяющимися переменными с помощью подстановки y = ux. Покажем это. Рассмотрим уравнение:
(i)  
Делаем подстановку:
y = ux,
где u – функция от x. Дифференцируем по x:
y′ = (ux)′ = u′ x + u (x)′ = u′ x + u
Подставляем в исходное уравнение (i).
,
,
(ii)   .
Разделяем переменные. Умножаем на dx и делим на x ( f(u) – u ).

При f(u) – u ≠ 0 и x ≠ 0 получаем:

Интегрируем:

Таким образом, мы получили общий интеграл уравнения (i) в квадратурах:

Заменим постоянную интегрирования C на ln C, тогда

Опустим знак модуля, поскольку нужный знак определяется выбором знака постоянной C. Тогда общий интеграл примет вид:

Далее следует рассмотреть случай f(u) – u = 0.
Если это уравнение имеет корни, то они являются решением уравнения (ii). Поскольку уравнение (ii) не совпадает с исходным уравнением, то следует убедиться, что дополнительные решения удовлетворяют исходному уравнению (i).

Всякий раз, когда мы, в процессе преобразований, делим какое либо уравнение на некоторую функцию, которую обозначим как g(x, y), то дальнейшие преобразования справедливы при g(x, y) ≠ 0. Поэтому следует отдельно рассматривать случай g(x, y) = 0.

Пример решения однородного дифференциального уравнения первого порядка

Решить уравнение

Решение

Проверим, является ли данное уравнение однородным. Делаем замену y → ty, x → tx. При этом y′ → y′.
,
,
.
Сокращаем на t.

Постоянная t сократилась. Поэтому уравнение является однородным.

Делаем подстановку y = ux, где u – функция от x.
y′ = (ux)′ = u′ x + u (x)′ = u′ x + u
Подставляем в исходное уравнение.
,
,
,
.
При x ≥ 0,   |x| = x. При x ≤ 0,   |x| = – x. Мы пишем |x| = ± x подразумевая, что верхний знак относится к значениям x ≥ 0, а нижний – к значениям x ≤ 0.
,
Умножаем на ± dx и делим на   .

При u2 – 1 ≠ 0 имеем:

Интегрируем:

Интегралы табличные,
.

Применим формулу:
(a + b)(a – b) = a 2 – b 2.
Положим a = u, .
.
Возьмем обе части по модулю и логарифмируем,
.
Отсюда
.

Таким образом имеем:
,
.
Опускаем знак модуля, поскольку нужный знак обеспечивается выбором знака постоянной C.


Умножаем на x и подставляем ux = y.
,
.
Возводим в квадрат.
,
,
.

Теперь рассмотрим случай, u2 – 1 = 0.
Корни этого уравнения
.
Легко убедиться, что функции y = ± x удовлетворяют исходному уравнению.

Ответ

,
,
.

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Автор: Олег Одинцов.     Опубликовано:   Изменено:

1cov-edu.ru

Линейные и однородные дифференциальные уравнения первого порядка. Примеры решения

Думаю, нам стоит начать с истории такого славного математического инструмента как дифференциальные уравнения. Как и все дифференциальные и интегральные исчисления, эти уравнения были изобретены Ньютоном в конце 17-го века. Он считал именно это своё открытие настолько важным, что даже зашифровал послание, которое сегодня можно перевести примерно так: “Все законы природы описываются дифференциальными уравнениями”. Это может показаться преувеличением, но всё так и есть. Любой закон физики, химии, биологии можно описать этими уравнениями.

Огромный вклад в развитие и создание теории дифференциальных уравнений внесли математики Эйлер и Лагранж. Уже в 18-м веке они открыли и развили то, что сейчас изучают на старших курсах университетов.

Новая веха в изучении дифференциальных уравнений началась благодаря Анри Пуанкаре. Он создал «качественную теорию дифференциальных уравнений», которая в сочетании с теорией функций комплексного переменного внесла значительный вклад в основание топологии – науки о пространстве и его свойствах.

Что такое дифференциальные уравнения?

Многие боятся одного словосочетания “дифференциальное уравнение”. Однако в этой статье мы подробно изложим всю суть этого очень полезного математического аппарата, который на самом деле не так сложен, как кажется из названия. Для того чтобы начать рассказывать про дифференциальные уравнения первого порядка, следует сначала познакомиться с основными понятиями, которые неотъемлемо связаны с этим определением. И начнём мы с дифференциала.

Дифференциал

Многие знают это понятие ещё со школы. Однако всё же остановимся на нём поподробнее. Представьте себе график функции. Мы можем увеличить его до такой степени, что любой его отрезок примет вид прямой линии. На ней возьмём две точки, находящиеся бесконечно близко друг к другу. Разность их координат (x или y) будет бесконечно малой величиной. Ее и называют дифференциалом и обозначают знаками dy (дифференциал от y) и dx (дифференциал от x). Очень важно понимать, что дифференциал не является конечной величиной, и в этом заключается его смысл и основная функция.

А теперь необходимо рассмотреть следующий элемент, который нам пригодится при объяснении понятия дифференциального уравнения. Это – производная.

Производная

Все мы наверняка слышали в школе и это понятие. Говорят, что производная – это скорость роста или убывания функции. Однако из этого определения многое становится непонятным. Попробуем объяснить производную через дифференциалы. Давайте вернёмся к бесконечно малому отрезку функции с двумя точками, которые находятся на минимальном расстоянии друг от друга. Но даже за это расстояние функция успевает измениться на какую-то величину. И чтобы описать это изменение и придумали производную, которую иначе можно записать как отношение дифференциалов: f(x)’=df/dx.

Теперь стоит рассмотреть основные свойства производной. Их всего три:

  1. Производную суммы или разности можно представить как сумму или разность производных: (a+b)’=a’+b’ и (a-b)’=a’-b’.
  2. Второе свойство связано с умножением. Производная произведения – это сумма произведений одной функции на производную другой: (a*b)’=a’*b+a*b’.
  3. Производную разности записать можно в виде следующего равенства: (a/b)’=(a’*b-a*b’)/b2.

Все эти свойства нам пригодятся для нахождения решений дифференциальных уравнений первого порядка.

Также бывают частные производные. Допустим, у нас есть функция z, которая зависит от переменных x и y. Чтобы вычислить частную производную этой функции, скажем, по x, нам необходимо принять переменную y за постоянную и просто продифференцировать.

Интеграл

Другое важное понятие – интеграл. По сути это прямая противоположность производной. Интегралы бывают нескольких видов, но для решения простейших дифференциальных уравнений нам понадобятся самые тривиальные неопределённые интегралы.

Итак, что такое интеграл? Допустим, у нас есть некоторая зависимость f от x. Мы возьмём от неё интеграл и получим функцию F(x) (часто её называют первообразной), производная от которой равна первоначальной функции. Таким образом F(x)’=f(x). Отсюда следует также, что интеграл от производной равен первоначальной функции.

При решении дифференциальных уравнений очень важно понимать смысл и функцию интеграла, так как придётся очень часто их брать для нахождения решения.

Уравнения бывают разными в зависимости от своей природы. В следующем разделе мы рассмотрим виды дифференциальных уравнений первого порядка, а потом и научимся их решать.

Классы дифференциальных уравнений

“Диффуры” делятся по порядку производных, участвующих в них. Таким образом бывает первый, второй, третий и более порядок. Их также можно поделить на несколько классов: обыкновенные и в частных производных.

В этой статье мы рассмотрим обыкновенные дифференциальные уравнения первого порядка. Примеры и способы их решения мы также обсудим в следующих разделах. Будем рассматривать только ОДУ, потому что это самые распространённые виды уравнений. Обыкновенные делятся на подвиды: с разделяющимися переменными, однородные и неоднородные. Далее вы узнаете, чем они отличаются друг от друга, и научитесь их решать.

Кроме того, эти уравнения можно объединять, чтобы после у нас получилась система дифференциальных уравнений первого порядка. Такие системы мы тоже рассмотрим и научимся решать.

Почему мы рассматриваем только первый порядок? Потому что нужно начинать с простого, а описать всё, связанное с дифференциальными уравнениями, в одной статье просто невозможно.

Уравнения с разделяющимися переменными

Это, пожалуй, самые простые дифференциальные уравнения первого порядка. К ним относятся примеры, которые можно записать так: y’=f(x)*f(y). Для решения этого уравнения нам понадобится формула представления производной как отношения дифференциалов: y’=dy/dx. С помощью неё получаем такое уравнение: dy/dx=f(x)*f(y). Теперь мы можем обратиться к методу решения стандартных примеров: разделим переменные по частям, т. е. перенесём всё с переменной y в часть, где находится dy, и так же сделаем с переменной x. Получим уравнение вида: dy/f(y)=f(x)dx, которое решается взятием интегралов от обеих частей. Не стоит забывать и о константе, которую нужно ставить после взятия интеграла.

Решение любого “диффура” – это функция зависимости x от y (в нашем случае) или, если присутствует численное условие, то ответ в виде числа. Разберём на конкретном примере весь ход решения:

y’=2y*sin(x)

Переносим переменные в разные стороны:

dy/y=2*sin(x)dx

Теперь берём интегралы. Все их можно найти в специальной таблице интегралов. И получаем:

ln(y) = -2*cos(x) + C

Если требуется, мы можем выразить “игрек” как функцию от “икс”. Теперь можно сказать, что наше дифференциальное уравнение решено, если не задано условие. Может быть задано условие, например, y(п/2)=e. Тогда мы просто подставляем значение этих переменных в решение и находим значение постоянной. В нашем примере оно равно 1.

Однородные дифференциальные уравнения первого порядка

Теперь переходим к более сложной части. Однородные дифференциальные уравнения первого порядка можно записать в общем виде так: y’=z(x,y). Следует заметить, что правая функция от двух переменных однородна, и её нельзя разделить на две зависимости: z от x и z от y. Проверить, является ли уравнение однородным или нет, достаточно просто: мы делаем замену x=k*x и y=k*y. Теперь сокращаем все k. Если все эти буквы сократились, значит уравнение однородное и можно смело приступать к его решению. Забегая вперёд, скажем: принцип решения этих примеров тоже очень прост.

Нам нужно сделать замену: y=t(x)*x, где t – некая функция, которая тоже зависит от x. Тогда мы можем выразить производную: y’=t'(x)*x+t. Подставляя всё это в наше исходное уравнение и упрощая его, мы получаем пример с разделяющимися переменными t и x. Решаем его и получаем зависимость t(x). Когда мы ее получили, то просто подставляем в нашу предыдущую замену y=t(x)*x. Тогда получаем зависимость y от x.

Чтобы было понятнее, разберём пример: x*y’=y-x*ey/x.

При проверке с заменой всё сокращается. Значит, уравнение действительно однородное. Теперь делаем другую замену, о которой мы говорили: y=t(x)*x и y’=t'(x)*x+t(x). После упрощения получаем следующее уравнение: t'(x)*x=-et. Решаем получившийся пример с разделёнными переменными и получаем: e-t=ln(C*x). Нам осталось только заменить t на y/x (ведь если y=t*x, то t=y/x), и мы получаем ответ: e-y/x=ln(x*С).

Линейные дифференциальные уравнения первого порядка

Пришло время рассмотреть ещё одну обширную тему. Мы разберём неоднородные дифференциальные уравнения первого порядка. Чем они отличаются от предыдущих двух? Давайте разберёмся. Линейные дифференциальные уравнения первого порядка в общем виде можно записать таким равенством: y’ + g(x)*y=z(x). Стоит уточнить, что z(x) и g(x) могут являться постоянными величинами.

А теперь пример: y’ – y*x=x2.

Существует два способа решения, и мы по порядку разберём оба. Первый – метод вариации произвольных констант.

Для того чтобы решить уравнение этим способом, необходимо сначала приравнять правую часть к нулю и решить получившееся уравнение, которое после переноса частей примет вид:

y’ = y*x;

dy/dx=y*x;

dy/y=xdx;

ln|y|=x2/2 + C;

y=ex2/2С=C1*ex2/2.

Теперь надо заменить константу C1 на функцию v(x), которую нам предстоит найти.

y=v*ex2/2.

Проведём замену производной:

y’=v’*ex2/2-x*v*ex2/2.

И подставим эти выражения в исходное уравнение:

v’*ex2/2 – x*v*ex2/2 + x*v*ex2/2 = x2.

Можно видеть, что в левой части сокращаются два слагаемых. Если в каком-то примере этого не произошло, значит вы что-то сделали не так. Продолжим:

v’*ex2/2 = x2.

Теперь решаем обычное уравнение, в котором нужно разделить переменные:

dv/dx=x2/ex2/2;

dv = x2*ex2/2dx.

Чтобы извлечь интеграл, нам придётся применить здесь интегрирование по частям. Однако это не тема нашей статьи. Если вам интересно, вы можете самостоятельно научиться выполнять такие действия. Это не сложно, и при достаточном навыке и внимательности не отнимает много времени.

Обратимся ко второму способу решения неоднородных уравнений: методу Бернулли. Какой подход быстрее и проще – решать только вам.

Итак, при решении уравнения этим методом нам необходимо сделать замену: y=k*n. Здесь k и n – некоторые зависящие от x функции. Тогда производная будет выглядеть так: y’=k’*n+k*n’. Подставляем обе замены в уравнение:

k’*n+k*n’+x*k*n=x2.

Группируем:

k’*n+k*(n’+x*n)=x2.

Теперь надо приравнять к нулю то, что находится в скобках. Теперь, если объединить два получившихся уравнения, получается система дифференциальных уравнений первого порядка, которую нужно решить:

n’+x*n=0;

k’*n=x2.

Первое равенство решаем, как обычное уравнение. Для этого нужно разделить переменные:

dn/dx=x*v;

dn/n=xdx.

Берём интеграл и получаем: ln(n)=x2/2. Тогда, если выразить n:

n=ex2/2.

Теперь подставляем получившееся равенство во второе уравнение системы:

k’*ex2/2=x2.

И преобразовывая, получаем то же самое равенство, что и в первом методе:

dk=x2/ex2/2.

Мы также не будем разбирать дальнейшие действия. Стоит сказать, что поначалу решение дифференциальных уравнений первого порядка вызывает существенные трудности. Однако при более глубоком погружении в тему это начинает получаться всё лучше и лучше.

Где используются дифференциальные уравнения?

Очень активно дифференциальные уравнения применяются в физике, так как почти все основные законы записываются в дифференциальной форме, а те формулы, которые мы видим – решение этих уравнений. В химии они используются по той же причине: основные законы выводятся с их помощью. В биологии дифференциальные уравнения используются для моделирования поведения систем, например хищник – жертва. Они также могут использоваться для создания моделей размножения, скажем, колонии микроорганизмов.

Как дифференциальные уравнения помогут в жизни?

Ответ на этот вопрос прост: никак. Если вы не учёный или инженер, то вряд ли они вам пригодятся. Однако для общего развития не помешает знать, что такое дифференциальное уравнение и как оно решается. И тогда вопрос сына или дочки “что такое дифференциальное уравнение?” не поставит вас в тупик. Ну а если вы учёный или инженер, то и сами понимаете важность этой темы в любой науке. Но самое главное, что теперь на вопрос “как решить дифференциальное уравнение первого порядка?” вы всегда сможете дать ответ. Согласитесь, всегда приятно, когда понимаешь то, в чём люди даже боятся разобраться.

Основные проблемы при изучении

Основной проблемой в понимании этой темы является плохой навык интегрирования и дифференцирования функций. Если вы плохо берёте производные и интегралы, то, наверное, стоит ещё поучиться, освоить разные методы интегрирования и дифференцирования, и только потом приступать к изучению того материала, что был описан в статье.

Некоторые люди удивляются, когда узнают, что dx можно переносить, ведь ранее (в школе) утверждалось, что дробь dy/dx неделима. Тут нужно почитать литературу по производной и понять, что она является отношением бесконечно малых величин, которыми можно манипулировать при решении уравнений.

Многие не сразу осознают, что решение дифференциальных уравнений первого порядка – это зачастую функция или неберущийся интеграл, и это заблуждение доставляет им немало хлопот.

Что ещё можно изучить для лучшего понимания?

Лучше всего начать дальнейшее погружение в мир дифференциального исчисления со специализированных учебников, например, по математическому анализу для студентов нематематических специальностей. Затем можно переходить и к более специализированной литературе.

Стоит сказать, что, кроме дифференциальных, есть ещё интегральные уравнения, так что вам всегда будет к чему стремиться и что изучать.

Заключение

Надеемся, что после прочтения этой статьи у вас появилось представление о том, что такое дифференциальные уравнения и как их правильно решать.

В любом случае математика каким-либо образом пригодится нам в жизни. Она развивает логику и внимание, без которых каждый человек как без рук.

fb.ru