Транзистор автор и дата – Кто изобрел транзистор? – История изобретений – Календарь событий – Биографии великих людей,интересные идеи,полезные советы

Содержание

кто и когда изобрёл транзистор

Первые патенты на принцип работы полевых транзисторов были зарегистрированы в Германии 1928 (в Канаде, в 1925 году в октябре 22) на имя австро-венгерского физика Юлия Эдгара Лилиенфельда. В 1934 году немецкий физик Оскар Хейл запатентовал полевой транзистор. Полевые транзисторы (в частности, МОП-транзисторы) основаны на простом электростатическом эффекте поля, по физике они существенно проще биполярных транзисторов, и поэтому они придуманы и запатентованы задолго до биполярных транзисторов. Тем не менее, первый МОП-транзистор, составляющий основу современной компьютерной индустрии, был изготовлен позже биполярного транзистора в 1960 году. Только в 90-х годах 20 века МОП-технология стала доминировать над биполярной.

В 1947 году Уильям Шокли, Джон Бардин и Уолтер Браттейн в лабораториях Bell Labs впервые создали действующий биполярный транзистор, продемонстрированный 16 декабря. 23 декабря состоялось официальное представление изобретения и именно эта дата считается днём изобретения транзистора. По технологии изготовления он относился к классу точечных транзисторов. В 1956 году они были награждены Нобелевской премией по физике «за исследования полупроводников и открытие транзисторного эффекта» . Интересно, что Джон Бардин вскоре был удостоен Нобелевской премии во второй раз за создание теории сверхпроводимости.

Позднее транзисторы заменили вакуумные лампы в большинстве электронных устройств, свершив революцию в создании интегральных схем и компьютеров.

Bell нуждались в названии устройства. Предлагались названия «полупроводниковый триод» (semiconductor triode), «Solid Triode», «Surface States Triode», «кристаллический триод» (crystal triode) и «Iotatron», но слово «транзистор» (transistor), предложенное Джоном Пирсом (John R. Pierce), победило во внутреннем голосовании.

Первоначально название «транзистор» относилось к резисторам, управляемым напряжением. В самом деле, транзистор можно представить как некое сопротивление, регулируемое напряжением на одном электроде (в полевых транзисторах, для которых эта аналогия более точна — напряжением на затворе, в биполярных транзисторах — напряжением на базе или током базы) .

otvet.mail.ru

Как был изобретен транзистор

УВЕРЕННАЯ ПОСТУПЬ ТРАНЗИСТОРА

 

30 июня 1941 года ученые Уильям Шокли, Уолтер Браттейн и Джон Бардин объявили о создании транзистора, а 23 декабря 1947 года изобретение было официальное представлено публике. Именно эту дату принято считать днем изобретения транзистора. Но великий поход в «страну Полупроводников» начался еще в 1833, когда Майкл Фарадей обнаружил, что электропроводность сульфида серебра увеличивается при нагревании. И только через 125 лет в Америке на основе другого полупроводника, германия, была создана микросхема.

Новое изобретение

О первой демонстрации транзистора газета «New York Times» сообщила 1 июля 1948 года на предпоследней странице: «Вчера Bell Telephone Laboratories впервые продемонстрировала изобретенный ею прибор под названием «транзистор», его в некоторых случаях можно использовать в области радиотехники вместо электронных ламп. Было также показано его использование в телефонной системе и телевизионном устройстве. В каждом из этих случаев

транзистор работал в качестве усилителя, хотя фирма заявляет, что он может применяться и как генератор, способный создавать и передавать радиоволны».

Транзисторный магнитофон Комета МГ-209

Новость, по мнению редактора, не походила на сенсацию. Публика не проявила поначалу интереса к новому прибору, и Bell пыталась продвинуть новинку, раздавая лицензии на использование транзистора всем желающим. А инвесторы между тем делали миллионные вложения в радиолампы, которые после тридцати лет развития переживали бум, – конец ему положит именно новое изобретение.

Потесненная лампа

До середины ХХ века казалось, что электронная лампа навсегда заняла место в радиоэлектронике. Она работала везде: в радиоприемниках и телевизорах, магнитофонах и радарах. Радиоэлектронная лампа сильно потеснила кристаллический детектор Брауна, оставив ему место только в детекторных приемниках. Удалось ей также составить конкуренцию и кристадину Лосева, – это был прообраз будущих полупроводниковых

транзисторов.


Копия первого в мире работающего транзистора

Но у лампы был большой недостаток – ограниченный срок службы. Необходимость создания нового элемента с неограниченным временем действия становилась в радиоэлектронике все острее. Но, как не парадоксально, разработка полупроводниковых приборов тормозилась, кроме объективных причин, еще и субъективными – инерцией мышления самих ученых. Достаточно сказать, что лабораторию американской компании «Bell telefon», где проводились исследования со сверхчистым германием, коллеги пренебрежительно называли «хижиной ненужных материалов».

Давние конкуренты

Эксперты, впервые увидев пластинку германия с присоединенными к ней проводниками, заявили: «Такой примитив никогда не сможет заменить лампу». И все же, не обращая внимания на все преграды,

30 июня 1948 года компания «Bell telefon» впервые публично продемонстрировала твердотельный усилитель – точечный транзистор. Его годом раньше разработали сотрудники Джон Бардин и Уолтер Браттейн под руководством Уильяма Шокли.

Транзисторный радиоприемник 1959 года

На вопрос журналиста: «Как вы этого достигли?», Уильям Шокли ответил: «Транзистор создан в результате соединения человеческих усилий, потребностей и обстоятельств».

Название «транзистор» происходит от английского слова TRANsferreSISTance, а окончание слова – «OR« соответствует раннее появившимся радиоэлементам – «термистор и варистор» и дал его Джон Пирс. В основе названия заложен тот факт, что прибором можно управлять путем изменения его сопротивления.

Бардин Шокли и Браттейн в лаборатории Bell, 1948 год

В 1956 году трем американским ученым за это открытие была присуждена Нобелевская премия в области физики. Интересно, что когда Джон Бардин опоздал на пресс-конференцию по поводу присуждения ему этой премии, то войдя в зал, в свое оправдание сказал: «Прошу извинить меня, но я не виноват, так как не мог попасть в гараж: отказал транзистор в электронном замке».

Транзисторы в музыке

Уильям Шокли не остановился на достигнутом и разработал еще несколько новых типов транзисторов. К этим трудам своего сотрудника эксперты компании проявили скепсис. Более дальновидными оказались специалисты японской фирмы «SONY», она приобрела лицензию на эти транзисторы.

Полностью вытеснить радиолампу транзистору пока еще не удалось. Можно, наверное, утверждать, что полупроводниковые приборы и электронные лампы будут сосуществовать еще долго, не заменяя друг друга, а дополняя, и занимать то место в радиоэлектронике, где они дают наибольший эффект.

Современный макет транзистора Бардина и Браттейна

Не составляет исключение и музыкальная индустрия, так как звучание транзисторов и ламп серьезно отличается друг от друга. Очевидно то, что и варианты применения техники, построенной на столь несхожих компонентах, должны отличаться. Видимо, в каких-то случаях предпочтительней лампа, а в каких-то – транзистор.

При современном развитии электроники существует возможность сделать звук транзисторного прибора теплым, а лампового – достоверным. Такая техника существует, но стоит очень дорого.

Все же есть надежда, что в будущем лампа и транзистор станут жить дружно, дополняя друг друга и радуя потребителей. Отзывы же о комбинированной аппаратуре на сегодня очень обнадеживающие.

 

vmiremusiki.ru

История изобретения транзистора

Транзисторы и его путь изобретения

Мы все знаем, что «транзистор» является неотъемлемой частью любой электронной цепи или устройства. Очень редко можно увидеть схемы, построенные по крайней мере без одного транзистора. Это полупроводниковый прибор используется для целей переключения или для целей усиления в электронных устройствах. Они бывают в отдельном корпусе или в сочетании с интегральными микросхемами. Транзисторы бывают двух типов PNP и NPN. Наиболее часто используются транзисторы NPN.

В этой статье позволяет искать глубоко в интересную историю изобретения транзистора. Также имеется статья по Истории изобретения соединения PN.

Родители транзисторов

22 октября 1925 Австрийск-Венгерский физик, Юлиуса Эдгара Лилиенфельда записал первый патент для транзисторов в Канаде. Но, как он не сделал каких-либо научных публикаций относительно изобретения транзистора, отрасли игнорировать его работу. Тем не менее он имел большую роль в изобретении полевой транзистор. После работ Джулиус, в 1934, немецкий физик, Оскар Хайль отмечен другой патент на полевой транзистор. Хотя не выводы были сделаны в то время, позже исследования показывают, что Юлий Лилиенфельд транзистор дал отличный результат и получить. Джон Бардин, Уильям Брэдфорд Шокли и Уолтер Браттейн сделал параллельных исследований с Германий.

560px-Julius_Edgar_Lilienfeld_1881-1963Какова была необходимость?

Вы можете догадаться, что сделали эти люди работают так религиозно на транзисторы? Есть роль, которую играет кристаллах германий позади экрана! Конечная цель исследований было производить чистый Германий кристалл диода смеситель, который был использован в РЛС. Эти радары служил цели смеситель частоты.

Достижение с Германий

Университет Пердью доказал успех в производстве чистого и Германий стандарт качества полупроводниковых кристаллов. Как трубка на основе технологии не достаточно быстро, они пытались с полупроводниковые диоды. Узнать больше о этот диод, они пытались, оформляя триод; Однако они нашли этот процесс будет очень утомительным.

Bardeen_Shockley_Brattain_1948

Достижений с триода

Джон Бардин развитые поверхности физика, которая является результатом исследований и странное поведение предыдущего исследования. Бардин и Браттейн удалось сделать работы устройства и затем Шокли попытался разработать устройство полупроводникового триода на основе.

Что является базой для изобретения?

Принцип изобретения транзистора лежит на понимание подвижность электронов. Если поток электронов от эмиттера к коллектору может контролироваться одним так или иначе, усилитель может быть построен диода! Это казалось очень сложно, но Браттейн сделал шаг. Когда команда работает на создание такого устройства, было много недостатков в исследованиях. Во времена работала система, и иногда он неожиданно перестал работать.

И какие могут быть решения?

Если есть проблема, должно быть решение. Когда не работает настройка был помещен на воде, к счастью, он начал работать! Из-за чистой обвинения будет двигаться электроны в любой одной части кристаллов. Как противоположными зарядами, более вероятно, чтобы привлечь, электроны в излучателей и отверстия в коллекторы, как правило, двигаться в направлении поверхности кристалла. Противоположный заряд был получен из воздуха или воды. Эти чистые расходы могут быть легко оттеснили от применения очень мало количество заряда от часть кристалла. Максимальная инъекции электронов, что было необходимо промыть обвинения тогда был заменен с минимальным запасом электронов. Таким образом понимание исследователи проложили путь для решения проблемы. Нет никакой необходимости двух отдельных или отдельных полупроводники; Вместо этого немного больше одной поверхности может использоваться в качестве замены.

Новая система

В новом изобретении эмиттер и коллектор были расположены в верхней части которой были близко друг к другу и свинца управления был сделан на базе кристалл. На применении текущего, электронов или дырок от эмиттеров и коллекторов были очищены, по всему полу дирижер и они были собраны в дальнем конце поверхности кристалла.

Первый когда-либо транзистор

Replica-of-first-transistor

Хотя есть множество эволюций транзистора, первый транзистор был сделан после многих неудач. BELL laboratories телефон пытался на этот процесс и сталкиваются с нет успех. Изобретение транзистора точки контакт-это еще одна интересная история. Было установлено, что, когда контакты были более тесно, системы или Настройка стала еще более хрупким. Золото катушки был вставлен в конце пластиковый клин. Затем он был сокращен с помощью бритвы на кончике. В результате два близко расположенных червонцев. Было установлено, что тока начали поступать когда напряжения был применен на другой стороне кристалла, после того, как пластик был толкаемых вниз поверхность этого кристалла. Таким образом был изобретен транзистор контактной точки.

Это было 16 декабря 1947 года, было сделано двойной точкой контакта транзистор, создавая контакт с поверхностью Германий. Этот Германий был ранее анодированного до 90 вольт и несколько золотых пятен были испарялась. При нажатии золотые пятна на голой поверхности, на золото был установлен связаться поверхности идеально. Вопросы были разделены на расстоянии около 4 X 10-3 см. Среди две точки одна была использована как сетки и другой был использован как плита. Браттейн и Мур показал набор до несколько их коллег и изобретение транзистора было объявлено на 23РД декабря 1947 года.

Уильям Брэдфорд Шокли, Джон Бардин и Уолтер Хаузер Браттейн были награждены Нобелевской премией в 1956 году для этого преобразования жизни исследования на полупроводниках и их открытия (вместо изобретения) транзистора.

Помимо Уильям Брэдфорд Шокли, Джон Бардин и Браттейн, Уолтер Хаузер двенадцать больше людей сказали принимать непосредственное участие в изобретении транзисторов.

Transistron

В 1948 году Герберт Matare и Генрих Уэлкер применяется для патента на прочной основе транзисторов, которые назывались transistrons. Поскольку там не было каких-либо объявление от Белл, было объявлено, что transistrons были разработаны независимо друг от друга. Эти transistrons были коммерчески изготовлено и был использован в французской телефонной компании.

radioschema.ru

Транзистор — Википедия

Материал из Википедии — свободной энциклопедии

Дискретные транзисторы в различном конструктивном оформлении

Транзи́стор (англ. transistor), полупроводнико́вый трио́д — радиоэлектронный компонент из полупроводникового материала, обычно с тремя выводами[1], способный от небольшого входного сигнала управлять значительным током в выходной цепи, что позволяет его использовать для усиления, генерирования, коммутации и преобразования электрических сигналов. В настоящее время транзистор является основой схемотехники подавляющего большинства электронных устройств и интегральных микросхем.

Транзисторами также называются дискретные электронные приборы, которые, выполняя функцию одиночного транзистора, имеют в своем составе много элементов, конструктивно являясь интегральной схемой, например составной транзистор или многие транзисторы большой мощности[2].

Транзисторы по структуре, принципу действия и параметрам делятся на два класса — биполярные и полевые (униполярные). В биполярном транзисторе используются полупроводники с обоими типами проводимости, он работает за счет взаимодействия двух, близко расположенных на кристалле, p-n переходов и управляется изменением тока через база-эмиттерный переход, при этом вывод эмиттера всегда является общим для управляющего и выходного токов. В полевом транзисторе используется полупроводник только одного типа проводимости, расположенный в виде тонкого канала, на который воздействует электрическое поле изолированного от канала затвора[3], управление осуществляется изменением напряжения между затвором и истоком. Полевой транзистор, в отличие от биполярного, управляется напряжением, а не током. В настоящее время в аналоговой технике доминируют биполярные транзисторы (БТ) (международный термин — BJT, bipolar junction transistor). В цифровой технике, в составе микросхем (логика, память, процессоры, компьютеры, цифровая связь и т. п.), напротив, биполярные транзисторы почти полностью вытеснены полевыми. В 1990-е годы был разработан новый тип гибридных биполярно-полевых транзисторов — IGBT которые сейчас широко пр

ru.wikipedia.org

Компьютерра: Транзистор – дитя многих родителей

АрхивСтатьи

автор : Алексей Левин   09.12.2005

Это величайшее достижение технической мысли XX века, как правило,связывают с именами Джона Бардина, Уолтера Браттейна и Уильяма Шоклиа. Однако на самом деле все было гораздо запутаннее и интереснее…

Трехэлектродный полупроводниковый усилитель электрических сигналов, ныне известный всему миру как транзистор, справедливо считают одним из величайших достижений научно-технической мысли двадцатого столетия. Оно было отмечено Нобелевской премией по физике, которую в 1956 г. получили Джон Бардин (John Bardeen), Уолтер Браттейн (Walter Brattain) и Уильям Шокли (William Shockley). Практически все источники связывают создание транзистора с именами этих и только этих американских ученых.

Однако на самом деле все гораздо запутаннее и интереснее. У американской тройки в разных странах были предшественники, наблюдавшие твердотельное усиление электрического тока и конструировавшие приборы, основанные на этом эффекте. Имелись также и современники-европейцы, которые не только независимо изобрели транзистор, но и организовали его промышленный выпуск. Давайте перелистаем страницы этой полузабытой летописи.

“ББШ” в исторической перспективе

Каноническая версия истории изобретения транзистора выглядит так. В 1925 г. гигантская корпорация American Telephone & Telegraph открыла научный и опытно-конструкторский центр Bell Laboratories. Во второй половине тридцатых годов его директор Мервин Келли (Mervin Kelly) задумал серию исследований, направленных на замену ламповых усилителей полупроводниковыми. Эту работу возглавил Джозеф Бекер (Joseph Becker), который привлек к ней Шокли и Браттейна (первый был теоретиком, а второй – блестящим экспериментатором). Однако все попытки построить твердотельный усилитель ни к чему не привели и после Пирл-Харбора были положены в долгий ящик. В военные годы Браттейн принимал участие в разработке сонаров, а Шокли занимался противолодочным вооружением и планированием рейдов стратегической авиации. В 1945 г. оба возвратились в Белловские лаборатории. В это время Келли решил создать под руководством Шокли сильную команду из физиков, химиков и инженеров для работы над твердотельными приборами. В нее вошли Браттейн и физик-теоретик Джон Бардин, который в военные годы тоже занимался оборонными исследованиями.

К тому времени было хорошо известно, что электрическое поле может влиять на проводимость полупроводников. Шокли придумал (не исключено, что не вполне самостоятельно) схему полупроводникового усилителя, основанного на этом эффекте. Но поскольку устройство упорно отказывалось действовать, он поручил Бардину и Браттейну довести его до ума, а сам практически устранился от этой темы. Пару лет дело не двигалось, однако в конце 1947 г. ученым наконец-то улыбнулась удача. 16 декабря в лаборатории Браттейна заработал твердотельный усилитель, который и считают первым в мире транзистором. Устроен он был очень просто – металлическая подложка-электрод и лежащая на ней пластинка германия с двумя тончайшими золотыми контактами, отстоящими друг от друга на расстояние не шире волоска. Начальство Белловских лабораторий придержало информацию об этом изобретении и обнародовало ее в специальном пресс-релизе лишь 1 июля 1948 г.

Поначалу сотрудники лаборатории именовали новый прибор германиевым триодом, но для широкой публики требовалось название попроще и покрасивее. Бардин с Браттейном хотели найти слово, заканчивающееся на “тор”, по аналогии с резистором и варистором, но не смогли ничего придумать. Тогда Браттейн обратился за помощью к инженеру-электронщику Джону Пирсу (John Pierce), который отлично владел языком и позднее приобрел известность как популяризатор науки и писатель-фантаст. Пирс вспомнил, что одним из параметров вакуумного триода служит крутизна характеристики, по-английски transconductance. Он предложил назвать аналогичный параметр полупроводникового усилителя transresistance, и тут его озарило: transistor!

Транзисторы, изобретенные Бардином и Браттейном, сейчас именуют точечными. В середине января 1948 г. Шокли предложил принципиальную схему более эффективного твердотельного усилителя со слоеной структурой – биполярного транзистора. “В железе” эту идею воплотили сотрудники Белловских лабораторий Гордон Тил (Gordon Teal) и Морган Спаркс (Morgan Sparks), причем лишь в 1950 г. Так что свою часть Нобелевской премии Шокли заработал честно, пусть в создании “самого первого” транзистора он практически не участвовал.

А что было раньше?

Читателям “Компьютерры” вряд ли нужно рассказывать, как работают твердотельные приборы. Для полноты картины стоит напомнить, что в полупроводниках электрический ток переносят не только электроны проводимости, но и дырки, специфические квазичастицы, которые во внешнем электрическом поле движутся противоположно электронам и, следовательно, ведут себя как объекты с положительным зарядом. В идеальных кристаллах концентрация электронов проводимости строго равна концентрации дырок. Правда, отсюда не следует, что они вносят равный вклад в электропроводность, поскольку их подвижность может оказаться различной (к примеру, у чистого германия основная проводимость – электронная).

В реальных полупроводниках это равенство всегда нарушается из-за дефектов кристаллической решетки и наличия примесных атомов. Примеси донорного типа отдают кристаллу избыточные электроны и этим увеличивают электронную проводимость. Примеси-акцепторы, напротив, захватывают валентные электроны кристалла-хозяина и повышают концентрацию дырок и дырочную проводимость. Прицельное легирование различных участков полупроводника донорными и акцепторными примесями создает области как с электронной, так и, соответственно, с дырочной проводимостью.

Внешние электрические поля и токи могут изменять плотность носителей обоих типов и оказывать влияние на электропроводность полупроводника. Этот эффект объясняет действие транзистора: управляющие электрические импульсы снижают сопротивление кристалла в области прохождения основного тока и потому увеличивают силу этого тока. В частности, собранный Браттейном и Бардином прибор усиливал ток из-за того, что на поверхности германиевой пластинки возникал слой с дырочной проводимостью. В этот слой через управляющий электрод опять-таки закачивались дырки, что и приводило к росту электропроводности кристалла.

Транзистор Браттейна и Бардина – чрезвычайно простое устройство. Его единственным полупроводниковым компонентом был кусочек чистого германия, добыть который не составляло труда. А вот техника легирования полупроводников в конце сороковых годов еще находилась во младенчестве, в Белловских лабораториях владели ею не слишком хорошо, и поэтому изготовление транзистора “по Шокли” заняло столь долгое время. Напрашивается вопрос: неужели до декабря 1947 г. точечный транзистор никогда не выходил из чьих-нибудь рук, хотя бы и случайно?

Оказывается, все так и было. В начале XX века были популярны детекторные приемники, в которых для выпрямления тока использовался полупроводниковый кристалл с прижатой к нему металлической иглой. Порой кое-кто из любопытства “тыкал” в зону контакта вторым электродом и, случалось, наблюдал усиление тока! Историк радиотехники Лоуренс Пиззелла (Lawrence Pizzella) отмечает, что особенно этим делом увлекались корабельные радисты. Есть сведения, что в первой половине тридцатых годов контактные трехэлектродные полупроводниковые усилители изобрели и собрали по крайней мере двое радиолюбителей – канадец Ларри Кайзер (Larry Kayser) и тринадцатилетний новозеландский школьник Роберт Адамс (Robert Adams). Достоверно известно, что несколькими годами позже непрактичный, но все-таки действующий кристаллический усилитель построили немцы Роберт Поль (Robert Pohl), чья книга “Механика, акустика и учение о теплоте” переведена на русский язык, и Рудольф Хилш (Rudolf Hilsch). Подчеркнем, что изобретенный в 1922 г. лаборантом Нижегородской радиолаборатории Олегом Лосевым знаменитый кристадин был двухэлектродным устройством, и потому на роль предшественника контактного транзистора он не годится. Чуть позднее немец Юлиус Лилиенфельд (Julius Lilienfeld) запатентовал полупроводниковый усилитель, который можно считать дедушкой современных полевых транзисторов. Однако построить работающий прибор Лилиенфельд не сумел, ибо не располагал достаточно чистыми образцами полупроводников. В довоенные годы в Германии и Англии было выдано еще несколько аналогичных патентов. Короче говоря, к транзистору, как и в Рим, вело множество дорог.

А что было тогда же?

Но самое интересное в другом. Недавно бельгийский историк Арманд Ван Дормел (Armand Van Dormael) и профессор Стэнфордского университета Майкл Риордан (Michael Riordan) обнаружили, что в конце сороковых годов в Европе был изобретен и даже запущен в серию родной брат транзистора Бардина-Браттейна. Собственно говоря, секретной эта история никогда и не была, просто память о ней давно стерлась.

Европейских изобретателей точечного транзистора звали Герберт Франц Матаре (Herbert Franz Matare) и Генрих Иоганн Велкер (Heinrich Johann Welker). Первый посвятил себя экспериментальной физике, второй же был универсалом – и теоретиком, и экспериментатором. Оба были немцами, причем ровесниками – Матаре родился 22 сентября, а Велкер 9 сентября 1912 г. В 1939–46 гг. Матаре работал в фирме Telefunken, где занимался микроволновой электроникой и участвовал в разработке радиолокаторов. Велкер, ученик знаменитого физика-теоретика Арнольда Зоммерфельда (Arnold Sommerfeld), во второй половине тридцатых годов был доцентом Мюнхенского университета, а в военные годы трудился в лаборатории Люфтваффе. После войны и Матаре, и Велкер перебрались в Париж в недавно открытый филиал американской корпорации Westinghouse. В тамошней полупроводниковой лаборатории и началось их сотрудничество.

Толчком к работе, завершившейся изобретением транзистора, послужило наблюдение, которое Матаре сделал еще в Германии. В школьные годы он был страстным радиолюбителем и не раз собирал детекторные приемники. Давний опыт пригодился ему в Telefunken, где он работал над полупроводниковыми выпрямителями для радаров. В 1944 г. Матаре сконструировал прибор, который назвал дуодиодом. Это была пара работающих в параллель точечных выпрямителей, использующих одну и ту же пластинку германия. При правильном подборе параметров устройство подавляло шумы в приемном блоке локатора. Вот тогда-то Матаре обнаружил, что колебания напряжения на одном электроде могут обернуться изменением силы тока, проходящего через второй электрод. Вообще-то описание подобного эффекта содержалось еще в патенте Лилиенфельда, и не исключено, что Матаре знал об этом. Как бы то ни было, он всерьез заинтересовался этим явлением и задумался над его причинами. Однако в январе 1945 г. советские войска подошли к Бреслау, вблизи которого после перевода из Берлина располагалась лаборатория Telefunken. Рабочие записи сотрудников сожгли, а их самих эвакуировали в Тюрингию, где уже было не до исследований.

Велкер пришел к идее транзистора иным путем. В тридцатые годы он занимался квантовой физикой металлов и хорошо разбирался в зонной теории твердого тела, которая впервые позволила понять особенности прохождения тока по полупроводникам. В самом начале 1945 г. Велкер пришел к схеме твердотельного усилителя, очень похожего на прибор Шокли. В марте он даже успел его собрать и испытать, но ему повезло не больше, чем американцам. Тогда на этом все и закончилось.

В Париже Матаре и Велкеру была поручена организация промышленного изготовления полупроводниковых выпрямителей для французской телефонной сети. В конце 1947 г. эти устройства пошли в серию, и у коллег появилось время для возобновления исследований. Матаре вернулся к своим опытам с дуодиодом, на сей раз заручившись помощью Велкера. Вдвоем они смогли изготовить пластинки из гораздо более чистого германия, нежели тот, с которым работал Матаре, получили стабильный эффект усиления и в начале июня 1948 г. создали надежно работающий точечный транзистор. Он появился на свет примерно на полгода позже прибора Браттейна и Бардина, но абсолютно независимо от него. О работе американцев Матаре с Велкером, разумеется, и слыхом не слыхивали – напомним, что она была опубликована лишь 1 июля.

После того как из США пришло сообщение об успехах Белловских лабораторий, Матаре и Велкер решили перейти к активным действиям. Они пригласили в свою лабораторию министра почт Эжена Тома (Eugene Thomas) и продемонстрировали ему полупроводниковый усилитель в действии. Тот посоветовал ученым срочно подготовить патентную заявку на изобретение, что они и сделали уже в августе (французское Бюро патентов изучало эти документы очень долго и утвердило лишь в марте 1952 г.). Начальственный гость порекомендовал изобретателям назвать свой прибор не так, как американские конкуренты, и сам же предложил для него имя – транзитрон. В мае 1949 г. Тома созвал пресс-конференцию и лично рассказал журналистам о работе Матаре и Велкера, назвав ее “блестящим достижением французской науки” (то, что оба ученых были немцами, министра отнюдь не смутило). Репортеры не захотели отставать и громко провозгласили их “отцами транзитрона”.

Когда транзитрон показывали прессе, он уже не был чисто лабораторным изделием. К тому времени в парижском филиале Westinghouse был организован небольшой цех, где изготавливали эти приборы. Любопытно, что они работали лучше и дольше американского аналога – за счет более тщательной сборки. Покупало их все то же Министерство почт для установки на новых телефонных линиях.

Однако популярность транзитрона оказалась недолгой. Французские власти вскоре потеряли интерес к субсидированию твердотельной электроники и решили сосредоточить наличные (и тогда не очень богатые) ресурсы на ядерной физике. Лаборатория Матаре и Велкера захирела, и в начале пятидесятых годов друзья вернулись на родину, где уже начиналось возрождение науки и высокотехнологичной индустрии. Велкер перешел в лабораторию концерна Siemens в Эрлангене, которую со временем возглавил. Матаре перебрался в Дюссельдорф, где стал президентом небольшой фирмы Intermetall, выпускавшей полупроводниковые приборы. В 1953 г. под его руководством был сконструирован и изготовлен опытный образец первого в мире транзисторного приемника, который вскоре был показан на радиовыставке в Дюссельдорфе. Однако в том же году компанию перекупил американский концерн, срезавший все ассигнования на исследовательскую работу. Матаре не захотел с этим мириться и эмигрировал в Америку.

Что с ними стало

Один из создателей европейского транзистора жив по сей день. Герберт Матаре по приезде в США работал в нескольких электронных корпорациях, а потом предпочел карьеру независимого технического эксперта. Даже сейчас, в свои 93 года, он продолжает консультировать калифорнийскую фирму Pyron, которая специализируется на солнечной энергетике.

Генрих Велкер более четверти века провел в Эрлангене, став одним из первых разработчиков полупроводниковых приборов на гетеропереходах. В 1977 г. он вышел в отставку и через четыре года скончался. В 1976 г. Корпорация Siemens учредила золотую медаль его имени, которую присуждают за исследования интерметаллических полупроводников (в списке награжденных – Жорес Алферов).

– Из журнала “Компьютерра”

old.computerra.ru

История открытия p-n перехода, или с чего начинался транзистор

1956 год. В Стокгольмском концертом зале три американских ученых Джон Бардин, Вильям Шокли и Уолтер Браттейн получают Нобелевскую премию «за исследования полупроводников и открытие транзисторного эффекта» –  настоящий прорыв в области физики.  Отныне их имена навсегда вписаны в мировую науку. Но более чем за 15 лет до этого, в начале 1941 года молодой украинский ученый Вадим Лашкарев экспериментально обнаружил и описал в своей статье физическое явление, которое, как оказалось, впоследствии получило название p-n переход (p-positive, n-negative). Он же в своей статье раскрыл и механизм инжекции – важнейшего явления, на основе которого действуют полупроводниковые диоды и транзисторы.

Официально история транзистора звучит так: первое сообщение в печати о появлении полупроводникового усилителя-транзистора появилось в американской прессе в июле 1948 года. Его изобретатели – американские ученые Бардин и Браттейн. Они пошли по пути создания так называемого точечного транзистора на базе кристалла германия n-типа. Первый обнадеживающий результат они получили в конце 1947 г. Однако прибор вел себя неустойчиво, его характеристики отличались непредсказуемостью, и поэтому практического применения точечный транзистор не получил.

Прорыв произошел в 1951 году, когда Вильям Шокли создал свой более надежный плоскостной транзистор n-p-n типа, который состоял из трех слоев германия n, p и n типа, общей толщиной 1 см. Уже через несколько лет значимость изобретения американских ученых стала очевидной, и они были отмечены Нобелевской премией.

Задолго до этого, еще перед началом Великой Отечественной войны в 1941 году Лашкарев проводит  серию успешных экспериментов и открывает р-n переход и раскрывает механизм электронно-дырочной диффузии, на основе которых под его руководством в начале 50-х годов, были созданы первые в Украине (тогда часть СССР) полупроводниковые триоды – транзисторы.

Говоря научным языком, p-n переход – это  область пространства на стыке двух полупроводников p- и n-типа, в которой происходит переход от одного типа проводимости к другому. Электрическая проводимость материала зависит от того, насколько прочно ядра его атомов удерживают электроны. Так, большинство металлов являются хорошими проводниками, поскольку имеют огромное количество слабосвязанных с атомным ядром электронов, которые легко притягиваются положительными зарядами и отталкиваются отрицательными. Движущиеся электроны и есть носители электрического тока. С другой стороны, изоляторы, не пропускают ток, так как электроны в них прочно связаны с атомами и не реагируют на воздействие внешнего электрического поля.

Полупроводники ведут себя иначе. Атомы в кристаллах полупроводников образуют решетку, внешние электроны которой связаны силами химической природы. В чистом виде полупроводники подобны изоляторам: они или плохо проводят ток, или не проводят вообще. Но стоит добавить в кристаллическую решетку небольшое количество атомов определенных элементов (примесей), как их поведение кардинально меняется.

В некоторых случаях атомы примеси связываются с атомами полупроводника, образуя лишние электроны, избыток свободных электронов придает полупроводнику отрицательный заряд. В других случаях атомы примеси создают так называемые “дырки”, способные “поглощать” электроны. Таким образом возникает недостаток электронов и полупроводник становится положительно заряженным. При соответствующих условиях полупроводники могут проводить электрический ток. Но в отличие от металлов они проводят его двояким образом. Отрицательно заряженный полупроводник стремится избавиться от лишних электронов, это проводимость  n-типа (от negative – отрицательный). Носителями заряда в полупроводниках такого типа являются электроны. С другой стороны, положительно заряженные полупроводники притягивают электроны, заполняя “дырки”. Но, когда заполняется одна “дырка” рядом возникает другая – покинутая электроном. Таким образом, “дырки” создают поток положительного заряда, который направлен в сторону, противоположную движению электронов. Это проводимость р-типа (от positive – положительный). В полупроводниках обоих типов так называемые не основные носители заряда (электроны в полупроводниках р-типа и “дырки” в полупроводниках п-типа) поддерживают ток в направлении, обратном движению основных носителей заряда.

Внесение примесей в кристаллы германия или кремния позволяет создать полупроводниковые материалы с желаемыми электрическими свойствами. Например, введение незначительного количества фосфора порождает свободные электроны, и полупроводник приобретает проводимость n-типа. Добавление атомов бора, наоборот, создает дырки, и материал становится полупроводником р-типа.

В дальнейшем оказалось, что полупроводник, в который введены примеси, обретает свойство пропускать электрический ток, т.е. обладает проводимостью, величина которой может при определенном воздействии изменяется в широких пределах.

Когда в США был найден способ для осуществления такого воздействия электрическим путем, появился транзистор (от первоначального названия трансрезистор). Тот факт, что 1941 году Лашкарев опубликовал результаты своих открытий в статьях «Исследование запирающих слоев методом термозонда» и «Влияние примесей на вентильный фотоэффект в закиси меди» (в соавторстве со своей коллегой  К.М. Косоноговой), в связи с военным временем не попал в поле зрения научного мира. Предположительно, начавшаяся  «холодная война» и опустившийся на Советский Союз «железный занавес» сыграли свою роль в том, что Лашкарев так и не стал Нобелевским лауреатом. Кстати сказать, Лашкарев разработал, находясь в Сибири во время войны, купроксные диоды, которые применялись в армейских радиостанциях и добился их промышленного выпуска.

В дополнение к двум первым работам, Лашкарев в соавторстве с В.И.Ляшенко в 1950 году опубликовал статью «Электронные состояния на поверхности полупроводника», в которой были описаны результаты исследований поверхностных явлений в полупроводниках, ставшие основой работы интегральных схем на базе полевых транзисторов.

В 50-е годы Лашкареву также удалось решить проблему массовой выбраковки монокристаллов германия. Он по новому сформулировал технические требования к этому элементу, так как предыдущие были неоправданно завышены. Тщательные исследования, проведенные Лашкаревым и Миселюком в Институте физики АН УССР в Киеве, показали, что уже достигнутый уровень технологии монокристаллов германия позволял создать точечные диоды и триоды с необходимыми характеристиками. Это позволило ускорить промышленный выпуск первых в бывшем СССР германиевых диодов и транзисторов.

Так, именно под руководством Лашкарева в начале 50-х в СССР было организовано производство первых точечных транзисторов. Сформированная В.Е. Лашкаревым  научная школа в области физики полупроводников становится одной из ведущих в СССР. Признанием выдающихся результатов стало создание в 1960 г. Института полупроводников АН УССР, который возглавил В.Е. Лашкарев.

“Настанет время, когда на этом кристаллике, что нам показал Вадим Евгеньевич, можно будет разместить всю ЭВМ!”, – напророчил академик Сергей Лебедев, создавший первый в континентальной Европе компьютер – МЭСМ. Так и случилось. Но это произошло через двадцать с лишним лет, когда появились большие интегральные схемы БИС, содержащие на кристалле десятки и сотни тысяч транзисторов, а позднее – сверхбольшие интегральные схемы СБИС со многими миллионами компонентов на кристалле, открывшие человеку путь в информационную эру.

ru.uacomputing.com

60 лет транзистору.

Главная  → Технологии  → 60 лет транзистору

Б. М. Малашевич

Трудно найти такую отрасль науки и техники, которая так же стремительно развивалась и оказала такое–же огромное влияние на все стороны жизнедеятельности человека, каждого отдельного и общества в целом, как электроника.

Как самостоятельное направление науки и техники электроника сформировалась благодаря электронной лампе. Сначала появились радиосвязь, радиовещание, радиолокация, телевидение, затем электронные системы управления, вычислительная техника и т.п. Но электронная лампа имеет неустранимые недостатки: большие габариты, высокое энергопотребление, большое время вхождения в рабочий режим, низкую надежность. В результате через 2-3 десятка лет существования ламповая электроника во многих применениях подошла к пределу своих возможностей. Электронной лампе требовалась более компактная, экономичная и надежная замена. И она нашлась в виде полупроводникового транзистора. Его создание справедливо считают одним из величайших достижений научно-технической мысли двадцатого столетия, коренным образом изменившим мир. Оно было отмечено Нобелевской премией по физике, присужденной в 1956 г. американцам Джону Бардину, Уолтеру Браттейну и Уильяму Шокли. Но у нобелевской тройки в разных странах были предшественники .

И это понятно. Появление транзисторов – результат многолетней работы многих выдающихся ученых и специалистов, которые в течении предшествующих десятилетий развивали науку о полупроводниках. Советские ученые внесли в это общее дело огромный вклад. Очень много было сделано школой физики полупроводников академика А.Ф. Иоффе – пионера мировых исследований по физике полупроводников. Еще в 1931 году он опубликовал статью с пророческим названием: «Полупроводники – новые материалы электроники». Немалую заслугу в исследование полупроводников внесли Б.В. Курчатов и В.П. Жузе. В своей работе – «К вопросу об электропроводности закиси меди» в 1932 году они показали, что величина и тип электрической проводимости определяется концентрацией и природой примеси. Советский физик Я.Н. Френкель создал теорию возбуждения в полупроводниках парных носителей заряда: электронов и дырок. В 1931 г. англичанину Уилсону удалось создать т еоретическую модель полупроводника, сформулировав при этом основы «зонной теории полупроводников». В 1938 г. Мотт в Англии, Б.Давыдов в СССР, Вальтер Шоттки в Германии независимо друг от друга предложили теорию выпрямляющего действия контакта металл-полупроводник. В 1939 году Б.Давыдов опубликовал работу «Диффузионная теория выпрямления в полупроводниках». В 1941 г. В. Е. Лашкарев опубликовал статью «Исследование запирающих слоев методом термозонда» и в соавторстве с К. М. Косоноговой – статью «Влияние примесей на вентильный фотоэффект в закиси меди». Он описал физику «запорного слоя» на границе раздела «медь – закись меди», впоследствии названного «p-n» переходом. В 1946 г. В. Лошкарев открыл биполярную диффузию неравновесных носителей тока в полупроводниках. Им же был раскрыт механизм инжекции – важнейшего явления, на основе которого действуют полупроводниковые диоды и транзисторы. Большой вклад в исследование свойств полупроводников внесли И.В.Курчатов, Ю.М.Кушнир, Л.Д.Ландау, В.М.Тучкевича, Ж.И.Алферов и др. Таким образом, к концу сороковых годов двадцатого века основы теоретической базы для создания транзисторов были проработаны достаточно глубоко, чтобы приступать к практическим работам.

Рис. Транзитрон Г.Матаре и Г.Велкера

Первой известной попыткой создания кристаллического усилителя в США предпринял немецкий физик Юлиус Лилиенфельд, запатентовавший в 1930, 1932 и 1933 гг. три варианта усилителя на основе сульфида меди. В 1935 г. немецкий у ченый Оскар Хейл получил британский патент на усилитель на основе пятиокиси ванадия. В 1938 г. немецкий физик Поль создал действующий образец кристаллического усилителя на нагретом кристалле бромида калия. В довоенные годы в Германии и Англии было выдано еще несколько аналогичных патентов. Эти усилители можно считать прообразом современных полевых транзисторов. Однако построить устойчиво работающие приборы не удавалось, т.к. в то время еще не было достаточно чистых материалов и технологий их обработки. В первой половине тридцатых годов точечные триоды изготовили двое радиолюбителей – канадец Ларри Кайзер и тринадцатилетний новозеландский школьник Роберт Адамс. В июне 1948 г. (до обнародования транзистора) изготовили свой вариант точечного германиевого триода, названный ими транзитроном, жившие тогда во Франции немецкие физики Роберт Поль и Рудольф Хилш. В начале 1949 г. было организовано производство транзитронов, применялись они в телефонном оборудовании, причем работали лучше и дольше американских транзисторов. В России в 20-х годах в Нижнем Новгороде О.В.Лосев наблюдал транзисторный эффект в системе из трех – четырех контактов на поверхности кремния и корборунда. В середине 1939 г. он писал: «…с полупроводниками может быть построена трехэлектродная система, аналогичная триоду», но увлекся открытым им светодиодным эффектом и не реализовал эту идею. К транзистору вело множество дорог.

Первый транзистор

Слава направо: Уильям Шокли,
Джон Бардин (сидит), Уолтер Бреттейн.
Фото из http://gete.ru/page_140.html

Выше описанные примеры проектов и образцов транзисторов были результатами локальных всплесков мысли талантливых или удачливых людей, не подкрепленные достаточной экономической и организационной поддержкой и не сыгравшие серьезной роли в развитии электроники. Дж. Бардин, У. Браттейн и У. Шокли оказались в лучших условиях. Они работали по единственной в мире целенаправленной долговременной (более 5 лет) программе с достаточным финансовым и материальным обеспечением в фирме Bell Telephone Laboratories, тогда одной из самых мощных и наукоемких в США. Их работы были начаты еще во второй половине тридцатых годов, работу возглавил Джозеф Бекер, который привлек к ней высококлассного теоретика У. Шокли и блестящего экспериментатора У. Браттейна. В 1939 г. Шокли выдвинул идею изменять проводимость тонкой пластины полупроводника (оксида меди), воздействуя на нее внешним электрическим полем. Это было нечто, напоминающее и патент Ю. Лилиенфельда, и позже сделанный и ставший массовым полевой транзистор. В 1940 г. Шокли и Браттейн приняли удачное решение ограничить исследования только простыми элементами – германием и кремнием. Однако все попытки построить твердотельный усилитель ни к чему не привели, и после Пирл-Харбора (практическое начало Второй мировой войны для США) были положены в долгий ящик. Шоккли и Браттейн были направлены в исследовательский центр, работавший над созданием радаров. В 1945 г. оба возвратились в Bell Labs. Там под руководством Шокли была создана сильная команда из физиков, химиков и инженеров для работы над твердотельными приборами. В нее вошли У. Браттейн и физик-теоретик Дж. Бардин. Шокли сориентировал группу на реализацию своей довоенной идеи. Но устройство упорно отказывалось работать, и Шокли, поручив Бардину и Браттейну довести его до ума, сам практически устранился от этой темы.

Два года упорного труда принесли лишь отрицательные результаты. Бардин предположил, что избыточные электроны прочно оседали в приповерхностных областях и экранировали внешнее поле. Эта гипотеза подсказала дальнейшие действия. Плоский управляющий электрод заменили острием, пытаясь локально воздействовать на тонкий приповерхностный слой полупроводника.

Первый транзистор У. Браттейна и Дж. Бардина

Однажды Браттейн нечаянно почти вплотную сблизил два игольчатых электрода на поверхности германия, да еще перепутал полярность напряжений питания, и вдруг заметил влияние тока одного электрода на ток другого. Бардин мгновенно оценил ошибку. А 16 декабря 1947 г. у них заработал твердотельный усилитель, который и считают первым в мире транзистором. Устроен он был очень просто – на металлической подложке-электроде лежала пластинка германия, в которую упирались два близко расположенных (10-15 мкм) контакта. Оригинально были сделаны эти контакты. Треугольный пластмассовый нож, обернутый золотой фольгой, разрезанной надвое бритвой по вершине треугольника. Треугольник прижимался к германиевой пластинке специальной пружиной, изготовленной из изогнутой канцелярской скрепки. Через неделю, 23 декабря 1947 г. прибор был продемонстрирован руководству фирмы, этот день и считается датой рождения транзистора. Все были рады результатом, кроме Шокли: получилось, что он, раньше всех задумавший полупроводниковый усилитель, руководивший группой специалистов, читавший им лекции по квантовой теории полупроводников – не участвовал в его создании. Да и транзистор получился не такой, как Шокли задумывал: биполярный, а не полевой. Следовательно на соавторство в «звездном» патенте он претендовать не мог.

Прибор работал, но широкой публике эту внешне несуразную конструкцию показывать было нельзя. Изготовили несколько транзисторов в виде металлических цилиндриков диаметром около 13 мм. и собрали на них «безламповый» радиоприемник. 30 июня 1948 г. в Нью-Йорке состоялась официальная презентация нового прибора – транзистора (от англ. Transver Resistor – трансформатор сопротивлений). Но специалисты не сразу оценили его возможности. Эксперты из Пентагона «приговорили» транзистор к использованию лишь в слуховых аппаратах для старичков. Так близорукость военных спасла транзистор от засекречивания. Презентация осталась почти незамеченной, лишь пара абзацев о транзисторе появилась в «Нью-Йорк Тайме» на 46 странице в разделе «Новости радио». Таким было явление миру одного из величайших открытий XX века. Даже изготовители электронных ламп, вложившие многие миллионы в свои заводы, в появлении транзистора угрозы не увидели.

Позже, в июле 1948 года, информация об этом изобретении появилась в журнале «The Physical Review». Но т олько через некоторое в ремя специалисты поняли, что произошло грандиозное событие, определившее дальнейшее развитие прогресса в мире.

Bell Labs сразу оформила патент на это революционное изобретение, но с технологией было масса проблем. Первые транзисторы, поступившие в продажу в 1948 году, не внушали оптимизма – стоило их потрясти, и коэффициент усиления менялся в несколько раз, а при нагревании они и вовсе переставали работать. Но зато им не было равных в миниатюрности. Аппараты для людей с пониженным слухом можно было поместить в оправе очков! Поняв, что вряд ли она сама сможет справиться со всеми технологическими проблемами, Bell Labs решилась на необычный шаг. В начале 1952 года она объявила, что полностью передаст права на изготовление транзистора всем компаниям, готовым выложить довольно скромную сумму в 25 000 долларов вместо регулярных выплат за пользование патентом, и предложила обучающие курсы по транзисторной технологии, помогая распространению технологии по всему миру. Постепенно росла очевидность важности этого миниатюрного устройства. Транзистор оказался привлекательным по следующим причинам: был дешев, миниатюрен, прочен, потреблял мало мощности и мгновенно включался (лампы долго нагревались). В 1953 г. на рынке появилось первое коммерческое транзисторное изделие – слуховой аппарат (пионером в этом деле выступил Джон Килби из ф. Centralab , который через несколько лет сделает первую в мире полупроводниковую микросхему), а в октябре 1954 г. – первый транзисторный радиоприе мник Regency TR1, в нем использовалось всего четыре германиевых транзистора. Немедленно принялась осваивать новые приборы и индустрия вычислительной техники, первой была фирма IBM . Доступность технологии дала свои плоды – мир начал стремительно меняться.

Польза конструктивного честолюбия

У честолюбивого У.Шокли случившееся вызвало вулканический всплеск его творческой энергии. Хотя Дж. Бардин и У.Браттейн нечаянно получили не полевой транзистор, как планировал Шокли, а биполярный, он быстро разобрался в сделанном. Позднее Шокли вспоминал о своей «страстной неделе», в течение которой он создал теорию инжекции, а в новогоднюю ночь изобрел плоскостной биполярный транзистор без экзотических иголочек.

Что бы создать что-то новое, Шокли по-новому взглянул на давно известное – на точечный и плоскостный полупроводниковые диоды, на физику работы плоскостного «p – n» перехода, легко поддающуюся теоретическому анализу. Поскольку точечный транзистор представляет собой два очень сближенные диода, Шокли провел теоретическое исследования пары аналогично сближенных плоскостных диодов и создал основы теории плоскостного биполярного транзистора в кристалле полупроводника, со держащего два «p – n» перехода. Плоскостные транзисторы обладают рядом преимуществ перед точечными: они более доступны теоретическому анализу, обладают более низким уровнем шумов, обеспечивают большую мощность и, главное, более высокие повторяемость параметров и надежность. Но, пожалуй, главным их преимуществом была легко автоматизируемая технология, исключающая сложные операции изготовления, установки и позиционирования подпружиненных иголочек, а также обеспечивавшая дальнейшую миниатюризацию приборов.

30 июня 1948 г. в нью-йоркском офисе Bell Labs изобретение было впервые продемонстрировано руководству компании. Но оказалось, что создать серийноспособный плоскостной транзистор гораздо труднее, чем точечный. Транзистор Браттейна и Бардина – чрезвычайно простое устройство. Его единственным полупроводниковым компонентом был кусочек относительно чистого и вполне тогда доступного германия. А вот техника легирования полупроводников в конце сороковых годов, необходимая для изготовления плоскостного транзистора, еще находилась в младенчестве, поэтому изготовление серийноспособного транзистора «по Шокли» удалось только в 1951 г. В 1954 году Bell Labs разработала процессы окисления, фотолитографии, диффузии, которые на многие годы стали основой производства полупроводниковых приборов.

Первый кремниевый транзистор, 1950 г.

Точечный транзистор Бардина и Браттейна – безусловно огромный прогресс по сравнению с электронными лампами. Но не он стал основой микроэлектроники, век его оказался короток, около 10 лет. Шокли быстро понял сделанное коллегами и создал плоскостной вариант биполярного транзистора, который жив и сегодня и будет жить, пока существует микроэлектроника. Патент на него он получил в 1951 г. А в 1952 г. У. Шокли создал и поле вой транзистор, так же им запатентованный. Так что свое участие в Нобелевской премии он заработал честно.

Число производителей транзисторов росло как снежный ком. Bell Labs, Shockley Semiconductor, Fairchild Semiconductor, Western Electric, GSI (с декабря 1951 г. Texas Instruments), Motorola, Tokyo Cousin (С 1958 г. Sony), NEC и многие другие.

В 1950 г. фирма GSI разработала первый кремниевый транзистор, а с 1954 г., преобразившись в Texas Instruments , начала его серийное производство.

«Холодная война» и ее влияние на электронику

После окончания Второй мировой войны мир раскололся на два враждебных лагеря. В 1950-1953 гг. эта конфронтация вылилась в прямое военное столкновение – Корейскую войну. Фактически это была опосредованная война между США и СССР. В это же время США готовились к прямой войне с СССР. В 1949 г. в США был разработан опубликованный ныне план «Последний выстрел» (Operation Dropshot), фактически план Третье мировой войны, войны термоядерной. План предусматривал прямое нападение на СССР 1 января 1957 г . В течение месяца предполагалось сбросить на наши головы 300 50-килотонных атомных и 200 000 обычных бомб. Для этого план предусматривал разработку специальных баллистических ракет, подводных атомных лодок, авианосцев и многого другого. Так началась развязанная США беспрецедентная гонка вооружений, продолжавшаяся всю вторую половину прошлого века, продолжающаяся, не столь демонстративно, и сейчас.

В этих условиях перед нашей страной, выдержавшей беспрецедентную в моральном и экономическом отношении четырехлетнюю войну и добившейся победы ценой огромных усилий и жертв, возникли новые гигантские проблемы по обеспечению собственной и союзников безопасности. Пришлось срочно, отрывая ресурсы от измученного войной и голодного народа, создавать новейшие виды оружия, содержать в постоянной боеготовности огромную армию. Так были созданы атомные и водородные бомбы, межконтинентальные ракеты, система противоракетной обороны и многое другое. Наши успехи в области обеспечения обороноспособности страны и реальная возможность получения сокрушительного ответного удара вынудили США отказаться от реализации плана «Dropshot» и других ему подобных.

Одним из последствий «холодной войны» была почти полная экономическая и информационная изоляция противостоящих сторон. Экономические и научные связи были весьма слабы, а в области стратегически важных отраслей и новых технологий практически отсутствовали. Важные открытия, изобретения, новые разработки в любой области знаний, которые могли быть использованы в военной технике или способствовать экономическому развитию, засекречивались. Поставки прогрессивных технологий, оборудования, продукции запрещались. В результате советская полупроводниковая наука и промышленность, развивались в условиях почти полной изоляции, фактической блокады от всего того, что делалось в этой области в США, Западной Европе, а затем и Японии.

Следует также отметить, что советская наука и промышленность во многих направлениях тогда занимала лидирующее в мире положение. Наши истребители в корейской войне были лучше американских, наши ракеты были мощнее всех, в космосе в те годы мы были впереди планеты всей, первый в мире компьютер с производительностью выше 1 млн. оп/с был наш, водородную бомбу мы сделали раньше США, баллистическую ракету первой сбила наша система ПРО и т.п. Отстать в электронике означало потянуть назад все остальные отрасли науки и техники.

Значение полупроводниковой техники в СССР понимали прекрасно, но пути и методы ее развития были иными, чем в США. Руководство страны сознавало, что противостояние в холодной войне можно обеспечить путем развития оборонных систем, управляемых надежной, малогабаритной электроникой. В 1959 году были основаны такие заводы полупроводниковых приборов, как Александровский, Брянский, Воронежский, Рижский и др. В январе 1961 г. было принято Постановление ЦК КПСС и СМ СССР «О развитии полупроводниковой промышленности», в котором предусматривалось строительство заводов и НИИ в Киеве, Минске, Ереване, Нальчике и других городах. Причем базой для создания первых предприятий полупроводниковой промышленности стали совершенно не приспособленные для этих целей помещения (здания коммерческого техникума в Риге, Совпартшколы в Новгороде, макаронная фабрика в Брянске, швейная фабрика в Воронеже, ателье в Запорожье и т.д.). Но вернемся к истокам.

Первые советские транзисторы

В годы, предшествующие изобретению транзистора, в СССР были достигнуты значительные успехи в создании германиевых и кремниевых детекторов. В этих работах использовалась оригинальная методика исследования приконтактной области путем введения в нее дополнительной иглы, вследствие чего создавалась конфигурация, в точности повторяющая точечный транзистор. Иногда при измерениях выявлялись и транзисторные характеристики (влияние одного «p — n» перехода на другой близко расположенный), но их отбрасывали как случайные и неинтересные аномалии. Мало в чем наши исследователи уступали американским специалистам, не было у них лишь одного — нацеленности на транзистор, и великое открытие выскользнуло из рук. Начиная с 1947 г. интенсивные работы в области полупроводниковых усилителей велись в ЦНИИ-108 (лаб. С. Г. Калашникова) и в НИИ-160 (НИИ «Исток», Фрязино, лаб. А. В. Красилова). В 1948 г., группа А. В. Красилова, разрабатывавшая германиевые диоды для радиолокационный станций, также получила транзисторный эффект и попыталась объяснить его. Об этом в журнале «Вестник информации» в декабре 1948 ими была опубликована статья «Кристаллический триод» — первая публикация в СССР о транзисторах. Напомним, что первая публикация о транзисторе в США в журнале «The Physical Review» состоялась в июле 1948 г., т.е. результаты работ группы Красилова были независимы и почти одновременны. Таким образом научная и экспериментальная база в СССР была подготовлена к созданию полупроводникового триода (термин «транзистор» был введен в русский язык в середине 60-х годов) и уже в 1949 г. лабораторией А. В. Красилова были разработаны и переданы в серийное производство первые советские точечные германиевые триоды С1 — С4. В 1950 г. образцы германиевых триодов были разработаны в ФИАНе (Б.М. Вул, А. В. Ржанов, В. С. Вавилов и др.), в ЛФТИ (В.М. Тучкевич, Д. Н. Наследов) и в ИРЭ АН СССР (С.Г. Калашников, Н. А. Пенин и др.).

Первый советские промышленные транзистор:
точечный С1Г (слева) и плоскостный П1А (справа)

В мае 1953 г. был образован специализированный НИИ (НИИ-35, позже – НИИ «Пульсар»), учрежден Межведомственный Совет по полупроводникам. В 1955 г. началось промышленное производство транзисторов на заводе «Светлана» в Ленинграде, а при заводе создано ОКБ по разработке полупроводниковых приборов. В 1956 г. московский НИИ-311 с опытным заводом переименован в НИИ «Сапфир» с заводом «Оптрон» и переориентирован на разработку полупроводниковых диодов и тиристоров.

На протяжении 50-х годов в стране были разработаны ряд новых технологий изготовления плоскостных транзисторов: сплавная, сплавно-диффузионная, меза-диффузионная.

Полупроводниковая промышленность СССР развивалась достаточно быстро: в 1955 г. было выпущено 96 тысяч, в 1957 г. – 2,7 млн, а в 1966 г. – более 11 млн. транзисторов. И это было только начало.

Статья помещена в музей 6.01.2008

www.computer-museum.ru