Сила всемирного тяготения это определение – Всемирное тяготение. Всемирное тяготение определение. Закон всемирного тяготения. Формула всемирного тяготения. Всемирная гравитационная постоянная

Закон всемирного тяготения: простое пояснение

Содержание:

  • Кто открыл закон всемирного тяготения

  • Определение закона всемирного тяготения

  • Формула закона всемирного тяготения

  • Закон всемирного тяготения и невесомость тел

  • Закон всемирного тяготения, видео
  • Кто открыл закон всемирного тяготения

    Ни для кого не секрет, что закон всемирного тяготения был открыт великим английским ученым Исааком Ньютоном, по легенде гуляющим в вечернем саду и раздумывающем над проблемами физики. В этот момент с дерева упало яблоко (по одной версии прямо на голову физику, по другой просто упало), ставшее впоследствии знаменитым яблоком Ньютона, так как привело ученого к озарению, эврике. Яблоко, упавшее на голову Ньютону и вдохновило того к открытию закона всемирного тяготения, ведь Луна в ночном небе оставалась не подвижной, яблоко же упало, возможно, подумал ученый, что какая-то сила воздействует как на Луну (заставляя ее вращаться по орбите), так и на яблоко, заставляя его падать на землю.

    Сейчас по заверениям некоторых историков науки вся эта история про яблоко лишь красивая выдумка. На самом деле падало яблоко или нет, не столь уж важно, важно, что ученый таки действительно открыл и сформулировал закон всемирного тяготения, который ныне является одним из краеугольных камней, как физики, так и астрономии.

    Разумеется, и задолго до Ньютона люди наблюдали, как падающие на землю вещи, так и звезды в небе, но до него они полагали, что существует два типа гравитации: земная (действующая исключительно в пределах Земли, заставляющая тела падать) и небесная (действующая на звезды и Луну). Ньютон же был первым, кто объединил эти два типа гравитации в своей голове, первым кто понял, что гравитация есть только одна и ее действие можно описать универсальным физическим законом.

    Определение закона всемирного тяготения

    Согласно этому закону, все материальные тела притягивают друг друга, при этом сила притяжения не зависит от физических или химических свойств тел. Зависит она, если все максимально упростить, лишь от веса тел и расстояния между ними. Также дополнительно нужно принять во внимание тот факт, что на все тела находящиеся на Земле действует сила притяжения самой нашей планеты, получившая название – гравитация (с латыни слово «gravitas» переводиться как тяжесть).

    Попробуем же теперь сформулировать и записать закон всемирного тяготения максимально кратко: сила притяжения между двумя телами с массами m1 и m2 и разделенными расстоянием R прямо пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними.

    Формула закона всемирного тяготения

    Ниже представляем вашему вниманию формулу закона всемирного тяготения.

    G в этой формуле это гравитационная постоянная, равная 6,67408(31)•10−11 эта величина воздействия на любой материальный объект силы гравитации нашей планеты.

    Закон всемирного тяготения и невесомость тел

    Открытый Ньютоном закон всемирного тяготения, а также сопутствующий математический аппарат позже легли в основу небесной механики и астрономии, ведь с помощью него можно объяснить природу движения небесных тел, равно как и явление невесомости. Находясь в космическом пространстве на значительном удалении от силы притяжения-гравитации такого большого тела как планета, любой материальный объект (например, космический корабль с астронавтами на борту) окажется в состоянии невесомости, так как сила гравитационного воздействия Земли (G в формуле закона тяготения) или какой-нибудь другой планеты, больше не будет на него влиять.

    Закон всемирного тяготения, видео

    И в завершение поучительное видео об открытии закона всемирного тяготения.


    www.poznavayka.org

    Сила всемирного тяготения: характеристика и практическая значимость

    XVI – XVII века многие по праву называют одним из самых славных периодов в истории физики. Именно в это время были во многом заложены те основы, без которых дальнейшее развитие этой науки было бы попросту немыслимым. Коперник, Галилей, Кеплер проделали огромную работу, чтобы заявить о физике как о науке, которая может дать ответ практически на любой вопрос. Особняком в целой череде открытий стоит закон всемирного тяготения, окончательная формулировка которого принадлежит выдающемуся английскому ученому Исааку Ньютону.

    Основное значение работ этого ученого заключалось не в открытии им силы всемирного тяготения – о наличии этой величины еще до Ньютона говорил и Галилей, и Кеплер, а в том, что он первым доказал, что и на Земле, и в космическом пространстве действуют одни и те же силы взаимодействия между телами.

    Ньютон на практике подтвердил и теоретически обосновал тот факт, что абсолютно все тела во Вселенной, в том числе и те, которые располагаются на Земле, взаимодействуют друг с другом. Это взаимодействие получило название гравитационного, в то время как сам процесс всемирного тяготения – гравитации.
    Данное взаимодействие возникает между телами потому, что существует особый, непохожий на другие, вид материи, который в науке получил название гравитационного поля. Это поле существует и действует вокруг абсолютно любого предмета, при этом никакой защиты от него не существует, так как он обладает ни на что не похожей способностью проникать в любые материалы.

    Сила всемирного тяготения, определение и формулировку которой дал Исаак Ньютон, находится в прямой зависимости от произведения масс взаимодействующих тел, и в обратной зависимости от квадрата расстояния междуэтими объектами. Согласно мнению Ньютона, неопровержимо подтвержденного практическими изысканиями, сила всемирного тяготения находится по следующей формуле:

    F = Mm/r2.

    В ней особое значение принадлежит гравитационной постоянной G, которая приблизительно равна 6,67*10-11(Н*м2)/кг2.

    Сила всемирного тяготения, с которой тела притягиваются к Земле, представляет собой частный случай закона Ньютона и называется силой тяжести. В данном случае гравитационной постоянной и массой самой Земли можно пренебречь, поэтому формула нахождения силы тяжести будет выглядеть так:

    F=mg.

    Здесь g – не что иное, как ускорение свободного падения, числовое значение которого примерно равно 9,8 м/с2.

    Закон Ньютона объясняет не только процессы, происходящие непосредственно на Земле, он дает ответ на множество вопросов, связанных с устройством всей Солнечной системы. В частности, сила всемирного тяготения между небесными телами оказывает решающее влияние на движение планет по своим орбитам. Теоретическое описание этого движения было дано еще Кеплером, однако обоснование его стало возможно только после того, как Ньютон сформулировал свой знаменитый закон.

    Сам Ньютон связывал явления земной и внеземной гравитации на простом примере: при выстреле из пушки ядро летит не прямо, а по дугообразной траектории. При этом при увеличении заряда пороха и массы ядра последнее будет улетать все дальше и дальше. Наконец, если предположить, что возможно достать столько пороха и сконструировать такую пушку, чтобы ядро облетело вокруг Земного шара, то, проделав это движение, оно не остановится, а будет продолжать свое круговое (эллипсовидное) движение, превратившись в искусственный спутник Земли. Как следствие, сила всемирного тяготения одинакова по своей природе и на Земле, и в космическом пространстве.

    fb.ru

    Определение закона всемирного тяготения, его формула и значение

    В физике существует огромное количество законов, терминов, определений и формул, которые объясняют все природные явления на земле и во Вселенной. Одним из основных является закон всемирного тяготения, который открыл великий и всем известный учёный Исаак Ньютон. Определение его выглядит вот так: два любых тела во Вселенной взаимно притягиваются друг к другу с определённой силой. Формула всемирного тяготения, которая и вычисляет эту силу, будет иметь вид: F = G*(m1*m2 / R*R).

    История открытия закона

    Очень долгое время люди изучали небо. Они хотели знать все его особенности, все законы Ньютона, царящие в недосягаемом космосе. По небу составляли календарь, вычисляли важные даты и даты религиозных праздников. Люди верили, что центром всей Вселенной является Солнце, вокруг которого вращаются все небесные субъекты.

    По-настоящему бурный научный интерес к космосу и вообще к астрономии появился в XVI веке. Тихо Браге, великий учёный астроном, во время своих исследований наблюдал за перемещениями планет, записывал и систематизировал наблюдения. К тому моменту, как Исаак Ньютон открыл закон силы всемирного тяготения, в мире уже утвердилась система Коперника, согласно которой все небесные тела вращаются вокруг звёзды по определённым орбитам. Великий учёный Кеплер на основе исследований Браге, открыл кинематические законы, которые характеризуют движение планет.

    Это интересно: энтропия – это что такое, где применяется термин?

    Основываясь на законах Кеплера, Исаак Ньютон открыл свой и выяснил, что:

    • Движения планет указывают на наличие центральной силы.
    • Центральная сила приводит к движению планет по орбитам.

    Учёный не просто открыл и опубликовал формулу своего закона, но разработал математическую модель, согласно которой можно вычислить самые сложные движения небесных тел.

    Разбор формулы

    В формуле закона Ньютона фигурируют пять переменных:

    • F – это сила, с которой притягиваются друг к другу два тела.
    • G – выведенная гравитационная постоянная. Значение этой переменной никогда не меняется и примерно равно 6,674 * 10^-11 м^3/(кг*с^2)
    • m1 и m2 – значение масс тел, между которыми происходит силовое взаимодействие.
    • R – значение расстояния между телами. В формуле его необходимо возвести в квадрат.

    Насколько точны вычисления

    Поскольку закон Исаака Ньютона относится к механике, вычисления не всегда максимально точно отражают реальную силу, с которой тела взаимодействуют. Более того, данная формула может использоваться только в двух случаях:

    • Когда два тела, между которыми происходит взаимодействие, являются однородными объектами.
    • Когда одно из тел является материальной точкой, а другое — однородным шаром.

    Это интересно: система отсчета в физике – определение и ее виды.

    Поле тяготения

    По третьему закону Ньютона мы пониманием, что силы взаимодействие двух тел одинаковы по значению, но противоположны по её направлению. Направление сил происходит строго вдоль прямой линии, которая соединяет центры масс двух взаимодействующих тел. Взаимодействие притяжения между телами происходит благодаря полю тяготения.

    Описание взаимодействия и гравитации

    Гравитация обладает полями очень дальнего взаимодействия. Другими словами, её влияние распространяется на очень большие, космических масштабов расстояния. Благодаря гравитации люди и все другие объекты притягиваются к земле, а земля и все планеты Солнечной системы притягиваются к Солнцу. Гравитация – это постоянное воздействие тел друг на друга, это явление, которое обусловливает закон всемирного тяготения. Очень важно понимать одну вещь — чем массивнее тело, тем большей гравитацией оно обладает. Земля имеет огромную массу, поэтому мы притягиваемся к ней, а Солнце весит в несколько миллионов раз больше, чем Земля, поэтому наша планета притягивается к звезде.

    Альберт Эйнштейн, один из величайших физиков, утверждал, что тяготение между двумя телами происходит из-за искривления пространства-времени. Учёный был уверен, что пространство, подобно ткани, может продавливаться, и чем массивнее объект, тем сильнее эту ткань он будет продавливать. Эйнштейн стал автором теории относительности, которая гласит, что всё во Вселенной относительно, даже такая величина, как время.

    Это интересно: первый закон Ньютона – формула и примеры.

    Пример расчётов

    Давайте попробуем, используя уже известную формулу закона всемирного тяготения, решить задачу по физике:

    • Радиус Земли примерно равен 6350 километрам. Ускорение свободного падения возьмём за 10. Необходимо найти массу Земли.

    Решение: Ускорение свободного падения у Земли будет равно G*M / R^2. Из этого уравнения мы можем выразить массу Земли: M = g*R^2 / G. Остаётся только подставить в формулу значения: M = 10*6350000^2 / 6, 7 * 10^-11. Чтобы не мучаться со степенями, приведём уравнение к виду:

    • M = 10* (6,4*10^6)^2 / 6, 7 * 10^-11.

    Посчитав, мы получаем, что масса Земли примерно равна 6*10^24 килограмм.

    obrazovanie.guru

    Закон всемирного тяготения

    Исаак Ньютон выдвинул предположение, что между любыми телами в природе существуют силы взаимного притяжения. Эти силы называют силами гравитации или силами всемирного тяготения. Сила несмирного тяготения проявляется в космосе, Солнечной системе и на Земле.

    Закон всемирного тяготения между любыми материальными точками существует сила взаимного притяжения, прямо пропорциональная произведению их масс и обратно пропорциональная квадрату расстояния между ними, действующая по линии, соединяющей эти точки

    Ньютон обобщил законы движения небесных тел и выяснил, что сила \( F \) равна:

    \[ F = G \dfrac{m_1 m_2}{R^2} \]

    где \( m_1 \) и \( m_2 \) - массы взаимодействующих тел, \( R \) — расстояние между ними, \( G \) — коэффициент пропорциональности, который называется гравитационной постоянной. Численное значение гравитационной постоянной опытным путем определил Кавендиш, измеряя силу взаимодействия между свинцовыми шарами.

    Физический смысл гравитационной постоянной вытекает из закона всемирного тяготения. Если \(m_1 = m_2 = 1 \text{кг} \), \( R = 1 \text{м} \), то \( G = F \), т. е. гравитационная постоянная равна силе, с которой притягиваются два тела по 1 кг на расстоянии 1 м.

    Численное значение:

    \( G = 6,67 \cdot{} 10^{-11} Н \cdot{} м^2/ кг^2 \) .

    Силы всемирного тяготения действуют между любыми телами в природе, но ощутимыми они становятся при больших массах (или если хотя бы масса одного из тел велика). Закон же всемирного тяготения выполняется только для материальных точек и шаров (в этом случае за расстояние принимается расстояние между центрами шаров).

    Сила тяжести

    Частным видом силы всемирного тяготения является сила притяжения тел к Земле (или к другой планете). Эту силу называют силой тяжести. Под действием этой силы все тела приобретают ускорение свбодного падения.

    Сила тяжести – это сила, с которой Земля притягивает тело, находящееся на её поверхности или вблизи этой поверхности.

    В соответствии со вторым законом Ньютона \( g = F_Т /m \) , следовательно, \( F_T = mg \) .

    Если M – масса Земли, R – ее радиус, m – масса данного тела, то сила тяжести равна

    \( F = G \dfrac{M}{R^2}m = mg \) .

    Сила тяжести всегда направлена к центру Земли. В зависимости от высоты \( h \) над поверхностью Земли и географической широты положения тела ускорение свободного падения приобретает различные значения. На поверхности Земли и в средних широтах ускорение свободного падения равно 9,831 м/с2.

    Вес тела

    В технике и быту широко используется понятие веса тела.

    Весом тела называют силу, с которой тело давит на опору или подвес в результате гравитационного притяжения к планете.

    Вес тела обозначается \( P \). Единица веса — ньютон (Н). Так как вес равен силе, с которой тело действует на опору, то в соответствии с третьим законом Ньютона по величине вес тела равен силе реакции опоры. Поэтому, чтобы найти вес тела, необходимо определить, чему равна сила реакции опоры.

    При этом предполагается, что тело неподвижно относительно опоры или подвеса.

    Вес тела и сила тяжести отличаются по своей природе: вес тела является проявлением действия межмолекулярных сил, а сила тяжести имеет гравитационную природу.

    Состояние тела, в котором его вес равен нулю, называют невесомостью. Состояние невесомости наблюдается в самолете или космическом корабле при движении с ускорением свободного падения независимо от направления и значения скорости их движения. За пределами земной атмосферы при выключении реактивных двигателей на космический корабль действует только сила всемирного тяготения. Под действием этой силы космический корабль и все тела, находящиеся в нем, движутся с одинаковым ускорением, по¬этому в корабле наблюдается состояние невесомости.

    В вашем браузере отключен Javascript.
    Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

    calcsbox.com

    Закон всемирного тяготения. Сила тяжести.

    ЗАКОН ВСЕМИРНОГО ТЯГОТЕНИЯ.

    Открыт Ньютоном в 1667 году на основе анализа движения планет (з-ны Кеплера) и, в частности, Луны. В этом же направлении работали Р.Гук (оспаривал приоритет) и Р.Боскович.

     

    Все тела взаимодействуют друг с другом с силой, прямо пропорциональной произведению масс этих тел и обратно пропорциональной квадрату расстояния между ними.

    Закон справедлив для:

    1. Однородных шаров.
    2. Для материальных точек.
    3. Для концентрических тел.

    Гравитационное взаимодействие существенно при больших массах.

    Примеры:      

     Притяжение электрона к протону в атоме водорода   » 2×10-11 Н.

     

    Тяготение между Землей и Луной» 2×1020 Н.

     

    Тяготение между Солнцем и Землей » 3,5×1022 Н.

    Применение:

    1. Закономерности движения планет и их спутников. Уточнены законы Кеплера.
    2. Космонавтика. Расчет движения спутников.

    Внимание!:

    1. Закон не объясняет причин тяготения, а только устанавливает количественные закономерности.
    2. В случае взаимодействия трех и более тел задачу о движении тел нельзя решить в общем виде. Требуется учитывать "возмущения", вызванные другими телами (открытие Нептуна Адамсом и Леверье в 1846 г. и Плутона в 1930).
    3. В случае тел произвольной формы требуется суммировать взаимодействия между малыми частями каждого тела.

    Анализ закона:

    1. Сила направлена вдоль прямой, соединяющей тела.
    2. G - постоянная всемирного тяготения (гравитационная постоянная). Числовое значение зависит от выбора системы единиц.

     

    В Международной системе единиц (СИ)        G=6,67.10-11.

    G=6,67.10-11

    Впервые прямые измерения гравитационной постоянной провел Г. Кавендиш с помощью крутильных весов в 1798 г.

    Пусть m1=m2=1 кгR=1 м, тогда: G=F (численно).

    Физический смысл гравитационной постоянной:

    гравитационная постоянная численно равна модулю силы тяготения, действующей между двумя точечными телами массой по 1 кг каждое, находящимися на расстоянии 1 м друг от друга.

    То, что гравитационная постоянная G очень мала показывает, что интенсивность гравитационного взаимодействия мала.

     

    СИЛА ТЯЖЕСТИ

    Сила тяжести - это сила притяжения тел к Земле (к планете).

     

     

     - из закона Всемирного тяготения. (где - масса планеты, m - масса тела, R - расстояние до центра планеты).

     - сила тяжести из второго закона Ньютона (где m - масса тела, g - ускорение силы тяжести).

      - ускорение силы тяжести не зависит от массы тела (опыты Галилея).

    g0=9,81 м/с2 - на поверхности Земли

    Если обозначить R0 радиус планеты, а - расстояние до тела от поверхности планеты, то: 

    Ускорение силы тяжести зависит:

    1. Массы планеты.
    2. Радиуса планеты.
    3. От высоты над поверхностью планеты.
    4. От географической широты (на полюсах - 9,83 м/с2. на экваторе - 9,79 м/с2.
    5. От залежей полезных ископаемых.

    www.eduspb.com

    Сила тяготения: сущность и практическое значение

    Абсолютно все материальные тела, как находящиеся непосредственно на Земле, так и существующие во Вселенной, постоянно притягиваются друг к другу. То, что это взаимодействие далеко не всегда можно увидеть или ощутить, говорит лишь о том, что притяжение это в данных конкретных случаях относительно слабое.

    Взаимодействие между материальными телами, которое состоит в их постоянном стремлении друг к другу, согласно основным физическим терминам, называется гравитационным, в то время как само явление притяжения – гравитацией.

    Явление гравитации возможно потому, что вокруг абсолютно любого материального тела (в том числе и вокруг человека) существует гравитационное поле. Это поле представляет собой особую разновидность материи, от действия которой ничем нельзя защититься и с помощью которой одно тело воздействует на другое, вызывая ускорение к центру источника этого поля. Именно гравитационное поле послужило основой сформулированного в 1682 году английским естествоиспытателем и философом И. Ньютоном закона всемирного тяготения.

    Основным понятием этого закона является сила тяготения, которая, как указывалось выше, есть не что иное, как результат воздействия гравитационного поля на то или иное материальное тело. Закон всемирного тяготения заключается в том, что сила, с которой происходит взаимное притяжение тел как на Земле, так и в космическом пространстве, напрямую зависит от произведения массы этих тел и находится в обратной зависимости от разделяющего данные объекты расстояния.

    Таким образом, сила тяготения, определение которой было дано еще самим Ньютоном, зависит только от двух основных факторов – массы взаимодействующих тел и расстояния между ними.

    Подтверждение тому, что данное явление зависит от массы вещества, можно найти, изучив взаимодействие Земли с окружающими ее телами. Вскоре после Ньютона другой известный ученый – Галилей – убедительно показал, что при свободном падении наша планета задает всем телам абсолютно одинаковое ускорение. Возможно это только в том случае, если сила тяготения тела к Земле напрямую зависит от массы этого тела. Ведь, действительно, в этом случае при увеличении массы в несколько раз ровно во столько же раз увеличится и сила действующего тяготения, ускорение же при этом останется неизменным.

    Если продолжить эту мысль и рассмотреть взаимодействие двух любых тел на поверхности "голубой планеты", то можно прийти к выводу, что на каждое из них со стороны нашей "матушки-Земли" действует одна и та же сила. При этом, опираясь на знаменитый закон, сформулированный все тем же Ньютоном, можно с уверенностью сказать, что величина этой силы будет напрямую зависеть от массы тела, поэтому сила тяготения между этими телами находится в прямой зависимости от произведения их масс.

    Чтобы доказать, что сила всемирного тяготения зависит от величины промежутка между телами, Ньютону пришлось привлечь в качестве "союзника" Луну. Уже давно установлено, что ускорение, с которым тела падают на Землю, приблизительно равно 9,8 м/с^2, а вот центростремительное ускорение Луны по отношению к нашей планете в результате ряда экспериментов оказалось равным всего лишь 0,0027 м/с^2.

    Таким образом, сила тяготения - это важнейшая физическая величина, объясняющая многие процессы, происходящие как на нашей планете, так и в окружающем космическом пространстве.

    fb.ru

    Сила тяготения

    Сила тяготения.

    Все тела Вселенной, как небесные, так и находящиеся на Земле, подвержены взаимному притяжению. Если же мы и не наблюдаем его между обычными предметами, окружающими нас в повседневной жизни (например, между книгами, тетрадями, мебелью и т.д.), то лишь потому, что оно в этих случаях слишком слабое.

    Взаимодействие, свойственное всем телам Вселенной и проявляющееся в их взаимном притяжении друг к другу, называют гравитационным, а само явление всемирного тяготения — грави­тацией.

    Гравитационное взаимодействие осуществляется посредством особого вида материи, называемого гравитационным полем. Такое поле существует вокруг любого тела, будь то планета, камень, человек или лист бумаги. При этом тело, создающее гравитационное поле, действует им на любое другое тело так, что у того появляется ускорение, всегда направленное к источнику поля. Появление такого ускорения и означает, что между телами возникает притяжение.

    Особенностью гравитационного поля является его всепроникающая спо­собность. Защититься от него ничем нельзя, оно проникает сквозь любые материалы.

    Гравитационные силы обусловлены взаимным притяжением тел и направлены вдоль линии, соединяющей взаимодействующии точки, поэтому называются центральными силами. Они зависят только от координат взаимодействующих точек и являются потенциальными силами.

    В 1682 г. И.Ньютон открыл закон всемирного тяготения:

    Все тела во Вселенной притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональ­ной квадрату расстояния между ними:

    .

    Коэффициент пропорциональности G  называется гравитационной постоянной, 

    G = 6,67*10-11(Н*м2)/кг2.

    Скорость, которую необходимо сообщить телу у поверхности планеты, чтобы оно стало ее спутником, движущимся по круговой орбите, называется первая космическая скорость. Любое тело может стать искусственным спутником другого тела, если сообщить ему необходимую скорость.

    ,

    где g – ускорение свободного падения на планете, R – радиус планеты. Для Земли первая космическая скорость составляет приблизительно 7,9 км/с.

    Сила, с которой тела притягиваются к Земле вследствие гравитационного взаимодействия, назы­вается силой тяжести. Согласно закону всемирного тяготения

     или ,

    где g — ускорение свободного падения, R — рассто­яние от центра Земли до тела, М — масса Земли, т — масса тела.

    Направлена сила тяжести вниз к центру Земли. В теле же она проходит через точку, которая называется центром тяжести.

    Весом тела называют силу, с которой тело дей­ствует на опору или подвес вследствие притяжения к Земле. Вес тела Р, в отличие от силы тяжести, приложен не к данному телу, а к его опоре или под­весу.

    Р =mg .

    В случае свободного падения вес тела равен нулю (это состояние невесомости), поскольку само тело и его опора движутся с одинаковым ускорением g . Несмотря на то, что в состоянии невесомости вес тела равен нулю, на него продолжает действовать сила тяжести, которая не равна нулю. Невесомость – состояние, возникающее при движении опоры с ускорением свободного падения. Вес тела при невесомости равен нулю.

    sfiz.ru