Список законы физики – Основные понятия и законы физики и свойства элементарных частиц материи

10 научных законов и теорий, которые должен знать каждый

Ученые с планеты Земля используют массу инструментов, пытаясь описать то, как работает природа и вселенная в целом. Что они приходят к законам и теориям. В чем разница? Научный закон можно зачастую свести к математическому утверждению, вроде E = mc²; это утверждение базируется на эмпирических данных и его истинность, как правило, ограничивается определенным набором условий. В случае E = mc² — скорость света в вакууме.

Научная теория зачастую стремится синтезировать ряд фактов или наблюдений за конкретными явлениями. И в целом (но не всегда) выходит четкое и проверяемое утверждение относительно того, как функционирует природа. Совсем не обязательно сводить научную теорию к уравнению, но она на самом деле представляет собой нечто фундаментальное о работе природы.

Как законы, так и теории зависят от основных элементов научного метода, например, создании гипотез, проведения экспериментов, нахождения (или не нахождения) эмпирических данных и заключение выводов. В конце концов, ученые должны быть в состоянии повторить результаты, если эксперименту суждено стать основой для общепринятного закона или теории.

В этой статье мы рассмотрим десять научных законов и теорий, которые вы можете освежить в памяти, даже если вы, к примеру, не так часто обращаетесь к сканирующему электронному микроскопу. Начнем со взрыва и закончим неопределенностью.

Теория Большого Взрыва

Если и стоит знать хотя бы одну научную теорию, то пусть она объяснит, как вселенная достигла нынешнего своего состояния (или не достигла, если опровергнут). На основании исследований, проведенных Эдвином Хабблом, Жоржем Леметром и Альбертом Эйнштейном, теория Большого Взрыва постулирует, что Вселенная началась 14 миллиардов лет назад с массивного расширения. В какой-то момент Вселенная была заключена в одной точке и охватывала всю материю нынешней вселенной. Это движение продолжается и по сей день, а сама вселенная постоянно расширяется.

Теория Большого Взрыва получила широкую поддержку в научных кругах после того, как Арно Пензиас и Роберт Уилсон обнаружили космический микроволновый фон в 1965 году. С помощью радиотелескопов два астронома обнаружили космический шум, или статику, которая не рассеивается со временем. В сотрудничестве с принстонским исследователем Робертом Дике, пара ученых подтвердила гипотезу Дике о том, что первоначальный Большой Взрыв оставил после себя излучение низкого уровня, которое можно обнаружить по всей Вселенной.

Закон космического расширения Хаббла

Давайте на секунду задержим Эдвина Хаббла. В то время как в 1920-х годах бушевала Великая депрессия, Хаббл выступал  с новаторским астрономическим исследованием. Он не только доказал, что были и другие галактики помимо Млечного Пути, но также обнаружил, что эти галактики несутся прочь от нашей собственной, и это движение он назвал разбеганием.

Для того, чтобы количественно оценить скорость этого галактического движения, Хаббл предложил закон космического расширения, он же закон Хаббла. Уравнение выглядит так: скорость = H0 x расстояние. Скорость представляет собой скорость разбегания галактик; H0 — это постоянная Хаббла, или параметр, который показывает скорость расширения вселенной; расстоян

hi-news.ru

Тут физики!: Основные законы физики.

АМПЕРА ЗАКОН – закон взаимодействия двух проводников с токами; параллельные проводники с токами одного направления притягиваются, а с токами противоположного направления – отталкиваются. А.з. называют также закон, определяющий силу, действующую в магнитном поле на малый отрезок проводника с током. Открыт в 1820г. А.-М. Ампером.

ДЖОУЛЯ-ЛЕНЦА ЗАКОН – закон, описывающий тепловое действие электрического тока. Согласно Д. – Л.з. количество теплоты, выделяющееся в проводнике при прохождении по нему постоянного тока, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения.

ЗАРЯДА СОХРАНЕНИЯ ЗАКОН – один из фундаментальных законов природы: алгебраическая сумма электрических зарядов любой электрически изолированной системы остается неизменной. В электрически изолированной системе З.с.з. допускает появление новых заряженных частиц (напр., при электролитической диссоциации, ионизации газов, рождении пар частица – античастица и др.), но суммарный электрический заряд появившихся частиц всегда должен быть равен нулю.

КУЛОНА ЗАКОН – основной закон электростатики, выражающий зависимость силы взаимодействия двух неподвижных точечных зарядов от расстояния между ними: два неподвижных точечных заряда взаимодействуют с силой прямо пропорциональной произведению величин этих зарядов и обратно пропорциональной квадрату расстояния между ними и диэлектрической проницаемости среды, в которой находятся заряды. В СИ имеет вид: . Величина  числено равна силе, действующей между двумя точечными неподвижными зарядами по 1 Кл каждый, находящимися в вакууме на расстоянии 1 м друг от друга. К.з. является одним из экспериментальных обоснований 
электродинамики.

ЛЕВОЙ РУКИ ПРАВИЛО – правило, определяющее направление силы, которая действует на находящийся в магнитном поле проводник с током (или движущуюся заряженную частицу). Оно гласит: если левую руку расположить так, чтобы вытянутые пальцы показывали направление тока (скорости частицы), а силовые линии магнитного поля (линии магнитной индукции) входили в ладонь, то отставленный большой палец укажет направление силы, действующей на проводник (положительную частицу; в случае отрицательной частицы направление силы противоположно).

ЛЕНЦА ПРАВИЛО (ЗАКОН) – правило, определяющее направление индукционных токов, возникающих при электромагнитной индукции. Согласно Л.п. индукционный ток всегда имеет такое направление, что его собственный магнитный поток компенсирует изменения внешнего магнитного потока, вызвавшие этот ток. Л.п. – следствие закона сохранения энергии.

ОМА ЗАКОН – один из основных законов электрического тока: сила постоянного электрического тока на участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению. Справедлив для металлических проводников и электролитов, температура которых поддерживается постоянной. В случае полной цепи формулируется следующим образом: сила постоянного электрического тока в цепи прямо пропорциональна эдс источника тока и обратно пропорциональна полному сопротивлению электрической цепи.

ПРАВОЙ РУКИ ПРАВИЛО – правило, определяющее 1) направление индукционного тока в проводнике, движущемся в магнитном поле: если ладонь правой руки расположить так, чтобы в нее входили линии магнитной индукции, а отогнутый большой палец направить по движению

проводника, то четыре вытянутых пальца покажут направление индукционного тока; 2) направление линий магнитной индукции прямолинейного проводника с током: если большой палец правой руки расположить по направлению тока, то направление обхвата проводника четырьмя пальцами покажет направление линий магнитной индукции.

ФАРАДЕЯ ЗАКОНЫ – основные законы электролиза. Первый Фарадея закон: масса вещества, выделившегося на электроде при прохождении электрического тока, прямо пропорциональна количеству электричества (заряду), прошедшему через электролит (m=kq=kIt). Второй Ф.з.: отношение масс различных веществ, претерпевающих химические превращения на электродах при прохождении одинаковых электрических зарядов через электролит равно отношению химических эквивалентов. Установлены в 1833-34 г. М. Фарадеем. Обобщенный закон электролиза имеет вид: , где M – молярная (атомная) масса, z – валентность, F – Фарадея постоянная . Ф.п. равна произведению элементарного электрического заряда на постоянную Авогадро. F=e.NA. Определяет заряд, прохождение которого через электролит приводит к выделению на электроде 1 моля одновалентного вещества. F=(96484,56 0,27) Кл./моль. Названа в честь М.Фарадея. ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ ЗАКОН – закон, описывающий явление возникновения электрического поля при изменении магнитного (явление электромагнитной индукции): электродвижущая сила индукции прямо пропорциональна скорости изменения магнитного потока. Коэффициент пропорциональности определяется системой единиц, знак – 
Ленца правилом.
Формула в СИ: , где Ф – изменение магнитного потока, а t – промежуток времени, в течение которого это изменение произошло. Открыт М. Фарадеем.

tytphysiki.blogspot.com

Фундаментальные Законы Физики

Фундаментальные Законы Физики

Содержание

Введение

1.Законы Ньютона

1.1. Зако́н ине́рции (Первый закон Нью́тона)

1.2 Закон движения

1.3. Зако́н сохране́ния и́мпульса (Зако́н сохране́ния коли́чества движения)

1.4. Силы инерции

1.5. Закон вязкости

2.1. Законы термодинамики


    1. Закон Всемирного тяготения

3.2. Гравитационное взаимодействие

3.3. Небесная механика


    1. Сильные гравитационные поля

3.5. Современные классические теории гравитации

Заключение

Литература

Введение

Фундаментальные законы физики описывают важнейшие явления в природе и Вселенной. Они позволяют объяснить и даже предсказать многие явления. Так, опираясь только на фундаментальные законы классической физики (законы Ньютона, законы термодинамики и т.д.) человечество успешно осваивает космос, отправляет космические аппараты на другие планеты.

Я хочу рассмотреть в данной работе наиболее важные законы физики и их взаимосвязь. Наиболее важными законами классической механики являются законы Ньютона, которых достаточно, чтобы описать явления в макромире (без учёта высоких значений скорости или массы, что изучается в ОТО – Общей теории Относительности, или СТО – специальной теории относительности.)


  1. Законы Ньютона

Законы механики Ньютона – три закона, лежащие в основе т. н. классической механики. Сформулированы И. Ньютоном (1687). Первый закон: “Всякое тело продолжает удерживаться в своём состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние”. Второй закон: “Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует”. Третий закон: “Действию всегда есть равное и противоположное противодействие, иначе, взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны”.

1.1. Зако́н ине́рции (Первый закон Нью́тона): свободное тело, на которое не действуют силы со стороны других тел, находится в состоянии покоя или равномерного прямолинейного движения (понятие скорости здесь применяется к центру масс тела в случае непоступательного движения). Иными словами, телам свойственна ине́рция (от лат. inertia — “бездеятельность”, “косность”), то есть явление сохранения скорости, если внешние воздействия на них скомпенсированы.

Системы отсчёта, в которых выполняется закон инерции, называются инерциальными системами отсчёта (ИСО).

Впервые закон инерции был сформулирован Галилео Галилеем, который после множества опытов заключил, что для движения свободного тела с постоянной скоростью не нужно какой-либо внешней причины. До этого общепринятой была иная точка зрения (восходящая к Аристотелю): свободное тело находится в состоянии покоя, а для движения с постоянной скоростью необходимо приложение постоянной силы.

Впоследствии Ньютон сформулировал закон инерции в качестве первого из трёх своих знаменитых законов.

Принцип относительности Галилея: во всех инерциальных системах отсчета все физические процессы протекают одинаково. В системе отсчета, приведенной в состояние покоя или равномерного прямолинейного движения относительно инерциальной системы отсчета (условно — “покоящейся”) все процессы протекают точно так же, как и в покоящейся системе.

Следует отметить что понятие инерциальной системы отсчета — абстрактная модель (некий идеальный объект рассматриваемый вместо реального объекта. Примерами абстрактной модели служат абсолютно твердое тело или невесомая нить), реальные системы отсчета всегда связаны с каким-либо объектом и соответствие реально наблюдаемого движения тел в таких системах с результатами расчетов будет неполным.

1.2 Закон движения – математическая формулировка того, как движется тело или как происходит движение более общего вида.

В классической механике материальной точки закон движения представляет собой три зависимости трёх пространственных координат от времени, либо зависимость одной векторной величины (радиус-вектора) от времени, вида

.

Закон движения может быть найден, в зависимости от задачи, либо из дифференциальных законов механики, либо из интегральных.

Закон сохранения энергии — основной закон природы, заключающийся в том, что энергия замкнутой системы сохраняется во времени. Другими словами, энергия не может возникнуть из ничего и не может в никуда исчезнуть, она может только переходить из одной формы в другую.

Закон сохранения энергии встречается в различных разделах физики и проявляется в сохранении различных видов энергии. Например, в классической механике закон проявляется в сохранении механической энергии (суммы потенциальной и кинетической энергий). В термодинамике закон сохранения энергии называется первым началом термодинамики и говорит о сохранении энергии в сумме с тепловой энергией.

Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то правильнее называть его не законом, а принципом сохранения энергии.

Частный случай — Закон сохранения механической энергии — механическая энергия консервативной механической системы сохраняется во времени. Проще говоря, при отсутствии сил типа трения (диссипативных сил) механическая энергия не возникает из ничего и не может никуда исчезнуть.

Ек1+Еп1=Ек2+Еп2

Закон сохранения энергии — это интегральный закон. Это значит, что он складывается из действия дифференциальных законов и является свойством их совокупного действия. Например, иногда говорят, что невозможность создать вечный двигатель обусловлена законом сохранения энергии. Но это не так. На самом деле, в каждом проекте вечного двигателя срабатывает один из дифференциальных законов и именно он делает двигатель неработоспособным. Закон сохранения энергии просто обобщает этот факт.

Согласно теореме Нётер, закон сохранения механической энергии является следствием однородности времени.

1.3. Зако́н сохране́ния и́мпульса (Зако́н сохране́ния коли́чества движения) утверждает, что сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная.

Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил. В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Однако этот закон сохранения верен и в случаях, когда ньютоновская механика неприменима (релятивистская физика, квантовая механика).

Как и любой из законов сохранения, закон сохранения импульса описывает одну из фундаментальных симметрий, — однородность пространства

Третий закон Ньютона объясняет, что происходит с двумя взаимодействующими телами. Возьмём для примера замкнутую систему, состоящую из двух тел. Первое тело может действовать на второе с некоторой силой F12, а второе — на первое с силой F21. Как соотносятся силы? Третий закон Ньютона утверждает: сила действия равна по модулю и противоположна по направлению силе противодействия. Подчеркнём, что эти силы приложены к разным телам, а потому вовсе не компенсируются.

Сам закон:

Тела действуют друг на друга с силами, направленными вдоль одной и той же прямой, равными по модулю и противоположными по направлению: .

1.4. Силы инерции

Законы Ньютона, строго говоря, справедливы только в инерциальных системах отсчета. Если мы честно запишем уравнение движения тела в неинерциальной системе отсчета, то оно будет по виду отличаться от второго закона Ньютона. Однако часто, для упрощения рассмотрения, вводят некую фиктивную “силу инерции”, и тогда эти уравнения движения переписываются в виде, очень похожем на второй закон Ньютона. Математически здесь всё корректно (правильно), но с точки зрения физики новую фиктивную силу нельзя рассматривать как нечто реальное, как результат некоторого реального взаимодействия. Ещё раз подчеркнём: “сила инерции” — это лишь удобная параметризация того, как отличаются законы движения в инерциальной и неинерциальной системах отсчета.

1.5. Закон вязкости

Закон вязкости (внутреннего трения) Ньютона — математическое выражение, связывающее напряжение внутреннего трения τ (вязкость) и изменение скорости среды v в пространстве

(скорость деформации) для текучих тел (жидкостей и газов):

где величина η называется коэффициентом внутреннего трения или динамическим коэффициентом вязкости (единица СГС — пуаз). Кинематическим коэффициентом вязкости называется величина μ = η / ρ (единица СГС — Стокс, ρ − плотность среды).

Закон Ньютона может быть получен аналитически приемами физической кинетики, где вязкость рассматривается обычно одновременно с теплопроводностью и соответсвующим законом Фурье для теплопроводности. В кинетической теории газов коэффициент внутреннего трения вычисляется по формуле

где — средняя скорость теплового движения молекул, λ − средняя длина свободного пробега.

2.1. Законы термодинамики

Термодинамика основывается на трёх законах, которые сформулированы на основе экспериментальных данных и поэтому могут быть приняты как постулаты.

* 1-й закон термодинамики. Представляет собой формулировку обобщённого закона сохранения энергии для термодинамических процессов. В наиболее простой форме его можно записать как δQ = δA + d’U, где dU есть полный дифференциал внутренней энергии системы, а δQ и δA есть элементарное количество теплоты и элементарная работа, совершенная над системой соответственно. Нужно учитывать, что δA и δQ нельзя считать дифференциалами в обычном смысле этого понятия. С точки зрения квантовых представлений этот закон можно интерпретировать следующим образом: dU есть изменение энергии данной квантовой системы, δA есть изменение энергии системы, обусловленное изменением заселённости энергетических уровней системы, а δQ есть изменение энергии квантовой системы, обусловленное изменением структуры энергетических уровней.

* 2-й закон термодинамики: Второй закон термодинамики исключает возможность создания вечного двигателя второго рода. Имеется несколько различных, но в тоже время эквивалентных формулировок этого закона. 1 – Постулат Клаузиуса. Процесс, при котором не происходит других изменений, кроме передачи теплоты от горячего тела к холодному, является необратимым, то есть теплота не может перейти от холодного тела к горячему без каких либо других изменений в системе. Это явление называют рассеиванием или дисперсией энергии. 2 – Постулат Кельвина. Процесс, при котором работа переходит в теплоту без каких либо других изменений в системе, является необратимым, то есть невозможно превратить в работу всю теплоту, взятую от источника с однородной температурой, не проводя других изменений в системе.

* 3-й закон термодинамики: Теорема Нернста: Энтропия любой системы при абсолютном нуле температуры всегда может быть принята равной нулю

3.1. Закон всемирного тяготения

Гравита́ция (всеми́рное тяготе́ние, тяготе́ние) (от лат. gravitas – “тяжесть”) — дальнодействующее фундаментальное взаимодействие в природе, которому подвержены все материальные тела. По современным данным, является универсальным взаимодействием в том смысле, что, в отличие от любых других сил, всем без исключения телам независимо от их массы придаёт одинаковое ускорение. Главным образом гравитация играет определяющую роль в космических масштабах. Термин гравитация используется также как название раздела физики, изучающего гравитационное взаимодействие. Наиболее успешной современной физической теорией в классической физике, описывающей гравитацию, является общая теория относительности, квантовая теория гравитационного взаимодействия пока не построена.

3.2. Гравитационное взаимодействие

Гравитационное взаимодействие — одно из четырёх фундаментальных взаимодействий в нашем мире. В рамках классической механики, гравитационное взаимодействие описывается законом всемирного тяготения Ньютона, который гласит, что сила гравитационного притяжения между двумя материальными точками массы m1 и m2, разделёнными расстоянием R, есть

.

Здесь G — гравитационная постоянная, равная м³/(кг с²). Знак минус означает, что сила, действующая на тело, всегда равна по направлению радиус-вектору, направленному на тело, т. е. гравитационное взаимодействие приводит всегда к притяжению любых тел.

Поле тяжести потенциально. Это значит, что можно ввести потенциальную энергию гравитационного притяжения пары тел, и эта энергия не изменится после перемещения тел по замкнутому контуру. Потенциальность поля тяжести влечёт за собой закон сохранения суммы кинетической и потенциальной энергии и при изучении движения тел в поле тяжести часто существенно упрощает решение. В рамках ньютоновской механики гравитационное взаимодействие является дальнодействующим. Это означает, что как бы массивное тело ни двигалось, в любой точке пространства гравитационный потенциал зависит только от положения тела в данный момент времени.

Большие космические объекты — планеты, звезды и галактики имеют огромную массу и, следовательно, создают значительные гравитационные поля. Гравитация — слабейшее взаимодействие. Однако, поскольку оно действует на любых расстояниях и все массы положительны, это тем не менее очень важная сила во Вселенной. Для сравнения: полный электрический заряд этих тел ноль, так как вещество в целом электрически нейтрально. Также гравитация, в отличие от других взаимодействий, универсальна в действии на всю материю и энергию. Не обнаружены объекты, у которых вообще отсутствовало бы гравитационное взаимодействие.

Из-за глобального характера гравитация ответственна и за такие крупномасштабные эффекты, как структура галактик, черные дыры и расширение Вселенной, и за элементарные астрономические явления — орбиты планет, и за простое притяжение к поверхности Земли и падения тел.

Гравитация была первым взаимодействием, описанным математической теорией. В античные времена Аристотель считал, что объекты с разной массой падают с разной скоростью. Только много позже Галилео Галилей экспериментально определил, что это не так — если сопротивление воздуха устраняется, все тела ускоряются одинаково. Закон всеобщего тяготения Исаака Ньютона (1687) хорошо описывал общее поведение гравитации. В 1915 году Альберт Эйнштейн создал Общую теорию относительности, более точно описывающую гравитацию в терминах геометрии пространства-времени.

3.3. Небесная механика и некоторые её задачи

Раздел механики, изучающий движение тел в пустом пространстве только под действием гравитации называется небесной механикой.

Наиболее простой задачей небесной механики является гравитационное взаимодействие двух тел в пустом пространстве. Эта задача решается аналитически до конца; результат её решения часто формулируют в виде трёх законов Кеплера.

При увеличении количества взаимодействующих тел задача резко усложняется. Так, уже знаменитая задача трёх тел (то есть движение трёх тел с ненулевыми массами) не может быть решена аналитически в общем виде. При численном же решении, достаточно быстро наступает неустойчивость решений относительно начальных условий. В применении к Солнечной системе, эта неустойчивость не позволяет предсказать движение планет на масштабах, превышающих сотню миллионов лет.

В некоторых частных случаях удаётся найти приближённое решение. Наиболее важным является случай, когда масса одного тела существенно больше массы других тел (примеры: солнечная система и динамика колец Сатурна). В этом случае в первом приближении можно считать, что лёгкие тела не взаимодействуют друг с другом и движутся по кеплеровым траекториям вокруг массивного тела. Взаимодействия же между ними можно учитывать в рамках теории возмущений, и усреднять по времени. При этом могут возникать нетривиальные явления, такие как резонансы, аттракторы, хаотичность и т. д. Наглядный пример таких явлений — нетривиальная структурa колец Сатурна.

Несмотря на попытки описать поведение системы из большого числа притягивающихся тел примерно одинаковой массы, сделать этого не удаётся из-за явления динамического хаоса.

3.4. Сильные гравитационные поля

В сильных гравитационных полях, при движении с релятивистскими скоростями, начинают проявляться эффекты общей теории относительности:

отклонение закона тяготения от ньютоновского;

запаздывание потенциалов, связанное с конечной скоростью распространения гравитационных возмущений; появление гравитационных волн;

эффекты нелинейности: гравитационные волны имеют свойство взаимодействовать друг с другом, поэтому принцип суперпозиции волн в сильных полях уже не выполняется;

изменение геометрии пространства-времени;

возникновение черных дыр;

3.5. Современные классические теории гравитации

В связи с тем, что квантовые эффекты гравитации чрезвычайно малы даже в самых экстремальных экспериментальных и наблюдательных условиях, до сих пор не существует их надёжных наблюдений. Теоретические оценки показывают, что в подавляющем большинстве случаев можно ограничиться классическим описанием гравитационного взаимодействия.

Существует современная каноническая классическая теория гравитации — общая теория относительности, и множество уточняющих её гипотез и теорий различной степени разработанности, конкурирующих между собой (см. статью Альтернативные теории гравитации). Все эти теории дают очень похожие предсказания в рамках того приближения, в котором в настоящее время осуществляются экспериментальные тесты. Далее описаны несколько основных, наиболее хорошо разработанных или известных теорий гравитации.

Теория гравитации Ньютона основана на понятии силы тяготения, которая является дальнодействующей силой: она действует мгновенно на любом расстоянии. Этот мгновенный характер действия несовместим с полевой парадигмой современной физики и, в частности, со специальной теорией относительности, созданной в 1905 году Эйнштейном, вдохновлённым работами Пуанкаре и Лоренца. В теории Эйнштейна никакая информация не может распространиться быстрее скорости света в вакууме.

Математически сила гравитации Ньютона выводится из потенциальной энергии тела в гравитационном поле. Потенциал гравитации, соответствующий этой потенциальной энергии, подчиняется уравнению Пуассона, которое не инвариантно при преобразованиях Лоренца. Причина неинвариантности заключается в том, что энергия в специальной теории относительности не является скалярной величиной, а переходит во временну́ю компоненту 4-вектора. Векторная же теория гравитации оказывается аналогичной теории электромагнитного поля Максвелла и приводит к отрицательной энергии гравитационных волн, что связано с характером взаимодействия: одноимённые заряды (массы) в гравитации притягиваются, а не отталкиваются, как в электромагнетизме[6]. Таким образом, теория гравитации Ньютона несовместима с фундаментальным принципом специальной теории относительности — инвариантностью законов природы в любой инерциальной системе отсчёта, а прямое векторное обобщение теории Ньютона, впервые предложенное Пуанкаре в 1905 году в его работе “О динамике электрона”[7], приводит к физически неудовлетворительным результатам.

Эйнштейн начал поиск теории гравитации, которая была бы совместима с принципом инвариантности законов природы относительно любой системы отсчёта. Результатом этого поиска явилась общая теория относительности, основанная на принципе тождественности гравитационной и инертной массы.

Принцип равенства гравитационной и инертной масс

В классической механике Ньютона существует два понятия массы: первое относится ко второму закону Ньютона, а второе — к закону всемирного тяготения. Первая масса — инертная (или инерционная) — есть отношение негравитационной силы, действующей на тело, к его ускорению. Вторая масса — гравитационная (или, как её иногда называют, тяжёлая) — определяет силу притяжения тела другими телами и его собственную силу притяжения. Вообще говоря, эти две массы измеряются, как видно из описания, в различных экспериментах, поэтому совершенно не обязаны быть пропорциональными друг другу. Их строгая пропорциональность позволяет говорить о единой массе тела как в негравитационных, так и в гравитационных взаимодействиях. Подходящим выбором единиц можно сделать эти массы равными друг другу.

Сам принцип был выдвинут ещё Исааком Ньютоном, а равенство масс было проверено им экспериментально с относительной точностью 10−3. В конце XIX века более тонкие эксперименты провёл Этвёш, доведя точность проверки принципа до 10−9. В течение XX века экспериментальная техника позволила подтвердить равенство масс с относительной точностью 10−12—10−13 (Брагинский, Дикке и т. д.).

Иногда принцип равенства гравитационной и инертной масс называют слабым принципом эквивалентности. Альберт Эйнштейн положил его в основу общей теории относительности.

Принцип движения по геодезическим линиям

Если гравитационная масса точно равна инерционной, то в выражении для ускорения тела, на которое действуют лишь гравитационные силы, обе массы сокращаются. Поэтому ускорение тела, а следовательно, и его траектория не зависит от массы и внутреннего строения тела. Если же все тела в одной и той же точке пространства получают одинаковое ускорение, то это ускорение можно связать не со свойствами тел, а со свойствами самого пространства в этой точке.

Таким образом, описание гравитационного взаимодействия между телами можно свести к описанию пространства-времени, в котором двигаются тела. Естественно предположить, как это и сделал Эйнштейн, что тела двигаются по инерции, то есть так, что их ускорение в собственной системе отсчёта равно нулю. Траектории тел тогда будут геодезическими линиями, теория которых была разработана математиками ещё в XIX веке.

Сами геодезические линии можно найти, если задать в пространстве-времени аналог расстояния между двумя событиями, называемый по традиции интервалом или мировой функцией. Интервал в трёхмерном пространстве и одномерном времени (иными словами, в четырёхмерном пространстве-времени) задаётся 10 независимыми компонентами метрического тензора. Эти 10 чисел образуют метрику пространства. Она определяет “расстояние” между двумя бесконечно близкими точками пространства-времени в различных направлениях. Геодезические линии, соответствующие мировым линиям физических тел, скорость которых меньше скорости света, оказываются линиями наибольшего собственного времени, то есть времени, измеряемого часами, жёстко скреплёнными с телом, следующим по этой траектории.

Современные эксперименты подтверждают движение тел по геодезическим линиям с той же точностью, как и равенство гравитационной и инертной масс.

Заключение

Из законов Ньютона сразу же следуют некоторые интересные выводы. Так, третий закон Ньютона говорит, что, как бы тела ни взаимодействовали, они не могут изменить свой суммарный импульс: возникает закон сохранения импульса. Далее, надо потребовать, чтобы потенциал взаимодействия двух тел зависел только от модуля разности координат этих тел U(|r1-r2|). Тогда возникает закон сохранения суммарной механической энергии взаимодействующих тел:

Законы Ньютона являются основными законами механики. Из них могут быть выведены все остальные законы механики.

В то же время, Законы Ньютона — не самый глубокий уровень формулирования классической механики. В рамках лагранжевой механики имеется одна-единственная формула (запись механического действия) и один-единственный постулат (тела движутся так, чтобы действие было минимальным), и из этого можно вывести все законы Ньютона. Более того, в рамках лагранжева формализма можно легко рассмотреть гипотетические ситуации, в которых действие имеет какой-либо другой вид. При этом уравнения движения станут уже непохожими на законы Ньютона, но сама классическая механика будет по-прежнему применима…

Решение уравнений движения

Уравнение F = ma (то есть второй закон Ньютона) является дифференциальным уравнением: ускорение есть вторая производная от координаты по времени. Это значит, что эволюцию механической системы во времени можно однозначно определить, если задать её начальные координаты и начальные скорости. Заметим, что если бы уравнения, описывающие наш мир, были бы уравнениями первого порядка, то из нашего мира исчезли бы такие явления, как инерция, колебания, волны.

Изучение Фундаментальных законов физики подтверждает, что наука поступательно развивается: каждый этап, каждый открытый закон является этапом в развитии, но не даёт окончательных ответов на все вопросы.

Литература:


  1. Большая Советская Энциклопедия (Ньютона Законы механики и др. статьи), 1977, “Советская Энциклопедия”

  2. Онлайн-энциклопедия www.wikipedia.com

3. Библиотека ” Детлаф А.А., Яворский Б.М., Милковская Л.Б. — Курс физики (том 1). Механика. Основы молекулярной физики и термодинамики

Федеральное агентство по образованию

ГОУ ВПО Рыбинская государственная авиационная академия им. П.А.Соловьёва

Кафедра “Общей и технической физики”

РЕФЕРАТ

По дисциплине “Концепции современного естествознания”

Тема: “Фундаментальные законы физики”

Группа ЗКС-07


Студент Балшин А.Н.

Преподаватель: Василюк О.В.

Оценка

Подпись

Дата

– Рыбинск-2008 –

koledj.ru

ОСНОВНЫЕ ЗАКОНЫ ФИЗИКИ

Второй закон термодинамики 

Согласно этому закону процесс, единственным результатом которого является передача энергии в форме теплоты от более холодного тела к более нагретому, невозможен без изменений в самой системе и окружающей среде. Второй закон термодинамики выражает стремление системы, состоящей из большого количества хаотически движущихся частиц, к самопроизвольному переходу из состояний менее вероятных в состояния более вероятные. Запрещает создание вечного двигателя второго рода. 

  

Закон Авогардо
В равных объемах идеальных газов при одинаковой температуре и давлении содержится одинаковое число молекул. Закон открыт в 1811 году итальянским физиком А. Авогадро (1776–1856). 

  

Закон Ампера
Закон взаимодействия двух токов, текущих в проводниках, расположенных на небольшом расстоянии друг от друга гласит: параллельные проводники с токами одного направления притягиваются, а с токами противоположного направления отталкиваются. Закон открыт в 1820 году А. М. Ампером. 

 

 Закон Архимеда 

Закон гидро– и аэростатики: на тело, погруженное в жидкость или газ, действует выталкивающая сила, направленная вертикально вверх, равная весу жидкости или газа, вытесненного телом, и приложенная в центре тяжести погруженной части тела. FA = gV, где g – плотность жидкости или газа, V – объем погруженной части тела. Иначе закон можно сформулировать следующим образом: тело, погруженное в жидкость или газ, теряет в своем весе столько, сколько весит вытесненная им жидкость (или газ). Тогда P = mg – FA. Закон открыт древнегреческим ученым Архимедом в 212 году до н. э. Он является основой теории плавания тел.

 Закон всемирного тяготения 

Закон всемирного тяготения, или закон тяготения Ньютона: все тела притягиваются друг к другу с силой, прямо пропорциональной произведению масс этих тел и обратно пропорциональной квадрату расстояния между ними. 

 

 Закон Бойля – Мариотта 

Один из законов идеального газа: при постоянной температуре произведение давления газа на его объем есть величина постоянная. Формула: pV = const. Описывает изотермический процесс. 

  

Закон Гука
Согласно этому закону упругие деформации твердого тела прямо пропорциональны вызывающим их внешним воздействиям. 

  

Закон Дальтона
Один из основных газовых законов: давление смеси химически не взаимодействующих идеальных газов равно сумме парциальных давлений этих газов. Открыт в 1801 году Дж. Дальтоном. 

 

 Закон Джоуля – Ленца 

Описывает тепловое действие электрического тока: количество теплоты, выделяющееся в проводнике при прохождении по нему постоянного тока, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения. Открыт Джоулем и Ленцем независимо друг от друга в XIX веке. 

 

 Закон Кулона 

Основной закон электростатики, выражающий зависимость силы взаимодействия двух неподвижных точечных зарядов от расстояния между ними: два неподвижных точечных заряда взаимодействуют с силой, прямо пропорциональной произведению величин этих зарядов и обратно пропорциональной квадрату расстояния между ними и диэлектрической проницаемости среды, в которой находятся заряды. Величина численно равна силе, действующей между двумя расположенными в вакууме на расстоянии 1 м друг от друга точечными неподвижными зарядами по 1 Кл каждый. Закон Кулона является одним из экспериментальных обоснований электродинамики. Открыт в 1785 году. 

  

Закон Ленца
Согласно этому закону индукционный ток всегда имеет такое направление, что его собственный магнитный поток компенсирует изменения внешнего магнитного потока, вызвавшие этот ток. Закон Ленца – следствие закона сохранения энергии. Установлен в 1833 году Э. Х. Ленцем. 

 

 Закон Ома 

Один из основных законов электрического тока: сила постоянного электрического тока на участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению. Справедлив для металлических проводников и электролитов, температура которых поддерживается постоянной. В случае полной цепи формулируется следующим образом: сила постоянного электрического тока в цепи прямо пропорциональна эдс источника тока и обратно пропорциональна полному сопротивлению электрической цепи. Открыт в 1826 году Г. С. Омом. 

 

 Закон отражения волн 

Луч падающий, луч отраженный и перпендикуляр, восставленный в точку падения луча, лежат в одной плоскости, причем угол падения равен углу преломления. Закон справедлив для зеркального отражения. 

  

Закон Паскаля
Основной закон гидростатики: давление, производимое внешними силами на поверхность жидкости или газа, передается одинаково по всем направлениям. 

 

 Закон преломления света 

Луч падающий, луч преломленный и перпендикуляр, восставленный в точку падения луча, лежат в одной плоскости, причем для данных двух сред отношение синуса угла падения к синусу угла преломления есть величина постоянная, называемая относительным показателем преломления второй среды относительно первой. 

 

 Закон прямолинейного распространения света 

Закон геометрической оптики, заключающийся в том, что в однородной среде свет распространяется прямолинейно. Объясняет, например, образование тени и полутени. 

  

Закон сохранения заряда
Один из фундаментальных законов природы: алгебраическая сумма электрических зарядов любой электрически изолированной системы остается неизменной. В электрически изолированной системе закон сохранения заряда допускает появление новых заряженных частиц, но суммарный электрический заряд появившихся частиц всегда должен быть равен нулю. 

  

Закон сохранения импульса
Один из основных законов механики: импульс любой замкнутой системы при всех процессах, происходящих в системе, остается постоянным (сохраняется) и может только перераспределяться между частями системы в результате их взаимодействия. 

  

Закон Шарля
Один из основных газовых законов: давление данной массы идеального газа при постоянном объеме прямо пропорционально температуре. 

 

 Закон электромагнитной индукции 

Описывает явление возникновения электрического поля при изменении магнитного (явление электромагнитной индукции): электродвижущая сила индукции прямо пропорциональна скорости изменения магнитного потока. Коэффициент пропорциональности определяется системой единиц, знак – правилом Ленца. Закон открыт М. Фарадеем. 

  

Закон сохранения и превращения энергии
Общий закон природы: энергия любой замкнутой системы при всех процессах, происходящих в системе, остается постоянной (сохраняется). Энергия может только превращаться из одной формы в другую и перераспределяться между частями системы. Для незамкнутой системы увеличение (уменьшение) ее энергии равно убыли (возрастанию) энергии взаимодействующих с ней тел и физических полей. 

  

Законы Ньютона
В основе классической механики лежат 3 закона Ньютона. Первый закон Ньютона (закон инерции): материальная точка находится в состоянии прямолинейного и равномерного движения или покоя, если на нее не действуют другие тела или действие этих тел скомпенсировано. Второй закон Ньютона (основной закон динамики): ускорение, полученное телом, прямо пропорционально равнодействующей всех сил, действующих на тело, и обратно пропорционально массе тела. Третий закон Ньютона: действия двух тел всегда равны по величине и направлены в противоположные стороны. 

  

Законы Фарадея
Первый закон Фарадея: масса вещества, выделившегося на электроде при прохождении электрического тока, прямо пропорциональна количеству электричества (заряду), прошедшему через электролит (m = kq = kIt). Второй закон Фарадея: отношение масс различных веществ, претерпевающих химические превращения на электродах при прохождении одинаковых электрических зарядов через электролит, равно отношению химических эквивалентов. Законы установлены в 1833–1834 годах М. Фарадеем.  

  

Первый закон термодинамики
Первый закон термодинамики является законом сохранения энергии для термодинамической системы: количество теплоты Q, сообщенное системе, расходуется на изменение внутренней энергии системы U и совершение системой работы A против внешних сил. Формула Q = U + A лежит в основе работы тепловых машин. 

 

 Постулаты Бора 

Первый постулат Бора: атомная система устойчива только в стационарных состояниях, которые соответствуют дискретной последовательности значений энергии атома. Каждое изменение этой энергии связано с полным переходом атома из одного стационарного состояния в другое. Второй постулат Бора: поглощение и излучение энергии атомом происходит по закону, согласно которому связанное с переходом излучение является монохроматическим и обладает частотой: h = Ei – Ek, где h – постоянная Планка, а Ei и Ek – энергии атома в стационарных состояниях. 

 

Правило левой руки
Определяет направление силы, которая действует на находящийся в магнитном поле проводник с током (или движущуюся заряженную частицу). Правило гласит: если левую руку расположить так, чтобы вытянутые пальцы показывали направление тока (скорости частицы), а силовые линии магнитного поля (линии магнитной индукции) входили в ладонь, то отставленный большой палец укажет направление силы, действующей на проводник (положительную частицу; в случае отрицательной частицы направление силы противоположно). 

 

Правило правой руки
Определяет направление индукционного тока в проводнике, движущемся в магнитном поле: если ладонь правой руки расположить так, чтобы в нее входили линии магнитной индукции, а отогнутый большой палец направить по движению проводника, то четыре вытянутых пальца покажут направление индукционного тока. 

 

Принцип Гюйгенса
Позволяет определить положение фронта волны в любой момент времени. Согласно принципу Гюйгенса, все точки, через которые проходит фронт волны в момент времени t, являются источниками вторичных сферических волн, а искомое положение фронта волны в момент времени t совпадает с поверхностью, огибающей все вторичные волны. Принцип Гюйгенса объясняет законы отражения и преломления света. 

  

Принцип Гюйгенса – Френеля
Согласно данному принципу в любой точке, находящейся вне произвольной замкнутой поверхности, охватывающей точечный источник света, световая волна, возбуждаемая этим источником, может быть представлена как результат интерференции вторичных волн, излучаемых всеми точками указанной замкнутой поверхности. Принцип позволяет решать простейшие задачи дифракции света. 

  

Принцип относительности
В любых инерциальных системах отсчета все физические (механические, электромагнитные и др.) явления при одних и тех же условиях протекают одинаково. Является обобщением принципа относительности Галилея. 

 

 Принцип относительности Галилея 

Механический принцип относительности, или принцип классической механики: в любых инерциальных системах отсчета все механические явления протекают одинаково при одних и тех же условиях. 

  

Звук
Звуком называют упругие волны, которые распространяются в жидкостях, газах и твердых телах и воспринимаются ухом человека и животных. Человек обладает способностью слышать звуки с частотами в пределах 16–20 кГц. Звук с частотами до 16 Гц принято называть инфразвуком; с частотами 2·104–109 Гц – ультразвуком, а с частотами 109–1013 Гц – гиперзвуком. Наука, изучающая звуки, носит наименование «акустика». 

  

Свет
Светом в узком смысле термина называют электромагнитные волны в интервале частот, воспринимаемых глазом человека: 7,5 ‘1014–4,3 ‘1014 Гц. Длина волн варьируется от 760 нм (красный свет) до 380 нм (фиолетовый свет).

znaew.ru

Основные законы котической физики — Всё самое интересное!

В разделе: Тотальная Кошка | | Автор-компилятор статьи: Лев Александрович Дебаркадер

Продолжаем раздел “Тотальная кошка” и статью “Котическая физика (или физическая котика)” продолжением — Основные законы котической физики. Где опишем, соответственно, основные законы физической котики на наглядных примерах. 

Основные законы котической физики — интересные моменты вашему вниманию!

Закон инерции. Кошка, находящаяся в состоянии покоя, стремится остаться в состоянии покоя, если на нее не воздействует внешняя сила, как то: звук открываемой банки с кормом, открываемой дверцы холодильника,  или пробегающая мышь. Или вкусная еда, которая находится без присмотра.

Закон движения. Кошка будет двигаться по прямолинейной траектории, пока не появится достаточно веская причина свернуть. Например, звуки приближающейся кормёжки. Кстати, твёрдые предметы на пути кошки веской причиной для поворота не считаются. 

Закон притяжения. Темная кошачья шерсть притягивается только светлой тканью и, наоборот, светлая кошачья шерсть притягивается только темной тканью, причем сила притяжения прямо пропорциональна усилиям, затрачиваемым на чистку.

Закон термодинамики. Тепло переходит от тела с большей температурой к телу с меньшей температурой, за исключением случая кошки, когда все тепло переходит к кошке (на батарее).

Закон растяжения. Длина, на которую растягивается кошка, прямо пропорциональна продолжительности сна, непосредственно предшествовавшего растягиванию.

Закон сна. Любая кошка всегда стремиться спать с человеком в наиболее неудобном для человека положении.

Закон удлинения тела. Удлинение кошачьего тела всегда достаточно для того, чтобы достичь любой поверхности, содержащей нечто интересное для кошки.

Закон ускорения. Кошка движется с постоянным ускорением, пока не захочет остановиться.

 

Закон конфигурации ковра. Ни один ковер не может сохранять свою нормальное плоское состояние в течение длительного промежутка времени. 

Закон сопротивления. Сопротивление кошки изменяется прямо пропорционально желанию человека заставить ее сделать что-либо. Непроверенное следствие закона сопротивления: если человек будет сильно НЕ хотеть, чтобы кошка что-то сделала, то кошка это обязательно сделает. Надо будет проверить по отношению к таблеткам. 

Закон стола. Кошка всегда присутствует у стола, пока на нем находится еда.

Первый закон сохранения энергии. Поскольку в отсутствие внешних сил полная энергия системы остается постоянной, любая кошка стремится затратить как можно меньше энергии.

Второй закон сохранения энергии. Кошка стремится сохранять энергию путем продолжительного сна.

Закон холодильника. Продолжительность времени наблюдения за холодильником прямо пропорциональна вероятности получения из него еды.

Закон электрического одеяла. При включении электрического одеяла кошка движется по направлению к кровати со скоростью, близкой к скорости света.

Закон случайного поиска места. Кошка всегда ищет и, как правило, занимает самое удобное место в любой данной комнате.

 

Закон смены мебели. Стремление кошки точить когти о предмет мебели прямо пропорционально его стоимости.

Закон замешательства. Раздражение кошки возрастает прямо пропорционально произведению ее замешательства на продолжительность смеха человека.

Закон поглощения молока. При наличии побудительных причин масса молока, выпитого кошкой, может достичь квадрата массы ее тела. И следствие закона поглощения молока: кошка, погруженная в молоко, вытесняет количество молока, равное ее объему минус объем поглощенного молока.  

Закон приземления. Кошка всегда приземляется в самом удобном месте.

Закон отсутствия интереса. Степень интереса кошки изменяется обратно пропорционально количеству усилий, прилагаемых с целью ее заинтересовать.

Закон отбрасывания таблетки. Любая таблетка, даваемая кошке, обладает потенциальной энергией, достаточной для развития второй космической скорости.

Закон заполнения емкостей. Любая подходящая емкость в данной комнате будет заполнена кошкой в пределах ближайшей возможной наносекунды.

 

Закон состава. Кошка состоит из материи, антиматерии и наплевательства.

Закон выборочного слушания. Кошка способна услышать звук открывающейся в километре от нее банки с кормом, но не способна услышать окрик хозяина на расстоянии двух метров.

Закон отсутствия видимости. Кошка полагает, что объект, находящийся вне поля ее зрения, неспособен ее увидеть.

Закон равноудаленного расположения. Все кошки, находящиеся в данной комнате, располагаются на равных расстояниях друг от друга и от центра комнаты.

Закон пространственно-временного континуума. При наличии неограниченного количества времени кошка может оказаться в любой точке пространства.

Закон сгущения массы. Масса кошки возрастает прямо пропорционально удобству занимаемых ею коленей.

Закон относительности. Вероятность предсказания действительного местонахождения кошки никогда не достигает единицы.

Закон дверей. Кошка, находящаяся внутри квартиры, стремится наружу, тогда как кошка, находящаяся вне квартиры, стремится внутрь.

Закон послушания. Пока не открыт.

 Итак, вы теперь знаете основные законы котической физики. Возможно, вы даже сможете их как-то применить 🙂

По материалам http://nnm.ru/blogs/a92/kotofizika/

interesko.info

Законы физики – это… Что такое Законы физики?


  • Законы Хивела Доброго
  • Законы эволюции

Смотреть что такое “Законы физики” в других словарях:

  • Законы Ньютона —     Классическая механика …   Википедия

  • ЗАКОНЫ И ОБЪЯСНЕНИЯ В СОЦИОЛОГИИ — текст У. Аутвейта . По мысли автора, вокруг названного вопроса ведется два диспута. Первый это диспут между философами науки о том, что такое научные законы. Второй это спор о том, полезны ли такие законы для социологии и если да, то каково их… …   Социология: Энциклопедия

  • Законы Паркинсона — Закон Паркинсона эмпирический закон, гласящий, что любая работа увеличивается в объёме, чтобы заполнить всё отпущенное на неё время. Сформулирован историком Сирилом Норткотом Паркинсоном в его сатирической статье, напечатанной в британском… …   Википедия

  • Законы Мерфи — Закон Мёрфи (англ. Murphy s law) универсальный философский принцип, состоящий в том, что если есть вероятность того, что какая нибудь неприятность может случиться, то она обязательно произойдёт. Иностранный аналог русского «закона подлости» и… …   Википедия

  • Законы термодинамики — Начала термодинамики Статья является частью серии «Термодинамика». Нулевое начало термодинамики Первое начало термодинамики Второе начало термодинамики Третье начало термодинамики Разделы термодинамики …   Википедия

  • Нерешённые проблемы современной физики — Приведён список нерешённых проблем современной физики[1]. Некоторые из этих проблем носят теоретический характер, что означает, что существующие теории оказываются неспособными объяснить определённые наблюдаемые явления или экспериментальные… …   Википедия

  • Ньютона законы — Классическая механика Второй закон Ньютона История… Фундаментальные понятия Пространство · Время · …   Википедия

  • История возникновения квантовой физики — Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей …   Википедия

  • МАТЕМАТИЧЕСКОЙ ФИЗИКИ УРАВНЕНИЯ — ур ния, описывающие матем. модели физ. явлений. Теория этих моделей (математическая физи к а) занимает промежуточное положение между физикой и математикой. При построении моделей используют физ. законы, однако методы исследования полученных ур… …   Физическая энциклопедия

  • Философские основания физики: введение в философию науки —         «ФИЛОСОФСКИЕ ОСНОВАНИЯ ФИЗИКИ: ВВЕДЕНИЕ В ФИЛОСОФИЮ НАУКИ» («Philosophical Foundations of Physics») книга Р. Карнапа, в которую вошли переработанные материалы его лекций и научных семинаров, проведенных в конце 1950 х начале 1960 х в… …   Энциклопедия эпистемологии и философии науки


dic.academic.ru

Закон (физика) – это… Что такое Закон (физика)?

Физи́ческий зако́н — эмпирически установленная и выраженная в строгой словесной и/или математической формулировке устойчивая связь между повторяющимися явлениями, процессами и состояниями тел и других материальных объектов в окружающем мире.

Выявление физических закономерностей составляет основную задачу физической науки.

Описание

Для того, чтобы некая связь могла быть названа физическим законом, она должна удовлетворять следующим требованиям:

  • Эмпирическая подтверждённость. Физический закон считается верным, если подтверждён многократными экспериментами.
  • Универсальность. Закон должен быть справедлив для большого числа объектов. В идеале — для всех объектов во Вселенной.
  • Устойчивость. Физические законы не меняются со временем, хотя и могут признаваться приближениями к более точным законам.

Физические законы, как правило, выражаются в виде короткого словесного утверждения или компактной математической формулы:

Физический закон должен обладать математической красотой

Примеры

Основная статья: Список физических законов

Одними из самых известных физических законов являются[1]:

Законы-принципы

Некоторые физические законы носят универсальный характер и по своей сути являются определениями. Такие законы часто называют принципами. К ним относятся, например, второй закон Ньютона (определение силы), закон сохранения энергии (определение энергии), принцип наименьшего действия (определение действия) и др.

Законы-следствия симметрий

Часть физических законов являются простыми следствиями некоторых симметрий, существующих в системе. Так, законы сохранения согласно теореме Нётер являются следствиями симметрии пространства и времени. А принцип Паули, например, является следствием идентичности электронов (антисимметричность их волновой функции относительно перестановки частиц).

Приблизительность законов

Все физические законы являются следствием эмпирических наблюдений и верны с той точностью, с которой верны экспериментальные наблюдения. Это ограничение не позволяет утверждать, что какой-либо из законов носит абсолютный характер. Известно, что часть законов заведомо не являются абсолютно точными, а представляют собой приближения к более точным. Так, законы Ньютона справедливы только для достаточно массивных тел, двигающихся со скоростями, значительно меньшими скорости света. Более точными являются законы квантовой механики и специальной теории относительности. Однако, и они в свою очередь являются приближениями более точных уравнений квантовой теории поля.

См. также

Примечания

  1. 100 великих научных открытий / Д. К. Самин. — М.: Вече, 2002. — 480 с. — 25 000 экз. — ISBN 5-7838-1085-1

dic.academic.ru