Скорость света как вычислили – Каким образом вычислили скорость света?

Каким образом вычислили скорость света?

Сейчас скорость света в вакууме c не измеряют. В стандартных единицах она представлена точным неизменным числом. С 1983 г. по международному соглашению метр был определен как длина пути, которую свет проходит в вакууме за время в 1/299 792 458 секунды. Из-за этого скорость света получается равной в точности 299 792,458 км/сек. Поскольку дюйм определен как 2,54 сантиметра, то и в неметрических единицах у нее тоже точное значение. Определить единицы длины таким образом имело смысл только потому, что скорость света в вакууме постоянна; а вот для подтверждения этого факта опыты все еще нужны (см. вопрос "Постоянна ли скорость света? "). Кроме того, опыты все еще нужны для измерения скорости света в средах, вроде воздуха и воды.

До семнадцатого века думали, что свет распространяется мгновенно. Это подтверждалось тем, что когда земная тень двигалась по луне во время лунного затмения, не наблюдалось никакой задержки в ее положении, как должно было быть, если бы c была конечной. Сейчас мы знаем, что свет просто движется слишком быстро, чтобы эту задержку заметить. В том, что скорость света бесконечна, сомневался еще Галилео Галилей. Он описал опыт по измерению скорости, в котором надо было открывать и закрывать свет маяка и наблюдать за этим с расстояния в несколько миль. Мы не знаем, попробовал ли Галилей осуществить свой опыт, но опять-таки, c слишком велика чтобы сработал и его способ.

Первое удачное измерение c провел в 1676 г. Оле Кристенсен Рёмер. Он заметил, что время между затмениями спутников Юпитера меньше когда Земля движется к Юпитеру, чем когда она движется от него. Он правильно подумал, что это происходит от того, что при изменении расстояния от Юпитера до Земли, меняется и время, которое нужно свету, чтобы его пройти. У него получилось значение в 214 000 км/сек что оказалось неточным из-за того, что в то время не были точно известны расстояния между планетами.

В 1728 г. Джеймс Бредли провел еще один опыт, наблюдая за аберрацией звезд: кажущимся смещением звезд, происходящим из-за вращения Земли вокруг Солнца. Он наблюдал звезду в Драконе и увидел, что ее положение меняется в течение года. Таким образом меняются положения всех звезд, что отличает это явление от другого - звездного параллакса, которое сказывается на близких зведах в большей степени. Чтобы представить себе, что такое звездная аберрация, можно представить себе как движение влияет на угол падения дождя. Если встать неподвижно под дождь, и если не будет ветра, то капли будут падать вертикально прямо на голову. Если же побежать, то окажется, что теперь капли летят в лицо. Бредли измерил этот угол для звездного света. Зная скорость движения Земли вокруг Солнца, он получил скорость света в 301 000 км/с.

В этой таблице приведены некоторые наилучшие измерения (по Фруму и Эссену) .

Год Автор Способ Результат (км/с) Погрешность
1676 Рёмер Спутники Юпитера 214 000
1726 Бредли Звездная аберрация 301 000
1849 Физо Шестерня 315 000
1862 Фуко Вращающееся зеркало 298 000 500
1879 Михельсон Вращающееся зеркало 299 910 50
1907 Роза, Дорси Электромагнитные постоянные 299 788 30
1926 Михельсон Вращающееся зеркало 299 796 4
1947 Эссен, Горден-Смит Кавитационный резонатор 299 792 3
1958 Фрум Радио-интерферометр 299 792,5 0,1
1983 Принятое значение 299 792,458 0

otvet.mail.ru

Как измеряли скорость света и каково ее реальное значение

Еще задолго до того, как ученые измерили скорость света, им пришлось изрядно потрудиться над определением самого понятия «свет». Одним из первых над этим задумался Аристотель, который считал свет некой подвижной субстанцией, распространяющейся в пространстве. Его древнеримский коллега и последователь Лукреций Кар настаивал на атомарной структуре света.

К XVII веку сформировались две основные теории природы света – корпускулярная и волновая. К приверженцам первой относился Ньютон. По его мнению, все источники света излучают мельчайшие частицы. В процессе «полета» они образуют светящиеся линии – лучи. Его оппонент, голландский ученый Христиан Гюйгенс настаивал на том, что свет – это разновидность волнового движения.

В результате многовековых споров ученые пришли к консенсусу: обе теории имеют право на жизнь, а свет – это видимый глазу спектр электромагнитных волн.

Немного истории. Как измеряли скорость света

Большинство ученых древности были убеждены в том, что скорость света бесконечна. Однако результаты исследований Галилея и Гука допускали ее предельность, что наглядно было подтверждено в XVII веке выдающимся датским астрономом и математиком Олафом Ремером.

Свои первые измерения он произвел, наблюдая за затмениями Ио – спутника Юпитера в тот момент, когда Юпитер и Земля располагались с противоположных сторон относительно Солнца. Ремер зафиксировал, что по мере отдаления Земли от Юпитера на расстояние, равное диаметру орбиты Земли, изменялось время запаздывания. Максимальное значение составило 22 минуты. В результате расчетов он получил скорость 220000 км/сек.

Через 50 лет в 1728 году, благодаря открытию аберрации, английской астроном Дж. Брэдли «уточнил» этот показатель до 308000 км/сек. Позже скорость света измерили французские астрофизики Франсуа Арго и Леон Фуко, получив на «выходе» 298000 км/сек. Еще более точную методику измерения предложил создатель интерферометра, известный американский физик Альберт Майкельсон.

Опыт Майкельсона по определению скорости света

Опыты продолжались с 1924 по 1927 год и состояли из 5 серий наблюдений. Суть эксперимента заключалась в следующем. На горе Вильсон в окрестностях Лос-Анжелеса были установлены источник света, зеркало и вращающаяся восьмигранная призма, а через 35 км на горе Сан-Антонио – отражающее зеркало. Вначале свет через линзу и щель попадал на вращающуюся с помощью высокоскоростного ротора (со скоростью 528 об/сек.) призму.

Участники опытов могли регулировать частоту вращения таким образом, чтобы изображение источника света было четко видно в окуляре. Поскольку расстояние между вершинами и частота вращения были известны, Майкельсон определил величину скорости света – 299796 км/сек.

Окончательно со скоростью света ученые определились во второй половине XX века, когда были созданы мазеры и лазеры, отличающиеся высочайшей стабильностью частоты излучения. К началу 70-х погрешность в измерениях снизилась до 1 км/сек. В результате по рекомендации XV Генеральной конференции по мерам и весам, состоявшейся в 1975 году, было решено считать, что скоростью света в вакууме отныне равна 299792,458 км/сек.

Достижима ли для нас скорость света?

Очевидно, что освоение дальних уголков Вселенной немыслимо без космических кораблей, летящих с огромной скоростью. Желательно со скоростью света. Но возможно ли такое?

Барьер скорости света – одно из следствий теории относительности. Как известно, увеличение скорости требует увеличения энергии. Скорость света потребует практически бесконечной энергии.

Увы, но законы физики категорически против этого. При скорости космического корабля в 300000 км/сек летящие навстречу ему частицы, к примеру, атомы водорода превращаются в смертельный источник мощнейшего излучения, равного 10000 зивертов/сек. Это примерно то же самое, что оказаться внутри Большого адронного коллайдера.

По мнению ученых Университета Джона Хопкинса, пока в природе не существует адекватной защиты от столь чудовищной космической радиации. Довершит разрушение корабля эрозия от воздействия межзвездной пыли.

Еще одна проблема световой скорости – замедление времени. Старость при этом станет намного более продолжительной. Также подвергнется искривлению зрительное поле, в результате чего траектория движения корабля будет проходить как бы внутри тоннеля, в конце которого экипаж увидит сияющую вспышку. Позади корабля останется абсолютная кромешная тьма.

Так что в ближайшем будущем человечеству придется ограничить свои скоростные «аппетиты» 10 % от скорости света. Это означает, что до ближайшей к Земле звезды – Проксимы Центавра (4,22 св. лет) придется лететь примерно 40 лет.

www.techcult.ru

Как измеряют скорость света?

В 1676 датский астроном Оле Рёмер сделал первую грубую оценку скорости света. Рёмер заметил слабое расхождение в продолжительности затмений спутников Юпитера и сделал вывод, что движение Земли, либо приближающейся к Юпитеру, либо удаляющейся от него, изменяло расстояние, которое приходилось проходить свету, отраженному от спутников.

Измерив величину этого расхождения, Рёмер подсчитал, что скорость света составляет 219911 километров в секунду. В более позднем эксперименте в 1849 году французский физик Арман Физо получил, что скорость света равна 312873 километрам в секунду.

Как показано на рисунке вверху, экспериментальная установка Физо состояла из источника света, полупрозрачного зеркала, которое отражает только половину падающего на него света, позволяя остальному проходить дальше вращающегося зубчатого колеса и неподвижного зеркала. Когда свет попадал на полупрозрачное зеркало, он отражался на зубчатое колесо, которое разделяло свет на пучки. Пройдя через систему фокусирующих линз, каждый световой пучок отражался от неподвижного зеркала и возвращался назад к зубчатому колесу. Проведя точные измерения скорости вращения, при которой зубчатое колесо блокировало отраженные пучки, Физо смог вычислить скорость света. Его коллега Жан Фуко год спустя усовершенствовал этот метод и получил, что скорость света составляет 297 878 километров в секунду. Это значение мало отличается от современной величины 299 792 километров в секунду, которая вычисляется путем перемножения длины волны и частоты лазерного излучения.

Эксперимент Физо

Как показано на рисунках вверху, свет проходит вперед и возвращается назад через один и тот же промежуток между зубцами колеса в том случае, если оно вращается медленно (нижний рисунок). Если колесо вращается быстро (верхний рисунок), соседний зубец блокирует возвращающийся свет.

Результаты Физо

Разместив зеркало на расстоянии 8,64 километра от зубчатого колеса, Физо определил, что скорость вращения зубчатого колеса, необходимая для блокирования возвращающегося светового пучка, составляла 12,6 оборотов в секунду. Зная эти цифры, а также расстояние, пройденное светом, и расстояние, которое должно было пройти зубчатое колесо, чтобы блокировать световой пучок (равное ширине промежутка между зубцами колеса), он вычислил, что световому пучку потребовалось 0,000055 секунды на то, чтобы пройти расстояние от зубчатого колеса к зеркалу и обратно. Разделив на это время общее расстояние 17,28 километра, пройденное светом, Физо получил для его скорости значение 312873 километра в секунду.

Эксперимент Фуко

В 1850 году французский физик Жан Фуко усовершенствовал технику Физо, заменив зубчатое колесо на вращающееся зеркало. Свет из источника доходил до наблюдателя только в том случае, когда зеркало совершало полный оборот на 360° за промежуток времени между отправлением и возвращением светового луча. Используя этот метод, Фуко получил для скорости света значение 297878 километров в секунду.

Финальный аккорд в измерениях скорости света.

Изобретение лазеров дало возможность физикам измерить скорость света с гораздо большей точностью, чем когда либо раньше. В 1972 году ученые из Национального института стандартов и технологии тщательно измерили длину волны и частоту лазерного луча и зафиксировали скорость света, произведение этих двух переменных, на величине 299792458 метров в секунду (186282 мили в секунду). Одним из последствий этого нового измерения было решение Генеральной конференции мер и весов принять в качестве эталонного метра (3,3 фута) расстояние, которое свет проходит за 1/299792458 секунды. Таким образом/скорость света, наиболее важная фундаментальная постоянная в физике, сейчас вычисляется с очень высокой достоверностью, а эталонный метр может быть определен гораздо более точно, чем когда-либо ранее.

 

information-technology.ru

Кто впервые определил скорость света?

В давние времена многие ученые считали скорость света бесконечной. Итальянский физик Галилео Галилей был одним из первых, кто попробовал ее измерить.

Первые попытки

В начале XVII столетия Галилей предпринял эксперимент, состоявший в том, что два человека с прикрытыми фонарями стояли на известном расстоянии друг от друга. Один человек подавал свет, и как только другой его видел, он раскрыл свой собственный фонарь. Галилей попытался записывать время между вспышками, но затея оказалась неудачной по причине слишком малого расстояния. Скорость света не могла быть измерена таким способом.

В 1676 году датский астроном Оле Ремер стал первым человеком, доказавшим, что свет распространяется с конечной скоростью. Он изучал затмения спутников Юпитера и заметил, что они происходят раньше или позже, чем ожидалось по расчетам (раньше, когда Земля ближе к Юпитеру, и позже, когда Земля дальше). Румер логично предположил, что запаздывание обусловлено временем, необходимым на преодоление расстояния.

На современном этапе

В последующие столетия ряд ученых работал над определением скорости света с использованием усовершенствованных приборов, изобретая все более точные методы расчетов. Французский физик Ипполит Физо произвел в 1849 году первые неастрономические измерения. В использованной методике применено вращающееся зубчатое колесо, через которое пропускался свет, и система зеркал, расположенная на значительном удалении.

Более точные расчеты скорости сделаны в 1920-е годы. Эксперименты американского физика Альберта Майкельсона проходили в горах Южной Калифорнии с применением восьмигранного вращающегося зеркального аппарата. В 1983 году Международная комиссия по мерам и весам официально признала величину скорости света в вакууме, которую сегодня применяют при расчетах все ученые мира. Она составляет 299 792 458 м/с (186,282 миль/сек). Таким образом, за одну секунду свет преодолевает расстояние, равное экватору Земли 7,5 раз.

fb.ru

Как измерили скорость света — Альтернативный взгляд Salik.biz


Альтернативный взгляд: Salik . biz


Скорость света c в вакууме не измерена. Она имеет точную фиксированную величину в стандартных единицах. По международному соглашению 1983 года метр определяется как длина пути, проходимая светом в вакууме за время 1/299792458 секунды. Скорость света в точности равна 299792458 м/с. Дюйм определён, как 2.54 сантиметра. Поэтому в неметрических единицах скорость света тоже имеет точное значение. Такое определение имеет смысл только потому, что скорость света в вакууме константа, а этот факт должен быть подтверждён экспериментально (см. Постоянна ли скорость света? ). Также экспериментально нужно определять скорость света в средах, таких как вода и воздух.

До семнадцатого века считалось, что свет распространяется мгновенно. Это подтверждали наблюдения лунного затмения. При конечной скорости света должна быть задержка между положением Земли относительно Луны и положением земной тени на поверхности Луны, но такой задержки не обнаружено. Сейчас мы знаем, что скорость света слишком велика, чтобы заметить задержку. Галилей сомневался в бесконечности скорости света. Он предложил способ её измерения путём закрывания и открывания фонаря расположенного на расстоянии в несколько миль. Неизвестно, пытался ли он провести такой эксперимент, но из-за очень большой скорости света измерение не могло быть удачным.

Первое успешное измерение величины c выполнил Олаф Ремер в 1676 году. Он заметил, что время между затмениями спутников Юпитера меньше, когда расстояние от Земли до Юпитера уменьшается, и больше, когда это расстояние увеличивается. Он понял, что это получается из-за изменения времени, которое нужно свету, чтобы пройти от Юпитера до Земли при изменении расстояния между ними. Он рассчитал, что скорость света равна 214000 км/с. Неточность объясняется тем, что расстояния между планетами в то время не были ещё хорошо определены.

В 1728 году Джеймс Брэдли оценил величину скорости света, наблюдая аберрацию звёзд (изменение видимого положения звезды, вызванное движением Земли вокруг Солнца). Он наблюдал одну из звезд в созвездии Дракона, и обнаружил, что её видимое положение изменяется в течение года. Этот эффект работает для всех звёзд, в отличие от параллакса, который заметнее для ближних звёзд. Аберрация аналогична влиянию движения на угол падения капель дождя. Если вы стоите, и нет ветра, то капли падают вертикально вам на голову. Если вы побежите, то окажется, что дождь идёт под углом и попадает вам в лицо. Брэдли измерил этот угол для света звёзд. Зная скорость движения Земли вокруг Солнца, он определил, что скорость света равна 301000 км/с.

Первое измерение c на Земле выполнил Арман Физо в 1849 году. Он использовал отражение света от зеркала, удалённого на расстояние 8 км. Луч света проходил через зазор между зубчиками быстро вращающегося колеса. Скорость вращения увеличивали, пока отражённый луч не становился виден в следующем зазоре. Рассчитанная величина c получилась равной 315000 км/с. Через год Леон Фуко улучшил этот метод, используя вращающееся зеркало, и получил гораздо более точное значение 298000 км/с. Улучшенный метод был достаточно точен, и с его помощью определили, что скорость света в воде меньше, чем в воздухе.

После того, как Максвелл опубликовал свою теорию электромагнетизма, стало возможно определять скорость света косвенно по значениям магнитной и электрической проницаемости. Первыми это сделали Вебер и Кольрауш в 1857 году. В 1907 году Роза и Дорси таким же способом получили 299788 км/с. В то время это было самое точное значение.

В дальнейшем дополнительные меры применялись для повышения точности. Например, учитывали коэффициент преломления света в воздухе. В 1958 Фрум получил значение 299792.5 км/с, используя микроволновый интерферометр и электрооптический затвор Керра. После 1970 года с использованием лазера с высокой стабильностью спектра и точных цезиевых часов стали возможны ещё более точные измерения. До этого времени точность эталона метра была выше, чем точность измерения скорости света. И вот скорость света стала известна с точностью плюс-минус 1 м/с. Теперь стало более практично в определении метра использовать скорость света. Эталон расстояния в 1 метр сейчас определяется с использованием атомных часов и лазера.

В таблице представлены основные этапы измерения скорости света (Фрум и Эссен) :

ДатаАвторыМетодкм/сПогрешность
1676Olaus RoemerСпутники Юпитера214 000 
1726James BradleyАберрация звёзд301 000 
1849Armand FizeauЗубчатое колесо315 000 
1862Leon FoucaultВращающееся зеркало298 000± 500
1879Albert MichelsonВращающееся зеркало299 910± 50
1907Rosa, DorsayЭМ константы299 788± 30
1926Albert MichelsonВращающееся зеркало299 796± 4
1947Essen, Gorden-SmithОбъёмный резонатор299 792± 3
1958K.D.FroomeРадио интерферометр299 792.5± 0.1
1973Evanson et alЛазерный интерферометр299 792.4574± 0.001
1983CGPMПринятое значение299 792.4580

Альтернативный взгляд: Salik . biz


salik.biz

Постоянна ли скорость света?

Чтобы определить скорость (пройденное расстояние / затраченное время) мы должны выбрать стандарты расстояния и времени. Разные стандарты могут дать разные результаты измерения скорости.

Постоянна ли скорость света?

Is The Speed of Light Constant?
Steve Carlip, Philip Gibbs


Этот вопрос можно понять по разному. Поэтому есть разные ответы.

В воздухе или воде другая скорость света?

Да. Свет замедляется в прозрачных веществах, таких как воздух, вода или стекло. Во сколько раз замедляется свет определяется коэффициентом рефракции (показателем преломления) среды. Он всегда больше единицы. Это открытие сделал Леон Фуко в 1850 году.

Когда говорят о "скорости света", то обычно имеют виду скорость света в вакууме. Именно её обозначают буквой c .

Постоянна ли скорость света в вакууме?

В 1983 году Генеральной конференцией по мерам и весам ( Conference Generale des Poids et Mesures ), принято следующее определение метра в системе СИ:

Метр - это длина пути света в вакууме за время 1/299 792 458 секунды

Этим же определено, что скорость света в вакууме точно равна 299792458 м/с. Краткий ответ на вопрос "Является ли c константой": Да, c константа по определению!

Но это не весь ответ. Система СИ очень практична. Её определения основаны на лучших известных методах измерения, и постоянно пересматриваются. На сегодня для самого точного измерения макроскопических расстояний посылают импульс света лазера и измеряют время, за которое свет проходит требуемое расстояние. Время измеряется атомными часами. Точность лучших атомных часов 1/10 13 . Именно такое определение метра обеспечивает минимальную погрешность измерения расстояния.

Определения системы СИ основаны на некоторых представлениях о законах физики. Например, предполагается, что частицы света фотоны не имеют массы. Если бы фотон имел небольшую массу покоя, то определение метра в системе СИ было бы не корректным, потому что скорость света зависела бы от длины волны. Из определения не следовало бы, что скорость света постоянна. Потребовалось бы уточнить определение метра, добавив цвет света, который должен использоваться.

Из экспериментов известно, что масса фотона очень мала или равна нулю. Возможная ненулевая масса фотона так мала, что она не имеет значения для определения метра в обозримом будущем. Нельзя показать, что это точный ноль, но в современных общепризнанных теориях это ноль. Если всё же не ноль, и скорость света не константа, то теоретически должна быть величина c - верхний предел скорости света в вакууме, и мы можем задать вопрос "является ли эта величина c константой?"

Раньше метр и секунда определялись разными способами основанными на лучших методах измерений. Определения могут измениться и в будущем. В 1939 году секунда определялась, как 1/84600 от средней длины суток, а метр, как расстояние между рисками на хранившемся во Франции стержне из сплава платины и иридия.

Сейчас при помощи атомных часов установлено, что средняя длина суток изменяется. Стандартное время уточняют, иногда добавляя или отнимая от него долю секунды. Скорость вращения Земли замедляется примерно на 1/100000 секунды в год из-за приливных сил между Землёй и Луной. В длине эталона метра могут быть ещё большие изменения из-за сжатия металла.

В результате в те времена скорость света, измеренная в единицах м/с, немного менялась со временем. Ясно, что изменения величины c были больше вызваны используемыми единицами измерения, чем непостоянством самой скорости света, но неправильно считать что скорость света теперь стала постоянной, только потому, что она константа в системе СИ.

Определения в системе СИ выявили, что для ответа на наш на вопрос, нужно уточнить, что мы имеем в виду, говоря о постоянстве скорости света. Мы должны задать определения единиц длины и времени для измерения величины c . В принципе, можно получить разные ответы при измерении в лаборатории и при использовании астрономических наблюдений. (Одно из первых измерений скорости света сделал в 1676 году Олаф Ремер на основе наблюдаемых изменении периода затмений спутников Юпитера.)

Для примера, мы могли бы взять определения, установленные между 1967 и 1983 годами. Тогда метр определялся, как 1650763.73 длины волны красно-оранжевого света источника на криптоне-86, а секунда была определена (как и сегодня) как 9192631770 периодов излучения, соответствующего переходу между двумя сверхтонкими уровнями цезия-133. В отличие от прежних определений, эти основаны на абсолютных физических величинах, и применимы всегда и везде. Можно ли сказать, что скорость света постоянна в этих единицах?

Из квантовой теории атома мы знаем, что частоты и длины волн в основном определяются постоянной Планка, зарядом электрона, массами электрона и ядра, и скоростью света. Из перечисленных параметров можно получить безразмерные величины, такие как постоянная тонкой структуры и отношение масс электрона и протона. Значения этих безразмерных величин не зависят от выбора единиц измерения. Поэтому очень важен вопрос, постоянны ли эти значения?

Если бы они изменялись, это повлияло бы не только на скорость света. Вся химия основана на этих значениях, от них зависят химические и механические свойства всех веществ. Скорость света изменялась бы по разному при выборе разных определений для единиц измерения. В таком случае было бы больше смысла приписать её изменение изменению заряда или массы электрона, чем изменению самой скорости света.

Достаточно надёжные наблюдения показывают, что значения этих безразмерных величин не изменялись в течении большей части жизни вселенной. See the FAQ article Have physical constants changed with time?

[На самом деле постоянная тонкой структуры зависит от масштаба энергии, но здесь мы имеем в виду её низкоэнергетический предел.]

Специальная теория относительности

Определение метра в системе СИ также основано на допущении о корректности теории относительности. Скорость света константа в соответствии с основным постулатом теории относительности. Это постулат содержит две идеи:

  • Скорость света не зависит от движения наблюдателя.
  • Скорость света не зависит от координат во времени и пространстве.

Идея о независимости скорости света от скорости наблюдателя противоречит интуиции. Некоторые люди даже не могут согласиться, что эта идея логична. В 1905 году Эйнштейн показал, что эта идея логически корректна, если отказаться от предположения об абсолютной природе пространства и времени.

В 1879 году считалось, что свет должен распространяться по некоторой среде в пространстве, как звук распространяется по воздуху и другим веществам. Майкельсон и Морли поставили эксперимент по обнаружению эфира путём наблюдения изменения скорости света при изменении направления движения Земли относительно Солнца в течение года. К их удивлению изменение скорости света не было обнаружено.

Фицджеральд предположил, что это результат сокращения длины экспериментальной установки при её движении в эфире на такую величину, из-за которой обнаружить изменение скорости света не удаётся. Лоренц распространил эту идею на темп хода часов, и доказал, что эфир обнаружить невозможно.

Эйнштейн считал, что изменение длины и хода часов лучше понимать, как изменения пространства и времени, а не изменения в физических объектах. От абсолютного пространства и времени, введённых Ньютоном, нужно отказаться. Вскоре после этого математик Минковский показал, что Эйнштейновскую теорию относительности можно трактовать в терминах четырёхмерной неевклидовой геометрии, рассматривая пространство и время как единую сущность - пространство-время .

Теория относительности не только математически обоснована, она также подтверждена многочисленными прямыми экспериментами. Позже опыты Майкельсона-Морли повторялись с большей точностью.

В 1925 году Дейтон Миллер объявил, что он обнаружил изменения в скорости света. Он даже получил награду за это открытие. В пятидесятых годах дополнительное рассмотрение его работы показало, что результаты, видимо, были связаны с дневными и сезонными изменениями температуры его экспериментальной установки.

Современные физические инструменты могли бы легко обнаружить движение эфира, если бы он существовал. Земля движется вокруг Солнца со скоростью около 30 км/с. Если бы скорости складывались, в соответствии с ньютоновской механикой, то последние 5 цифр в величине скорости света, постулируемой в системе СИ, были бы бессмысленными. Сегодня физики в CERN (Женева) и Fermilab (Чикаго) каждый день разгоняют частицы до скорости на волосок от скорости света. Любая зависимость скорости света от системы отсчёта была бы давно замечена, если только она не незаметно мала.

Что, если вместо теории об изменении пространства и времени, мы бы последовали теории Лоренца-Фицджеральда, которые предположили, что эфир существует, но его нельзя обнаружить из-за физических изменений в длине материальных объектов и в темпе хода часов?

Чтобы их теория согласовалась с наблюдениями, эфир должен быть необнаружим при помощи часов и линейки. Всё, включая наблюдателя, сокращалось бы и замедлялось точно на нужную величину. Такая теория могла бы делать те же предсказания для всех экспериментов, что и теория относительности. Тогда эфир был бы метафизической сущностью, если только не найдут какой-нибудь другой способ его обнаружения - такой способ пока никто не нашёл. С точки зрения Эйнштейна такая сущность была бы ненужным усложнением, лучше убрать её из теории.

Общая теория относительности

Эйнштейн разработал более общую теорию относительности, которая объяснила гравитацию в терминах искривления пространства-времени, и он говорил об изменении скорости света в этой новой теории. В 1920 году в книге "Relativity. The special and general theory" он пишет:
. .. в общей теорией относительности закон постоянства скорости света в вакууме, который является одним из двух фундаментальных допущений в специальной теории относительности, [. . .] не может быть безоговорочно справедлив. Искривление луча света может реализоваться только, когда скорость распространения света зависит от его положения.
Поскольку Эйнштейн говорил о векторе скорости (скорость и направление), а не просто о скорости, то не ясно, имел ли он в виду, что величина скорости изменяется, но ссылка на специальную теорию относительности говорит о том, что да, имел в виду. Такое понимание совершенно верно, и имеет физический смысл, но в соответствии с современной трактовкой скорость света постоянна и в общей теории относительности.

Сложность здесь в том, что скорость зависит от координат, и возможны разные толкования. Чтобы определить скорость (пройденное расстояние / затраченное время) мы должны вначале выбрать некоторые стандарты расстояния и времени. Разные стандарты могут дать разные результаты. Это применимо и к специальной теории относительности: если измерять скорость света в ускоряющейся системе отсчёта, то в общем случае она отличается от c .

В специальной теории относительности скорость света константа в любой инерциальной системе отсчёта. В общей теории относительности соответствующим обобщением является то, что скорость света константа в любой свободно падающей системе отсчёта в достаточно малой области, чтобы можно было пренебречь приливными силами. В приведённой цитате Эйнштейн не говорит о свободно падающей системе отсчёта. Он говорит о системе отсчёта, находящейся в покое относительно источника гравитации. В такой системе отсчёта скорость света может отличаться от c из-за влияния гравитации (кривизны постранства-времени) на часы и линейки.

Если общая теория относительности верна, то постоянство скорости света в инерциальной системе отсчёта - это тавтологическое следствие геометрии пространства-времени. Путешествие со скоростью c в инерциальной системе отсчёта - это путешествие вдоль прямой мировой линии на поверхности светового конуса.

Использование в системе СИ константы c , как коэффициента для связи метра и секунды полностью оправдано, как теоретически, так и практически потому, что c не только скорость света - это фундаментальное свойство геометрии пространства-времени.

Как и для специальной теории относительности, предсказания общей теории относительности подтверждены многими наблюдениями.

В итоге мы приходим к выводу, что скорость света постоянна не только в соответствии с наблюдениями. В свете хорошо проверенных физических теорий даже не имеет смысла говорить о её непостоянстве.

Steve Carlip, Philip Gibbs, 1997

Перевод Е.Корниенко

cyber-ek.ru

Как впервые была измерена скорость света — Славянская культура


Скорость света в вакууме составляет «ровно 299,792,458 метров в секунду». Мы сегодня можем с точностью назвать эту цифру потому, что скорость света в вакууме является универсальной постоянной, которая была измерена при помощи лазера. 
 
Когда речь идет об использовании данного инструмента в эксперименте, трудно поспорить с результатами. По поводу того, почему скорость света измеряется настолько целым числом, можно сказать, что это и неудивительно: длина метра определяется с помощью следующей константы: «Длина пути, проходимого светом в вакууме за промежуток времени 1/299,792,458 секунды».

Пару сотен лет назад было решено или, по крайней мере, предполагалось, что скорость света не имеет предела, хотя на самом деле она просто очень высока. Если бы от ответа зависело, станет ли она подругой Джастина Бибера, современная девушка-подросток ответила бы на этот вопрос так: «Скорость света чуть медленнее самой быстрой вещи во Вселенной».

Первым, кто обратился к вопросу о бесконечности скорости света, был философ Эмпедокл в пятом веке до н.э. Еще спустя столетие Аристотель не согласится с утверждением Эмпедокла, и спор будет длиться еще более 2,000 лет.

Голландский ученый Иссак Бэкмен был первым известным специалистом, кто в 1629 году придумал реальный эксперимент, чтобы проверить, есть ли у света какая-либо скорость. Живущий в столетии, далеком от изобретения лазера, Бэкмен понял, что основой эксперимента должен стать взрыв любого происхождения, поэтому в своих экспериментах он использовал детонирующий порох.

Бэкмен расположил зеркала на разном расстоянии от места взрыва и позже спросил у наблюдавших людей, видят ли они разницу в восприятии вспышки света, отражающейся в каждом из зеркал. Как можно догадаться, эксперимент был "неубедительным". Аналогичный, более известный опыт, но без использования взрыва, возможно, был проведен или, по крайней мере, придуман Галилео Галилеем только десятилетие спустя, в 1638 году. Галилей, как и Бэкмен, подозревал, что скорость света не бесконечна, и в некоторых своих работах делал ссылку на продолжение эксперимента, но уже с участием фонарей. В своем эксперименте (если он когда-либо его проводил!) он разместил два фонаря в миле друг от друга и пытался разглядеть, была ли задержка. Результат эксперимента тоже был неубедительным. Единственное, что Галилей смог предположить, так это, что если свет и не был бесконечным, то он был слишком быстрым, и опыты, проводимые в таком маленьком масштабе, были обречены на провал.

Так продолжалось до тех пор, пока к серьезным экспериментам со скоростью света не приступил датский астроном Олаф Ремер. Эксперименты с фонарями на холме, проводимые Галилеем, выглядели как научный проект школьника по сравнению с опытами Ремера. Он установил, что эксперимент должен проводиться в открытом космосе. Таким образом, он сосредоточил свое внимание на наблюдении за планетами и представил свои новаторские взгляды 22 августа 1676 года.

В частности, во время изучения одного из спутников Юпитера Ремер заметил, что время между затмениями изменяется в течение года (в зависимости от того, движется Юпитер в направлении Земли или от нее). Заинтересовавшись этим, Ремер делал тщательные записи о времени, когда спутник Ио, за которым он наблюдал, появлялся в поле зрения, и сравнивал, как это время соотносилось с моментом, когда он обычно ожидался. Через некоторое время Ремер заметил, что так же, как Земля, вращаясь вокруг Солнца, становится дальше от Юпитера, время, когда Ио попадает в поле зрения, будет сильнее отставать от времени, отмеченного ранее в записях. Ремер (правильно) предположил, что это происходит из-за того, что свету необходимо больше времени, чтобы пройти расстояние от Земли до Юпитера, если само расстояние увеличивается.

К сожалению, произведенные им расчеты погибли в огне во время пожара в Копенгагене в 1728 году, но у нас есть большой объем сведений о его открытии из историй современников, а также из докладов других ученых, использовавших расчеты Ремера в своих работах. Суть их в том, что с помощью многих расчетов, связанных с диаметром Земли и орбиты Юпитера, Ремер смог сделать вывод, что свету потребуется около 22 минут, чтобы пройти расстояние, равное диаметру орбиты Земли вокруг Солнца. Христиан Гюйгенс позже преобразует эти вычисления в более понятные цифры, показывая, что, по оценке Ремера, свет проходит около 220,000 километров в секунду. Эта цифра еще намного отличается от современных данных, но мы вскоре к ним вернемся.

Когда коллеги Ремера по университету выразили озабоченность по поводу его теории, он спокойно ответил им, что затмение 9 ноября 1676 года произойдет на 10 минут позднее. Когда так и случилось, сомневающиеся были поражены, ведь небесное тело подтвердило его теорию.

Коллеги Ремера были крайне изумлены его вычислениям, так как даже сегодня его оценка скорости света считается удивительно точной, учитывая, что она была сделана за 300 лет до того, как придумали лазеры и Интернет. И пусть 80,000 километров – это слишком медленно, но, беря во внимание состояние науки и технологий в то время, результат действительно впечатляет. К тому же Ремер полагался лишь на собственные догадки.

Что еще более удивляет, причина слишком маленькой скорости была не в расчетах Ремера, а в том, что не было точных данных об орбитах Земли и Юпитера в то время, когда он проводил свои вычисления. Это означает, что ученый ошибся только потому, что другие ученые были не так умны, как он. Так что, если вы поместите существующие современные данные в оригинальные вычисления, которые он проводил, расчеты скорости света будут верными.

И хотя вычисления были технически неправильными, а Джеймс Брэдли нашел более точное определение скорости света в 1729 году, Ремер вошел в историю как человек, доказавший первым, что скорость света можно определить. Он сделал это, наблюдая за движением гигантского газообразного шара, расположенного на расстоянии около 780 миллионов километров от Земли.
 

slavyanskaya-kultura.ru