Строение ядра схема – Изучить строение и функции ядра; Узнать, что такое хромосомы и где в клетке они расположены;”. Скачать бесплатно и без регистрации.

Содержание

Особенности строения ядра. Строение и функции ядра клетки

Ядро клетки - важнейшая ее органелла, место хранения и воспроизведения наследственной информации. Это мембранная структура, занимающая 10-40 % клетки, функции которой очень важны для жизнедеятельности эукариотов. Однако даже без наличия ядра реализация наследственной информации возможна. Примером данного процесса является жизнедеятельность бактериальных клеток. Тем не менее особенности строения ядра и его предназначение очень важны для многоклеточного организма.

Расположение ядра в клетке и его структура

Ядро располагается в толще цитоплазмы и непосредственно контактирует с шероховатой и гладкой эндоплазматической сетью. Оно окружено двумя мембранами, между которыми находится перинуклеарное пространство. Внутри ядра присутствует матрикс, хроматин и некоторое количество ядрышек.

Некоторые зрелые человеческие клетки не имеют ядра, а другие функционируют в условиях сильного угнетения его деятельности. В общем виде строение ядра (схема) представлено как ядерная полость, ограниченная кариолеммой от клетки, содержащая хроматин и ядрышки, фиксированные в нуклеоплазме ядерным матриксом.

Строение кариолеммы

Для удобства изучения клетки ядра, последнее следует воспринимать как пузырьки, ограниченные оболочками от других пузырьков. Ядро - это пузырек с наследственной информацией, находящийся в толще клетки. От ее цитоплазмы он ограждается бислойной липидной оболочкой. Строение оболочки ядра похожее на клеточную мембрану. В действительности их отличает только название и количество слоев. Без всего этого они являются одинаковыми по строению и функциям.

Строение кариолеммы (ядерной мембраны) двуслойное: она состоит из двух липидных слоев. Наружный билипидный слой кариолеммы непосредственно контактирует с шероховатым ретикулумом эндоплазмы клетки. Внутренняя кариолемма - с содержимым ядра. Между наружной и внутренней кариомембраной существует перинуклеарное пространство. Видимо, оно образовалось из-за электростатических явления - отталкивания участков глицериновых остатков.

Функцией ядерной мембраны является создание механического барьера, разделяющего ядро и цитоплазму. Внутренняя мембрана ядра служит местом фиксации ядерного матрикса - цепи белковых молекул, которые поддерживают объемную структуру. В двух ядерных мембранах существуют специальные поры: через них в цитоплазму к рибосомам выходит информационная РНК. В самой толще ядра находятся несколько ядрышек и хроматин.

Внутреннее строение нуклеоплазмы

Особенности строения ядра позволяют сравнить его с самой клеткой. Внутри ядра также присутствует особая среда (нуклеоплазма), представленная гель-золем, коллоидным раствором белков. Внутри нее есть нуклеоскелет (матрикс), представленный фибриллярными белками. Основное отличие состоит только в том, что в ядре присутствуют преимущественно кислые белки. Видимо, такая реакция среды нужна для сохранения химических свойств нуклеиновых кислот и протекания биохимических реакций.

Ядрышко

Строение клеточного ядра не может быть завершенным без ядрышка. Им является спирализованная рибосомальная РНК, которая находится в стадии созревания. Позднее из нее получится рибосома - органелла, необходимая для белкового синтеза. В структуре ядрышка выделяют два компонента: фибриллярный и глобулярный. Они различаются только при электронной микроскопии и не имеют своих мембран.

Фибриллярный компонент находится в центре ядрышка. Он представляет собой нити РНК рибосомального типа, из которых будут собираться рибосомные субъединицы. Если рассматривать ядро (строение и функции), то очевидно, что из них впоследствии будет образован гранулярный компонент. Это те же созревающие рибосомальные субъединицы, которые находятся на более поздних стадиях своего развития. Из них вскоре образуются рибосомы. Они удаляются из нуклеоплазмы через ядерные поры кариолеммы и попадают на мембрану шероховатой эндоплазматической сети.

Хроматин и хромосомы

Строение и функции ядра клетки органично связаны: здесь присутствует только те структуры, которые нужны для хранения и воспроизведения наследственной информации. Также существует кариоскелет (матрикс ядра), функцией которого является поддержание формы органеллы. Однако самой важной составляющей ядра является хроматин. Это хромосомы, играющие роль картотек различных групп генов.

Хроматин представляет собой сложный белок, который состоит из полипетида четвертичной структуры, соединенного с нуклеиновой кислотой (РНК или ДНК). В плазмидах бактерий хроматин также присутствует. Почти четверть от всего веса хроматина составляют гистоны - белки, ответственные за "упаковку" наследственной информации. Эту особенность структуры изучает биохимия и биология. Строение ядра сложное как раз из-за хроматина и наличия процессов, чередующих его спирализацию и деспирализацию.

Наличие гистонов дает возможность уплотнять и укомплектовать нить ДНК в небольшом месте - в ядре клетки. Это происходит следующим образом: гистоны образуют нуклеосомы, которые представляю собой структуру наподобие бус. Н2В, Н3, Н2А и Н4 - это главные гистоновые белки. Нуклеосома образована четырьмя парами каждого из представленных гистонов. При этом гистон Н1 является линкерным: он связан с ДНК в месте е входа в нуклеосому. Упаковка ДНК происходит в результате "наматывания" линейной молекулы на 8 белков гистоновой структуры.

Строение ядра, схема которого представлена выше, предполагает наличие соленоидподобной структуры ДНК, укомплектованной на гистонах. Толщина данного конгломерата составляет порядка 30 нм. При этом структура может уплотняться и далее, чтобы занимать меньше места и менее подвергаться механическим повреждениям, неизбежно возникающим в процессе жизни клетки.

Фракции хроматина

Структура, строение и функции ядра клетки зациклены на том, чтобы поддерживать динамические процессы спирализации и деспирализации хроматина. Потому существует две главные его фракции: сильно спирализованная (гетерохроматин) и малоспирализованная (эухроматин). Они разделены как структурно, так и функционально. В гетерохроматине ДНК хорошо защищена от любых воздействий и не может транскрибироваться. Эухроматин защищен слабее, однако гены могут удваиваться для синтеза белка. Чаще всего участки гетерохроматина и эухроматина чередуются на протяжении длины всей хромосомы.

Хромосомы

Клеточное ядро, строение и функции которого описываются в данной публикации, содержит хромосомы. Это сложный и компактно упакованный хроматин, увидеть который можно при световой микроскопии. Однако это возможно только в случае, если на предметном стекле расположена клетка в стадии митотического или мейотического деления. Одним их этапов является спирализация хроматина с образованием хромосом. Их структура предельно проста: хромосома имеет теломеру и два плеча. У каждого многоклеточного организма одного вида одинаковое строение ядра. Таблица хромосомного набора у него также аналогичная.

Реализация функций ядра

Основные особенности строения ядра связаны с выполнением некоторых функций и необходимостью их контроля. Ядро играет роль хранилища наследственной информации, то есть это своего рода картотека с записанными последовательностями аминокислот всех белков, которые могут синтезироваться в клетке. Значит, для выполнения какой-либо функции клетка должна синтезировать белок, структура которого закодирована в гене.

Чтобы ядро "понимало", какой конкретно белок нужно синтезировать в нужный час, существует система наружных (мембранных) и внутренних рецепторов. Информация от них поступает к ядру посредством молекулярных передатчиков. Наиболее часто это реализуется посредством аденилатциклазного механизма. Так на клетку воздействуют гормоны (адреналин, норадреналин) и некоторые лекарства с гидрофильной структурой.

Вторым механизмом передачи информации является внутренний. Он свойственен липофильным молекулам - кортикостероидам. Это вещество проникает через билипидную мембрану клетки и направляется к ядру, где взаимодействует с его рецептором. В результате активации рецепторных комплексов, расположенных на клеточной мембране (аденилатциклазный механизм) или на кариолемме, запускается реакция активации определенного гена. Он реплицируется, на его основании строится информационная РНК. Позднее по структуре последней синтезируется белок, выполняющий некоторую функцию.

Ядро многоклеточных организмов

В многоклеточном организме особенности строения ядра такие же, как и в одноклеточном. Хотя существуют некоторые нюансы. Во-первых, многоклеточность подразумевает, что у ряда клеток будет выделена своя специфическая функция (или несколько). Это значит, что некоторые гены постоянно будут деспирализованы, тогда как другие находятся в неактивном состоянии.

К примеру, в клетках жировой ткани синтез белков будет идти малоактивно, а потому большая часть хроматина спирализована. А в клетках, к примеру, экзокринной части поджелудочной железы, процессы биосинтеза белка идут постоянно. Потому их хроматин деспирализован. На тех участках, гены которых реплицируются чаще всего. При этом важна ключевая особенность: хромосомный набор всех клеток одного организма одинаков. Только из-за дифференциации функций в тканях некоторые из них выключаются из работы, а другие деспирализуются чаще прочих.

Безъядерные клетки организма

Существуют клетки, особенности строения ядра которых могут не рассматриваться, потому как они в результате своей жизнедеятельности либо угнетают его функцию, либо вовсе избавляются от него. Простейший пример - эритроциты. Это кровяные клетки, ядро у которых присутствует только на ранних стадиях развития, когда синтезируется гемоглобин. Как только его количества достаточно для переноса кислорода, ядро удаляется из клетки, дабы облегчить ее не мешать транспорту кислорода.

В общем виде эритроцит представляет собой цитоплазматический мешок, наполненный гемоглобином. Похожая структура характерна и для жировых клеток. Строение клеточного ядра адипоцитов предельно упрощено, оно уменьшается и смещается к мембране, а процессы белкового синтеза максимально угнетаются. Эти клетки также напоминают "мешки", наполненные жиром, хотя, разумеется, разнообразие биохимических реакций в них чуть большее, чем в эритроцитах. Тромбоциты также не имеют ядра, однако их не стоит считать полноценными клетками. Это осколки клеток, необходимые для реализации процессов гемостаза.

fb.ru

Строение ядра клетки — Науколандия

Ядро клетки по своему строению относится к группе двухмембранных органоидов. Однако ядро настолько важно для жизнедеятельности эукариотической клетки, что обычно его рассматривают отдельно. Ядро клетки содержит хроматин (деспирализованные хромосомы), который отвечает за хранение и передачу наследственной информации.

В строении ядра клетки выделяют следующие ключевые структуры:

  • ядерная оболочка, состоящая из внешней и внутренней мембраны,
  • ядерный матрикс — всё, что заключено внутри клеточного ядра,
  • кариоплазма (ядерный сок) — жидкое содержимое, подобное по составу гиалоплазме,
  • ядрышко,
  • хроматин.

Кроме перечисленного в ядре содержатся различные вещества, субъединицы рибосом, РНК.

Строение наружной мембраны ядра клетки сходно с эндоплазматической сетью. Часто внешняя мембрана просто переходит в ЭПС (последняя от нее как бы ответвляется, является ее выростом). С внешней стороны на ядре располагаются рибосомы.

Внутренняя мембрана более прочная за счет выстилающей ее ламины. Кроме опорной функции к этой ядерной выстилке прикрепляется хроматин.

Пространство между двумя ядерными мембранами называется перинуклеарным.

Мембрана ядра клетки пронизана множеством пор, соединяющих цитоплазму с кариоплазмой. Однако по своему строению поры ядра клетки не просто отверстия в мембране. В них содержатся белковые структуры (поровый комплекс белков), отвечающий за избирательную транспортировку веществ и структур. Пассивно через пору могут проходить только малые молекулы (сахара, ионы).

Хроматин следует считать главным компонентом ядра. В нем заключена наследственная информация, которая передается при каждом делении клетки, а также реализуется в процессе жизнедеятельности самой клетки.

Хроматин ядра клетки состоит их хроматиновых нитей. Каждая хроматиновая нить соответствует одной хромосоме, которая образуется из нее путем спирализации.

Чем сильнее раскручена хромосома (превращена в хроматиновую нить), тем больше она задействована в процессах синтеза на ней. Одна и та же хромосома может быть в одних участках спирализована, а в других деспирализована.

Каждая хроматиновая нить ядра клетки по строению является комплексом ДНК и различных белков, которые в том числе выполняют функцию скручивания и раскручивания хроматина.

Ядра клеток могут содержать одно и более ядрышек. Ядрышки состоят из рибонуклеопротеидов, из которых в дальнейшем образуются субъединицы рибосом. Здесь происходит синтез рРНК (рибосомальной РНК).

scienceland.info

Строение и функции ядра

Как правило, эукариотическая клетка имеет одно ядро, но встречаются двуядерные (инфузории) и многоядерные клетки (опалина). Некоторые высоко­специализи­рованные клетки вторично утрачивают ядро (эритроциты млекопитающих, ситовидные трубки покрытосеменных).

Форма ядра — сферическая, эллипсовидная, реже лопастная, бобовидная и др. Диаметр ядра — обычно от 3 до 10 мкм.

Строение ядра:
1 — наруж­ная мембрана; 2 — внут­ренняя мемб­рана; 3 — поры; 4 — ядрышко; 5 — гетеро­хроматин; 6 — эухро­матин.

Ядро отграничено от цитоплазмы двумя мембранами (каждая из них имеет типичное строение). Между мембранами — узкая щель, заполненная полужидким веществом. В некоторых местах мембраны сливаются друг с другом, образуя поры (3), через которые происходит обмен веществ между ядром и цитоплазмой. Наружная ядерная (1) мембрана со стороны, обращенной в цитоплазму, покрыта рибосомами, придающими ей шероховатость, внутренняя (2) мембрана гладкая. Ядерные мембраны являются частью мембранной системы клетки: выросты наружной ядерной мембраны соединяются с каналами эндоплазматической сети, образуя единую систему сообщающихся каналов.

Кариоплазма (ядерный сок, нуклеоплазма) — внутреннее содержимое ядра, в котором располагаются хроматин и одно или несколько ядрышек. В состав ядерного сока входят различные белки (в том числе ферменты ядра), свободные нуклеотиды.

Ядрышко (4) представляет собой округлое плотное тельце, погруженное в ядерный сок. Количество ядрышек зависит от функционального состояния ядра и варьирует от 1 до 7 и более. Ядрышки обнаруживаются только в неделящихся ядрах, во время митоза они исчезают. Ядрышко образуется на определенных участках хромосом, несущих информацию о структуре рРНК. Такие участки называются ядрышковым организатором и содержат многочисленные копии генов, кодирующих рРНК. Из рРНК и белков, поступающих из цитоплазмы, формируются субъединицы рибосом. Таким образом, ядрышко представляет собой скопление рРНК и рибосомальных субъединиц на разных этапах их формирования.

Хроматин — внутренние нуклеопротеидные структуры ядра, окрашивающиеся некоторыми красителями и отличающиеся по форме от ядрышка. Хроматин имеет вид глыбок, гранул и нитей. Химический состав хроматина: 1) ДНК (30–45%), 2) гистоновые белки (30–50%), 3) негистоновые белки (4–33%), следовательно, хроматин является дезоксирибонуклеопротеидным комплексом (ДНП). В зависимости от функционального состояния хроматина различают: гетерохроматин (5) и эухроматин (6). Эухроматин — генетически активные, гетерохроматин — генетически неактивные участки хроматина. Эухроматин при световой микроскопии не различим, слабо окрашивается и представляет собой деконденсированные (деспирализованные, раскрученные) участки хроматина. Гетерохроматин под световым микроскопом имеет вид глыбок или гранул, интенсивно окрашивается и представляет собой конденсированные (спирализованные, уплотненные) участки хроматина. Хроматин — форма существования генетического материала в интерфазных клетках. Во время деления клетки (митоз, мейоз) хроматин преобразуется в хромосомы.

Функции ядра: 1) хранение наследственной информации и передача ее дочерним клеткам в процессе деления, 2) регуляция жизнедеятельности клетки путем регуляции синтеза различных белков, 3) место образования субъединиц рибосом.

Яндекс.ДиректВсе объявления

Хромосомы

Хромосомы — это цитологические палочковидные структуры, представляющие собой конденсированный хроматин и появляющиеся в клетке во время митоза или мейоза. Хромосомы и хроматин — различные формы пространственной организации дезоксирибонуклеопротеидного комплекса, соответствующие разным фазам жизненного цикла клетки. Химический состав хромосом такой же, как и хроматина: 1) ДНК (30–45%), 2) гистоновые белки (30–50%), 3) негистоновые белки (4–33%).

Основу хромосомы составляет одна непрерывная двухцепочечная молекула ДНК; длина ДНК одной хромосомы может достигать нескольких сантиметров. Понятно, что молекула такой длины не может располагаться в клетке в вытянутом виде, а подвергается укладке, приобретая определенную трехмерную структуру, или конформацию. Можно выделить следующие уровни пространственной укладки ДНК и ДНП: 1) нуклеосомный (накручивание ДНК на белковые глобулы), 2) нуклеомерный, 3) хромомерный, 4) хромонемный, 5) хромосомный.

В процессе преобразования хроматина в хромосомы ДНП образует не только спирали и суперспирали, но еще петли и суперпетли. Поэтому процесс формирования хромосом, который происходит в профазу митоза или профазу 1 мейоза, лучше называть не спирализацией, а конденсацией хромосом.

Хромосомы: 1 — метацентрическая; 2 — субметацентрическая; 3, 4 — акроцентрические. Строение хромосомы: 5 — центромера; 6 — вторичная перетяжка; 7 — спутник; 8 — хроматиды; 9 — теломеры.

Метафазная хромосома (хромосомы изучаются в метафазу митоза) состоит из двух хроматид (8). Любая хромосома имеет первичную перетяжку (центромеру) (5), которая делит хромосому на плечи. Некоторые хромосомы имеют вторичную перетяжку (6) и спутник (7). Спутник — участок короткого плеча, отделяемый вторичной перетяжкой. Хромосомы, имеющие спутник, называются спутничными (3). Концы хромосом называются теломерами (9). В зависимости от положения центромеры выделяют: а) метацентрические (равноплечие) (1), б) субметацентрические (умеренно неравноплечие) (2), в) акроцентрические (резко неравноплечие) хромосомы (3, 4).

Соматические клетки содержат диплоидный (двойной — 2n) набор хромосом, половые клетки — гаплоидный (одинарный — n). Диплоидный набор аскариды равен 2, дрозофилы — 8, шимпанзе — 48, речного рака — 196. Хромосомы диплоидного набора разбиваются на пары; хромосомы одной пары имеют одинаковое строение, размеры, набор генов и называются гомологичными.

Кариотип — совокупность сведений о числе, размерах и строении метафазных хромосом. Идиограмма — графическое изображение кариотипа. У представителей разных видов кариотипы разные, одного вида — одинаковые. Аутосомы — хромосомы, одинаковые для мужского и женского кариотипов. Половые хромосомы — хромосомы, по которым мужской кариотип отличается от женского.

Хромосомный набор человека (2n = 46, n = 23) содержит 22 пары аутосом и 1 пару половых хромосом. Аутосомы распределены по группам и пронумерованы:

Половые хромосомы не относятся ни к одной из групп и не имеют номера. Половые хромосомы женщины — ХХ, мужчины — ХУ. Х-хромосома — средняя субметацентрическая, У-хромосома — мелкая акроцентрическая.

В области вторичных перетяжек хромосом групп D и G находятся копии генов, несущих информацию о строении рРНК, поэтому хромосомы групп D и G называются ядрышкообразующими.

Функции хромосом: 1) хранение наследственной информации, 2) передача генетического материала от материнской клетки к дочерним.

Лекция №9.
Строение прокариотической клетки. Вирусы

К прокариотам относятся архебактерии, бактерии и синезеленые водоросли. Прокариоты — одноклеточные организмы, у которых отсутствуют структурно оформленное ядро, мембранные органоиды и митоз.


Похожие статьи:

poznayka.org

Особенности строения ядра. Строение и функции ядра клетки

Ядро клетки - важнейшая ее органелла, место хранения и воспроизведения наследственной информации. Это мембранная структура, занимающая 10-40 % клетки, функции которой очень важны для жизнедеятельности эукариотов. Однако даже без наличия ядра реализация наследственной информации возможна. Примером данного процесса является жизнедеятельность бактериальных клеток. Тем не менее особенности строения ядра и его предназначение очень важны для многоклеточного организма.

Расположение ядра в клетке и его структура

Ядро располагается в толще цитоплазмы и непосредственно контактирует с шероховатой и гладкой эндоплазматической сетью. Оно окружено двумя мембранами, между которыми находится перинуклеарное пространство. Внутри ядра присутствует матрикс, хроматин и некоторое количество ядрышек.

Строение кариолеммы (ядерной мембраны) двуслойное: она состоит из двух липидных слоев. Наружный билипидный слой кариолеммы непосредственно контактирует с шероховатым ретикулумом эндоплазмы клетки. Внутренняя кариолемма - с содержимым ядра. Между наружной и внутренней кариомембраной существует перинуклеарное пространство. Видимо, оно образовалось из-за электростатических явления - отталкивания участков глицериновых остатков.

Функцией ядерной мембраны является создание механического барьера, разделяющего ядро и цитоплазму. Внутренняя мембрана ядра служит местом фиксации ядерного матрикса - цепи белковых молекул, которые поддерживают объемную структуру. В двух ядерных мембранах существуют специальные поры: через них в цитоплазму к рибосомам выходит информационная РНК. В самой толще ядра находятся несколько ядрышек и хроматин.

Внутреннее строение нуклеоплазмы

Особенности строения ядра позволяют сравнить его с самой клеткой. Внутри ядра также присутствует особая среда (нуклеоплазма), представленная гель-золем, коллоидным раствором белков. Внутри нее есть нуклеоскелет (матрикс), представленный фибриллярными белками. Основное отличие состоит только в том, что в ядре присутствуют преимущественно кислые белки. Видимо, такая реакция среды нужна для сохранения химических свойств нуклеиновых кислот и протекания биохимических реакций.

Ядрышко

Строение клеточного ядра не может быть завершенным без ядрышка. Им является спирализованная рибосомальная РНК, которая находится в стадии созревания. Позднее из нее получится рибосома - органелла, необходимая для белкового синтеза. В структуре ядрышка выделяют два компонента: фибриллярный и глобулярный. Они различаются только при электронной микроскопии и не имеют своих мембран.

Фибриллярный компонент находится в центре ядрышка. Он представляет собой нити РНК рибосомального типа, из которых будут собираться рибосомные субъединицы. Если рассматривать ядро (строение и функции), то очевидно, что из них впоследствии будет образован гранулярный компонент. Это те же созревающие рибосомальные субъединицы, которые находятся на более поздних стадиях своего развития. Из них вскоре образуются рибосомы. Они удаляются из нуклеоплазмы через ядерные поры кариолеммы и попадают на мембрану шероховатой эндоплазматической сети.

Хроматин и хромосомы

Строение и функции ядра клетки органично связаны: здесь присутствует только те структуры, которые нужны для хранения и воспроизведения наследственной информации. Также существует кариоскелет (матрикс ядра), функцией которого является поддержание формы органеллы. Однако самой важной составляющей ядра является хроматин. Это хромосомы, играющие роль картотек различных групп генов.

Хроматин представляет собой сложный белок, который состоит из полипетида четвертичной структуры, соединенного с нуклеиновой кислотой (РНК или ДНК). В плазмидах бактерий хроматин также присутствует. Почти четверть от всего веса хроматина составляют гистоны - белки, ответственные за "упаковку" наследственной информации. Эту особенность структуры изучает биохимия и биология. Строение ядра сложное как раз из-за хроматина и наличия процессов, чередующих его спирализацию и деспирализацию.

Наличие гистонов дает возможность уплотнять и укомплектовать нить ДНК в небольшом месте - в ядре клетки. Это происходит следующим образом: гистоны образуют нуклеосомы, которые представляю собой структуру наподобие бус. Н2В, Н3, Н2А и Н4 - это главные гистоновые белки. Нуклеосома образована четырьмя парами каждого из представленных гистонов. При этом гистон Н1 является линкерным: он связан с ДНК в месте е входа в нуклеосому. Упаковка ДНК происходит в результате "наматывания" линейной молекулы на 8 белков гистоновой структуры.

Строение ядра, схема которого представлена выше, предполагает наличие соленоидподобной структуры ДНК, укомплектованной на гистонах. Толщина данного конгломерата составляет порядка 30 нм. При этом структура может уплотняться и далее, чтобы занимать меньше места и менее подвергаться механическим повреждениям, неизбежно возникающим в процессе жизни клетки.

Фракции хроматина

Структура, строение и функции ядра клетки зациклены на том, чтобы поддерживать динамические процессы спирализации и деспирализации хроматина. Потому существует две главные его фракции: сильно спирализованная (гетерохроматин) и малоспирализованная (эухроматин). Они разделены как структурно, так и функционально. В гетерохроматине ДНК хорошо защищена от любых воздействий и не может транскрибироваться. Эухроматин защищен слабее, однако гены могут удваиваться для синтеза белка. Чаще всего участки гетерохроматина и эухроматина чередуются на протяжении длины всей хромосомы.

Хромосомы

Клеточное ядро, строение и функции которого описываются в данной публикации, содержит хромосомы. Это сложный и компактно упакованный хроматин, увидеть который можно при световой микроскопии. Однако это возможно только в случае, если на предметном стекле расположена клетка в стадии митотического или мейотического деления. Одним их этапов является спирализация хроматина с образованием хромосом. Их структура предельно проста: хромосома имеет теломеру и два плеча. У каждого многоклеточного организма одного вида одинаковое строение ядра. Таблица хромосомного набора у него также аналогичная.

Реализация функций ядра

Основные особенности строения ядра связаны с выполнением некоторых функций и необходимостью их контроля. Ядро играет роль хранилища наследственной информации, то есть это своего рода картотека с записанными последовательностями аминокислот всех белков, которые могут синтезироваться в клетке. Значит, для выполнения какой-либо функции клетка должна синтезировать белок, структура которого закодирована в гене.

Чтобы ядро "понимало", какой конкретно белок нужно синтезировать в нужный час, существует система наружных (мембранных) и внутренних рецепторов. Информация от них поступает к ядру посредством молекулярных передатчиков. Наиболее часто это реализуется посредством аденилатциклазного механизма. Так на клетку воздействуют гормоны (адреналин, норадреналин) и некоторые лекарства с гидрофильной структурой.

Вторым механизмом передачи информации является внутренний. Он свойственен липофильным молекулам - кортикостероидам. Это вещество проникает через билипидную мембрану клетки и направляется к ядру, где взаимодействует с его рецептором. В результате активации рецепторных комплексов, расположенных на клеточной мембране (аденилатциклазный механизм) или на кариолемме, запускается реакция активации определенного гена. Он реплицируется, на его основании строится информационная РНК. Позднее по структуре последней синтезируется белок, выполняющий некоторую функцию.

Ядро многоклеточных организмов

В многоклеточном организме особенности строения ядра такие же, как и в одноклеточном. Хотя существуют некоторые нюансы. Во-первых, многоклеточность подразумевает, что у ряда клеток будет выделена своя специфическая функция (или несколько). Это значит, что некоторые гены постоянно будут деспирализованы, тогда как другие находятся в неактивном состоянии.

К примеру, в клетках жировой ткани синтез белков будет идти малоактивно, а потому большая часть хроматина спирализована. А в клетках, к примеру, экзокринной части поджелудочной железы, процессы биосинтеза белка идут постоянно. Потому их хроматин деспирализован. На тех участках, гены которых реплицируются чаще всего. При этом важна ключевая особенность: хромосомный набор всех клеток одного организма одинаков. Только из-за дифференциации функций в тканях некоторые из них выключаются из работы, а другие деспирализуются чаще прочих.

Безъядерные клетки организма

Существуют клетки, особенности строения ядра которых могут не рассматриваться, потому как они в результате своей жизнедеятельности либо угнетают его функцию, либо вовсе избавляются от него. Простейший пример - эритроциты. Это кровяные клетки, ядро у которых присутствует только на ранних стадиях развития, когда синтезируется гемоглобин. Как только его количества достаточно для переноса кислорода, ядро удаляется из клетки, дабы облегчить ее не мешать транспорту кислорода.

В общем виде эритроцит представляет собой цитоплазматический мешок, наполненный гемоглобином. Похожая структура характерна и для жировых клеток. Строение клеточного ядра адипоцитов предельно упрощено, оно уменьшается и смещается к мембране, а процессы белкового синтеза максимально угнетаются. Эти клетки также напоминают "мешки", наполненные жиром, хотя, разумеется, разнообразие биохимических реакций в них чуть большее, чем в эритроцитах. Тромбоциты также не имеют ядра, однако их не стоит считать полноценными клетками. Это осколки клеток, необходимые для реализации процессов гемостаза.

autogear.ru

Ядро

Ядро

Большинство клеток имеют одно ядро, изредка встречаются двухъадерные (клетки печени) и многоядерные (многие водоросли, грибы, млечные сосуды растений, поперечнополосатые мышцы). Некоторые клетки в зрелом состоянии не имеют ядра (например, эритроциты млекопитающих и клетки ситовидных трубок у цветковых растений).

Форма и размеры ядра клетки очень изменчивы и зависят от вида организма, а также от типа, возраста и функционального состояния клетки. Ядро может быть шаровидным (5—20 мкм в диаметре), линзовидным, веретеновидным и даже многолопастным (в клетках паутинных желез некоторых насекомых и пауков).

Общий план строения ядра одинаков у всех клеток эукариот (рис. 1.16). Клеточное ядро состоит из ядерной оболочки, ядерного матрикса (нуклеоплазмы), хроматина и ядрышка (одного или нескольких).

Рис. 1.16. Схема строения ядра: 1ядрышко; 2хроматин; 3внутренняя ядерная мембрана; 4внешняя ядерная мембрана; 5поры в ядерной оболочке; 6рибосомы; 7—шероховатый эндоплаз-матический ретикулум.

От цитоплазмы содержимое ядра отделено двойной мембраной, или так называемой ядерной оболочкой. Наружная мембрана в некоторых местах переходит в каналы эндоплазм этического ретикулума; к ней прикреплены рибосомы. Внутренняя мембрана рибосом не содержит. Ядерная оболочка пронизана множеством пор диаметром около 90 нм.

Содержимое ядра представляет собой гелеобразны матрикс, называемый ядерным матриксом (нуклеоплазмой), в котором располагаются хроматин и одно или несколько ядрышек. Ядерный метрике содержит примембранные и межхроматиновые белки, белки-ферменты, РНК, участки ДНК, атакже различные ионы и нуклеотиды.

Хроматин на окрашенных препаратах клетки представляет собой сеть тонких тяжей (фибрилл), мелких гранул или глыбок. Основу хроматина составляют нуклеопротеины — длинные нитевидные молекулы ДНК (около 40%), соединенные со специфическими белками — гистонами (40%). В состав хроматина входят также РНК, кислые белки, липиды и минеральные вещества (ионы Са2- и Mg2+), а также фермент ДНК-пол и мераза, необходимый для репликации ДНК. В процессе деления ядра нуклеопротеины спирализуются, укорачиваются, в результате уплотняются и формируются в компактные палочковидные хромосомы, которые становятся заметны при наблюдении в световой микроскоп.

У каждой хромосомы имеется первичная перетяжкацентромера (утонченный неспирализованный участок), которая делит хромосому на два плеча (рис. 1.17). В области первичной перетяжки располагается фибриллярное тельце — кинетохор, который регулирует движение хромосом при клеточном делении: к нему прикрепляются нити веретена деления, разводящие хромосомы к полюсам.

Рис. 1.17. Основные виды хромосом: 1одноплечая; 2неравноплечая; 3 —- равноплечая.

В зависимости от расположения перетяжки выделяют три основных вида хромосом: 1) равноплечие — с плечами равной длины; 2) неравноплечие — с плечами неравной длины; 3) одноплечие (палочковидные) — с одним длинным и другим очень коротким, едва заметным плечом (см. рис. 1.17).

Каждой клетке того или иного вида живых организмов свойственны определенные число, размеры и форма хромосом. Совокупность хромосом соматической клетки, типичную для данной систематической группы грибов, животных или растений, называют хромосомным набором или кариотипом.

Число хромосом в зрелых половых клетках называют гаплоидным набором и обозначают буквой л. Соматические клетки содержат двойное число хромосом (диплоидный набор), обозначаемое как 2я. Клетки, имеющие более двух наборов хромосом, являются полиплоидными (4n, 8n и т. д.). Парные хромосомы, т. е. одинаковые по форме, структуре и размерам, но имеющие разное происхождение (одна материнская, другая отцовская), называются гомологичными.

Количество хромосом в кариотипе не связано с уровнем организации живых организмов; примитивные формы Moгут иметь большее число хромосом, чем высокоорганизованные, и наоборот. Например, клетки радиолярий (морских простейших) содержат 1 000—1 600 хромосом, а клетки шимпанзе — всего 48. Однако следует помнить, что все организмы одного вида имеют одинаковое количество хромосом, т. е. для них характерна видовая специфичность кариотипа. В клетках человека диплоидный набор составляет 46 хромосом, клетках пшеницы мягкой — 42, картофеля — 18, мухи домашней — 12, плодовой мушки дрозофилы — 8. Правда, клетки разных тканей даже одного организма в зависимости от выполняемой функции могут иногда содержать разное число хромосом. Так, в клетках печени животных бывает разное число наборов хромосом (4л, 8ч). По этой причине понятия мкариотип» и «хромосомный набор» не совсем идентичны.

Некоторые хромосомы имеют вторичную перетяжку, не связанную с прикреплением нитей веретена. Этот участок хромосомы контролирует синтез ядрышка (ядрышковый организатор).

Ядрышки — это округлые, сильно уплотненные, не ограниченные мембраной участки клеточного ядра диаметром 1—2 мкм и более. Форма, размеры и количество ядрышек зависят от функционального состояния ядра: чем крупнее ядрышко, тем выше его активность.

В состав ядрышек входит около 80% белка, 10—15% РНК, 2— 12% ДНК. Во время деления ядра ядрышки разрушаются. В конце деления клетки ядрышки вновь формируются вокруг определенных участков хромосом, называемых ядрышковьши организаторами. В ядрышковых организаторах локализованы гены рибо-сомной РНК. Здесь происходит синтез рибосомных РНК, объединение их с белками, что ведет к образованию субъединиц рибосом. Последние через поры в ядерной оболочке переходят в цитоплазму. Таким образом, ядрышко представляет собой место синтеза рРНК и самосборки рибосом.

Функции ядра следующие:

  1. Хранение и передача наследственной информации в виде неизменной структуры ДНК.
  2. Управление процессами жизнедеятельности клетки посредством образования аппарата белкового синтеза (синтез на молекулах ДНК разных типов РНК, образование субъединиц рибосом).

Источник : Н.А. Лемеза Л.В.Камлюк Н.Д. Лисов "Пособие по биологии для поступающих в ВУЗы"

sbio.info

8. Ядро. Общий план строения интерфазного ядра, его значение в жизнедеятельности клетки.

Ядро – является одной из основных структурных частей эукариотической клетки

Ядро содержит основной объем ДНК, которая является ключевым субстратом генетического аппарата.

Основные функции ядра связаны с процессами хранения, воспроизведения, передачи и реализации наследственной информации.

Ядро состоит из структурных (кариолемма, кариоскелет, хроматин, ядрышко,) и неструктурного (кариоплазма) компонентов.

-Кариолемма – ядерная оболочка, отделяющая кариоплазму от цитоплазмы и обеспечивающая обмен между ними. Она образована двумя биомембранами (наружной и внутренней), разделенными перинуклеарным пространством. В областях локальных слияний этих мембран имеются ядерные поры, соединяющие цитоплазму с содержимым ядра. Ядерные поры обеспечивают поступление молекул РНК и субъединиц рибосом из ядра в цитоплазму. В обратном направлении через них происходит активный транспорт синтезированных белков. На наружной мембране кариолеммы имеются рибосомы. К внутренней мембране со стороны кариоплазмы плотно прикрепляется ядерная пластинка. Она имеет важное значение в поддержании формы ядра, в создании пространственной организации ядерных пор и хроматина

Хроматин – это структурный эквивалент (материальный субстрат) хромосом в интерфазном ядре.

Хроматин состоит из комплекса ДНК и хромосомных белков, которые регулируют степень спирализации, компактности и функциональной активности хроматина. Хроматин может присутствовать в двух структурных формах: гетерохроматин (плотно упакованным транскрипционно неактивным хроматином. Он выявляется в световом микроскопе в виде базофильных глыбок преимущественно на периферии ядра или вокруг ядрышек. Этот хроматин специализирован на хранении генетической информации.) эухроматин (невидим в световом микроскопе. С него происходит считывание (транскрипция) генетической информации для последующей реализации в цитоплазме в виде активизации синтетических процессов.)

Во время клеточного деления (митозе или мейозе) хроматин полностью спирализуется и образует плотно упакованные петлеобразные структуры хромосомы.

Во всех соматических клетках генетически женского организма одна из половых Х-хромосом характеризуется стойкой конденсацией (спирализацией) в интерфазе - это Х-половой хроматин. Он обнаруживается в ядре с помощью светового микроскопа при окрашивании клеток щелочными красителями и называется тельцем Бара. Микроскопическое выявление телец Барра имеет значение в судебно-медицинской практике для определения генетического пола.

-Ядрышко – базофильное образование интерфазного ядра, которое располагается в его центре или несколько эксцентрично.

Функции ядрышка заключаются в синтезе рибосомальной РНК и в формировании субъединиц рибосом. Последние выходят через ядерные поры в цитоплазму и попарно соединяясь образуют рибосомы.

-Кариоскелет– трехмерная сетевидная структура, заполняющая весь внутренний объем ядра.

Состоит из опорных фибриллярных белков. Крепится к ядерной пластинке

Функции кариоскелета:

▬ поддержание и изменение формы ядра;

▬ пространственное распределении хроматина и его спирализация;

▬ передвижение субъединиц рибосом;

▬ регуляция ширины перинуклеарного пространства, величины и количества ядерных пор.

Кариоплазма (ядерный сок) – коллоидная аморфная субстанция, создающая микроокружение структурных компонентов ядра.

Функции кариоплазмы:

▬ поддержание постоянства внутриядерной среды;

▬ обеспечение условий для внутриядерных транспортов и перемещений;

▬ обменные процессы с цитоплазмой

studfiles.net

Определение, функции и структура клеточного ядра

Определение

Клеточное ядро - окруженная мембранами структура, которая содержит наследственную информацию, контролирует рост и размножение клетки. Это командный центр эукариотической клетки и, как правило, наиболее значимая органелла.

Структура и значение клеточного ядра

Схема структуры ядра / Wikimedia

Ядро клетки окружено двойной мембраной, называемой ядерной оболочкой. Эта мембрана отделяет содержимое ядра от цитоплазмы.

Как и клеточная мембрана, ядерная оболочка состоит из фосфолипидов, образующих липидный бислой. Она помогает поддерживать форму ядра и регулирует поток молекул в/из ядра через ядерные поры.

Хромосомы расположены внутри ядра. Они состоят из ДНК, содержащей информацию о наследственности, росте, развитии и воспроизведения клеток. Когда клетка находится в состоянии «покоя», то есть не делится, хромосомы организованы в длинные запутанные структуры, называемые хроматином, а не в отдельные хромосомы, как мы обычно думаем.

Ядрышко

Внутри ядра находится плотная структура, состоящая из РНК и белков, называемая ядрышком, которое содержит ядрышковые организаторы, являющиеся частями хромосом с генами для синтеза рибосом. Ядрышко помогает синтезировать рибосомы путем транскрибирования и сборки рибосомной РНК. Рибосома состоит из рибосомной РНК  (рРНК) и белков.

Синтез белка

Ядро регулирует синтез белков в цитоплазме с помощью мессенджера РНК (мРНК), который представляет собой транскрибированный сегмент ДНК, служащий в качестве матрицы для производства белка. Он продуцируется в ядре и перемещается в цитоплазму через ядерные поры в мембране.

Попав в цитоплазму рибосомы и другие молекулы РНК, называемые передаточной РНК, работают вместе, чтобы перевести мРНК для продуцирования белков.

Структура эукариотических клеток

Кроме ядра клетки, существуют и другие типы клеточных органелл. Ниже перечисленные структуры клеток также могут быть обнаружены в типичной эукариотической клетке животных:

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

natworld.info