Транзистор для чайников – Биполярный транзистор. Принцип усиления. Биполярный транзистор принцип работы для чайников

Содержание

Основы на пальцах. Часть 3

Диод
Так работает диод

  Это такая хитрая фиговина, пропускающая ток только в одну сторону. Его можно сравнить с ниппелем. Применяется, например, в выпрямителях, когда из переменного тока делают постоянный. Или когда надо отделить обратное напряжение от прямого. Погляди в схему программатора (там где был пример с делителем). Видишь стоят диоды, как думаешь, зачем? А все просто. У микроконтроллера логические уровни это 0 и 5 вольт, а у СОМ порта единица это минус 12 вольт, а ноль плюс 12 вольт. Вот диод и отрезает этот минус 12, образуя 0 вольт. А поскольку у диода в прямом направлении проводимость не идеальная (она вообще зависит от приложенного прямого напряжения, чем оно больше, тем лучше диод проводит ток), то на его сопротивлении упадет примерно 0.5-0.7 вольта, остаток, будучи поделенным резисторами надвое, окажется примерно 5.5 вольт, что не выходит за пределы нормы контроллера.

Выводы диода называют анодом и катодом. Ток течет от анода к катоду. Запомнить где какой вывод очень просто: на условном обозначнеии стрелочка и палочка со стороны катода как бы рисуют букву К вот, смотри —К|—. К= Катод! А на детали катод обозначается полоской или точкой.

  Есть еще один интересный тип диода – стабилитрон. Его я юзал в одной из прошлых статей. Особенностью его является то, что в прямом направлении он работает как обычный диод, а вот в обратном его срывает на каком либо напряжении, например на 3.3 вольта. Подобно ограничительному клапану парового котла, открывающемуся при превышении давления и стравливающему излишки пара. Стабилитроны используют когда хотят получить напряжение заданной величины, вне зависимости от входных напряжений. Это может быть, например, опорная величина, относительно которой происходит сравнение входного сигнала. Им можно обрезать входящий сигнал до нужной величины или используют его как защиту. В своих схемах я часто ставлю на питание контроллера стабилитрон на 5.5 вольт, чтобы в случае чего, если напряжение резко скакнет, этот стабилитрон стравил через себя излишки. Также есть такой зверь как супрессор. Тот же стабилитрон, только куда более мощный и часто двунаправленный. Используется для защиты по питанию.

Транзистор.
Транзистор на пальцах

  Жуткая вещь, в детстве все не мог понять как он работает, а оказалось все просто.
В общем, транзистор можно сравнить с управляемым вентилем, где крохотным усилием мы управляем мощнейшим потоком. Чуть повернул рукоятку и тонны дерьма умчались по трубам, открыл посильней и вот уже все вокруг захлебнулось в нечистотах. Т.е. выход пропорционален входу умноженному на какую то величину. Этой величиной

является коэффициент усиления.
Делятся эти девайсы на полевые и биполярные.
В биполярном транзисторе есть эмиттер, коллектор и база (смотри рисунок условного обозначения). Эмиттер он со стрелочкой, база обозначается как прямая площадка между эмиттером и коллектором. Между эмиттером и коллектором идет большой ток полезной нагрузки, направление тока определяется стрелочкой на эмиттере. А вот между базой и эмиттером идет маленький управляющий ток. Грубо говоря, величина управляющего тока влияет на сопротивление между коллектором и эмиттером. Биполярные транзисторы бывают двух типов: p-n-p и n-p-n принципиальная разница только лишь в направлении тока через них.

  Полевой транзистор отличается от биполярного тем, что в нем сопротивление канала между истоком и стоком определяется уже не током, а напряжением на затворе. Последнее время полевые транзисторы получили громадную популярность (на них построены все микропроцессоры), т.к. токи в них протекают микроскопические, решающую роль играет напряжение, а значит потери и тепловыделение минимальны.

Обозначение транзисторов или камень преткновения всех студентов. Как запомнить тип биполярного транзистора по его условной схеме? Представь что стрелочка это направление твоего движения на машине… Если едем в стенку то дружный вопль «Писец Нам Писец

  Короче, транзистор позволит тебе слабеньким сигналом, например с ноги микроконтроллера, управлять мощной нагрузкой типа реле, двигателя или лампочки. Если не хватит усиления одного транзистора, то их можно соединять каскадами – один за другим, все мощней и мощней. А порой хватает и одного могучего полевого MOSFET транзистора. Посмотри, например, как в схемах сотовых телефонов управляется виброзвонок. Там выход с процессора идет на затвор силового

MOSFET ключа.

easyelectronics.ru

Биполярный транзистор – принцип работы для чайников!

Приветствую вас дорогие друзья! Сегодня речь пойдет о биполярных транзисторах и информация будет полезна прежде всего новичкам. Так что, если вам интересно что такое транзистор, его принцип работы  и вообще с чем его едят, то берем  стул по удобнее и подходим поближе.

Продолжим, и у нас тут есть содержание,  будет удобнее ориентироваться в статье 🙂

[contents]

Виды транзисторов

Транзисторы бывают в основном двух видов: биполярные транзисторы и полевые транзисторы.  Конечно можно было рассмотреть все виды транзисторов в одной статье, но мне не хочется варить кашу  у вас в голове. Поэтому в этой статье мы рассмотрим исключительно биполярные транзисторы а о полевых транзисторах я расскажу в одной из следующих статей. Не будем все мешать в одну кучу  а уделим внимание каждому, индивидуально.

Биполярный транзистор

Биполярный транзистор это потомок ламповых триодов, тех что стояли в телевизорах 20 -го века. Триоды ушли в небытие и уступили дорогу более функциональным собратьям — транзисторам, а точнее биполярным транзисторам.

Триоды за редким исключением применяют в аппаратуре для меломанов.

Биполярные транзисторы выглядеть могут  так.

Как вы можете видеть биполярные транзисторы имеют три вывода и конструктивно они могут выглядеть совершенно по разному. Но на электрических схемах они выглядят простенько и всегда одинаково. И все это графическое великолепие,  выглядит как-то так.

Это изображение транзисторов еще называют УГО (Условное графическое обозначение).

Причем биполярные транзисторы могут иметь различный тип проводимости. Есть транзисторы NPN типа и PNP типа.

Отличие n-p-n транзистора от p-n-p транзистора состоит лишь в том что является «переносчиком» электрического заряда (электроны или «дырки» ). Т.е. для p-n-p транзистора электроны перемещаются от эмиттера к коллектору и управляются базой. Для n-p-n транзистора электроны идут уже от коллектора к эмиттеру и управляются базой.    В итоге приходим к тому, что для того чтобы в схеме заменить транзистор одного типа проводимости на другой достаточно изменить полярность приложенного напряжения. Или тупо поменять полярность источника питания.

У биполярных транзисторов есть три вывода: коллектор, эмиттер и база. Думаю, что по УГО будет сложно запутаться, а вот в реальном транзисторе запутаться проще простого.

Обычно где какой вывод определяют по справочнику, но можно просто  прозвонить транзистор мультиметром. Выводы транзистора звонятся как два диода, соединенные в общей точке (в области базы транзистора).

Слева изображена картинка для транзистора p-n-p типа,  при прозвонке  создается ощущение (посредством показаний мультиметра ), что перед вами два диода которые соединены в одной точке своими катодами. Для транзистора  n-p-n типа  диоды в точке базы соединены своими анодами. Думаю после экспериментов с мультиметром будет более понятно.

 

 Принцип работы биполярного транзистора

А сейчас мы попробуем разобраться как работает транзистор. Я не буду вдаваться в подробности внутреннего устройства транзисторов так как эта информация только запутывает. Лучше взгляните на этот рисунок.

Это изображение лучше всего объясняет принцип работы  транзистора. На этом изображении человек посредством реостата управляет током коллектора. Он смотрит на ток базы, если ток базы растет то человек так же увеличивает ток коллектора с учетом коэффициента усиления транзистора h31Э. Если ток базы падает, то ток коллектора также будет снижаться — человек подкорректирует его посредством реостата.

Эта аналогия не имеет ничего общего с реальной работой транзистора, но она облегчает понимание принципов его работы.

Для транзисторов можно отметить правила, которые призваны помочь облегчить понимание. (Эти правила взяты из книги П. Хоровица У.Хилла «Искусство схемотехники»).

  1. Коллектор имеет более положительный потенциал , чем эмиттер
  2. Как я уже говорил цепи база — коллектор и база -эмиттер работают как диоды
  3. Каждый транзистор характеризуется предельными значениями, такими как ток коллектора, ток базы и напряжение коллектор-эмиттер.
  4. В том случае если правила 1-3 соблюдены то ток коллектора Iк прямо пропорционален току базы Iб. Такое соотношение можно записать в виде формулы.

Из этой формулы можно выразить основное свойство транзистора — небольшой ток базы управляет большим током коллектора.

-коэффициент усиления по току.

Его также обозначают как 

Исходы из выше сказанного транзистор может работать в четырех режимах:

  1. Режим отсечки транзистора — в этом режиме переход база-эмиттер закрыт, такое может произойти когда напряжение база-эмиттер недостаточное. В результате  ток базы  отсутствует и следовательно ток коллектора тоже будет отсутствовать.
  2. Активный режим транзистора — это нормальный режим работы транзистора.  В этом режиме напряжение база-эмиттер достаточное для того, чтобы переход база-эмиттер открылся. Ток базы достаточен и ток коллектора тоже имеется. Ток коллектора равняется току базы умноженному на коэффициент усиления.
  3. Режим насыщения транзистора — в этот режим транзистор переходит тогда, когда ток базы становится настолько большим, что мощности источника питания просто не хватает для дальнейшего увеличения тока коллектора. В этом режиме ток коллектора не может увеличиваться вслед за увеличением тока базы.
  4. Инверсный режим транзистора
    — этот режим используется крайне редко. В этом режиме коллектор и эмиттер транзистора меняют местами. В результате таких манипуляций коэффициент усиления транзистора очень сильно страдает. Транзистор изначально проектировался не для того, чтобы он работал в таком особенном режиме.

Для понимания того как работает транзистор нужно рассматривать конкретные схемные примеры, поэтому давайте рассмотрим некоторые из них.

Транзистор в ключевом режиме

Транзистор в ключевом режиме это один из случаев транзисторных схем с общим эмиттером. Схема транзистора в ключевом режиме применяется очень часто. К этой транзисторной схеме прибегают к примеру когда нужно управлять мощной нагрузкой посредством микроконтроллера. Ножка контроллера не способна тянуть мощную нагрузку, а транзистор может. Получается контроллер управляет транзистором, а транзистор мощной нагрузкой. Ну а обо всем по порядку.

Основная суть этого режима заключается в том, что ток базы управляет током коллектора. Причем ток коллектора гораздо больше тока базы. Здесь невооруженным взглядом видно, что происходит усиление сигнала по току. Это усиление осуществляется за счет энергии источника питания.

На рисунке изображена схема работы транзистора в ключевом режиме.

Для транзисторных схем напряжения не играют большой роли, важны лишь токи.  Поэтому, если отношение тока коллектора к току базы меньше коэффициента усиления транзистора то все окей.

В этом случае даже если к базе у нас приложено напряжение в 5 вольт а в цепи коллектора 500 вольт, то ничего страшного не произойдет, транзистор будет покорно переключать высоковольтную нагрузку.

Главное чтобы  эти напряжения не превышали предельные значения для конкретного транзистора (задается в характеристиках транзистора).

Чтож, теперь давайте попробуем рассчитать значение базового резистора.

На сколько мы знаем, что значение тока это характеристика нагрузки.

Т.е. I=U/R

Мы не знаем сопротивления лампочки, но мы знаем рабочий ток лампочки 100 мА. Чтобы транзистор открылся и обеспечил протекание такого тока, нужно подобрать соответствующий ток базы. Ток базы мы можем корректировать меняя номинал базового резистора.

Так как минимальное значение коэффициента усиления транзистора равно 10, то для открытия транзистора ток базы должен стать 10 мА.

Ток который нам нужен известен. Напряжение на базовом резисторе будет Такое значение напряжения на резисторе получилось из-зи  того, что на переходе база-эмиттер высаживается 0,6В-0,7В и это надо не забывать учитывать.

В результате  мы вполне можем найти сопротивление резистора

Осталось выбрать из ряда резисторов конкретное значение и дело в шляпе.

Теперь вы наверное думаете, что транзисторный ключ будет работать так как нужно? Что когда базовый резистор подключается к +5 В лампочка загорается, когда отключается -лампочка гаснет? Ответ может быть да а может и нет.

Все дело в том, что здесь есть небольшой нюанс.

Лампочка в том случае погаснет, когда потенциал резистора будет равен потенциалу земли. Если же резистор просто отключен от источника напряжения, то здесь не все так однозначно. Напряжение на базовом резисторе  может возникнуть чудесным образом в результате наводок или еще какой потусторонней нечисти 🙂

Чтобы такого эффекта не происходило делают следующее. Между базой и эмиттером подключают еще один резистор  Rбэ. Этот резистор выбирают номиналом как минимум в 10 раз больше базового резистора Rб (В нашем случае  мы взяли резистор 4,3кОм).

Когда база подключена к какому-либо напряжению, то транзистор работает как надо, резистор Rбэ ему не мешает. На этот резистор расходуется лишь малая часть базового тока.

В случае, когда напряжение к базе не приложено, происходит подтяжка базы к потенциалу земли, что избавляет нас от всяческих наводок.

Вот в принципе мы разобрались с работой транзистора в ключевом режиме, причем как вы могли убедиться ключевой режим работы это своего рода усиление сигнала по напряжению. Ведь мы с помощью малого напряжения в 5В управляли напряжением в 12 В.

Эмиттерный повторитель

Эмиттерный повторитель является частным случаем транзисторных схем с общим коллектором.

Отличительной чертой схемы с общим коллектором от схемы с общим эмиттером (вариант с транзисторным ключем) является то, что эта схема не усиливает сигнал по напряжению. Что вошло через базу, то и вышло через эмиттер, с тем же самым напряжением.

Действительно допустим приложили к базе мы 10 вольт, при этом мы знаем что на переходе база-эмиттер высаживается где-то 0,6-0,7В. Выходит что на выходе (на эмиттере, на нагрузке Rн) будет напряжение базы минус 0,6В.

Получилось 9,4В, одним словом почти сколько вошло столько и вышло. Убедились, что по напряжению эта схема нам сигнал не увеличит.

«В чем же смысл тогда таком включении транзистора?»- спросите вы. А вот оказывается эта схема обладает другим очень важным свойством.  Схема включения транзистора с общим коллектором усиливает сигнал по мощности. Мощность это произведение тока на напряжение, но так как напряжение не меняется то мощность увеличивается только за счет тока! Ток в нагрузке складывается из тока базы плюс ток коллектора. Но если сравнивать ток базы и ток коллектора то ток базы очень мал по сравнению с током коллектора. Получается ток нагрузки равен току коллектора.  И в результате получилась вот такая формула.

Теперь я думаю понятно в чем суть  схемы эмиттерного повторителя, только это еще не все.

Эмиттерный повторитель обладает еще одним очень ценным качеством — высоким входным сопротивлением. Это означает, что эта транзисторная схема почти не потребляет ток входного сигнала и не создает нагрузки для схемы -источника сигнала.

Для понимания принципа работы транзистора этих двух транзисторных схем будет вполне достаточно. А если вы еще поэкспериментируете с паяльником в руках то прозрение просто не заставит себя ждать, ведь теория теорией а практика и личный опыт ценнее в сотни раз!

Где транзисторы купить?

Как и все другие радиокомпоненты транзисторы можно купить в  любом ближайшем  магазине радиодеталей. Если вы живете где-нибудь на окраине и о подобных магазинах не слышали (как я раньше) то остается последний вариант — заказать транзисторы в интернет- магазине. Я сам частенько заказываю радиодетали через интернет-магазины ведь в обычном оффлайн магазине может чего-нибудь просто не оказаться.

Впрочем если вы собираете устройство чисто для себя то можно не париться а добыть из старой, отслужившей свое техники и так сказать вдохнуть в старый радиокомпонет новую жизнь.

Чтож друзья, а на этом у меня все. Все, что планировал я сегодня вам рассказал. Если остались какие-либо вопросы, то задавайте их в комментариях, если вопросов нет то все равно пишите комментарии, мне всегда важно ваше мнение. Кстати не забывайте, что каждый кто впервые оставит комментарий получит подарок.

Также обязательно подпишитесь на новые статьи, потому что дальше вас ждет много интересного и полезного.

Желаю вам удачи, успехов  и солнечного настроения!

С н/п Владимир Васильев

P.S. Друзья, обязательно подписывайтесь на обновления! Подписавшись вы будете получать новые материалы себе прямо на почту! И кстати каждый подписавшийся получит полезный подарок!

popayaem.ru

Принцип работы полевого транзистора для чайников

Транзистор (transistor, англ.) – триод, из полупроводниковых материалов, с тремя выходами, основное свойство которого – сравнительно низким входным сигналом управлять значительным током на выходе цепи. В радиодеталях, из которых собирают современные сложные электроприборы, используются полевые транзисторы. Их свойства позволяют решать задачи по выключению или включению тока в электрической цепи печатной платы, или его усилению.

Что такое полевой транзистор



Полевой транзистор — это устройство с тремя или четырьмя контактами, в котором ток на двух контактах регулируется напряжением электрического поля на третьем. Поэтому их называют полевыми.

Контакты:

  • исток – контакт входящего электрического тока, находящийся в зоне n;
  • сток – контакт исходящего, обработанного тока, находящийся в зоне n;
  • затвор – контакт, находящийся в зоне р, изменяя напряжение на котором, можно регулировать пропускную способность устройства.

Полевой транзистор с п – р переходом – особый вид транзисторов, которые служат для управления током.

Он отличается от простого обычного тем, что ток в нем проходит, не пересекая зоны р — n перехода, зоны, образующейся на границы этих двух зон. Размер р — n зоны регулируется.

Полевые транзисторы, их виды



Полевые транзисторы с п – р переходом делят на классы:

  1. По типу канала проводника: n или р. От канала зависит знак, полярность, сигнала управления. Она должна быть противоположна по знаку n -зоне.
  2. По структуре прибора: диффузные, сплавные по р – n — переходом, с затвором Шоттки, тонкопленочные.
  3. По числу контактов: 3-х и 4-контактные. В случае 4-контактного прибора, подложка также исполняет роль затвора.
  4. По используемым материалам: германий, кремний, арсенид галлия.

Классы делятся по принципу работы:

  • устройство под управлением р — n перехода;
  • устройство с изолированным затвором или с барьером Шоттки.

Полевой транзистор, принцип работы

По-простому, как работает полевой транзистор с управляющим р-п переходом, можно сказать так: радиодеталь состоит из двух зон: р — перехода и п — перехода. По зоне п течет электрический ток. Зона р – перекрывающая зона своего рода вентиль. Если на нее сильно надавить, она перекрывает зону для прохождения тока и его проходит меньше. Или, если давление снизить пройдет больше. Такое давление осуществляют увеличением напряжения на контакте затвора, находящегося в зоне р.

Прибор с управляющим р — п канальным переходом — это полупроводниковая пластина с электропроводностью одного из этих типов. К торцам пластины подсоединены контакты: сток и исток, в середине — контакт затвора. Действие устройства основано на изменяемости толщины пространства р-п перехода. Поскольку в запирающей области почти нет подвижных носителей заряда, ее проводимость равна нулю. В полупроводниковой пластине, в области не под воздействием запирающего слоя, создается проводящий ток канал. При подаче отрицательного напряжения по отношению к истоку, на затвор создается поток, по которому истекают носители заряда.

В случае изолированного затвора, на нем расположен тонкий слой диэлектрика. Этот вид устройства работает на принципе электрического поля. Чтобы разрушить его достаточно небольшого электричества. Поэтому для защиты от статического напряжения, которое может достигать тысяч вольт, создают специальные корпуса приборов — они позволяют минимизировать воздействие вирусного электричества.

Зачем нужен полевой транзистор

Рассматривая работу сложной электронной техники, как работу полевого транзистора (как одного из компонентов интегральной схемы) сложно представить, что основных направления его работы пять:

  1. Усилители высоких частот.
  2. Усилители низких частот.
  3. Модуляция.
  4. Усилители постоянного тока.
  5. Ключевые устройства (выключатели).

На простом примере работу транзистора, как выключателя, можно представить как компоновку микрофона с лампочкой. Микрофон улавливает звук, от этого появляется электрический ток. Он поступает на запертый полевой транзистор. Своим присутствием ток включает устройство, включает электрическую цепь, к которой подключена лампочка. Лампочка загорается при улавливании звука микрофоном, но горит за счет источника питания, не связанного с микрофоном и более мощного.

Модуляция применяется для управления информационным сигналом. Сигнал управляет частотой колебания. Модуляция применяется для качественного звукового сигнала в радио, для передачи звукового ряда в телевизионных передачах, трансляции цвета и телевизионного сигнала высокого качества. Она применяется везде, где требуется работа с материалом высокого качества.

Как усилитель полевой транзистор упрощенно работает так: графически любой сигнал, в частности, звуковой ряд, можно представить в виде ломаной линии, где ее длина – это время, а высота изломов частота звука. Для усиления звука на радиодеталь подают мощное напряжение, которое приобретает необходимые частоты, но с более большими значениями, за счет подачи слабого сигнала на управляющий контакт. Другими словами, устройство пропорционально перерисовывает изначальную линию, но с более высокими пиковыми значениями.

Применение полевых транзисторов

Первым прибором, поступившим в продажу, где использовался полевой транзистор с управляющим p-n переходом, был слуховой аппарат. Его появление зафиксировано в пятидесятых годах прошлого века. В промышленных масштабах их применяли в телефонных станциях.

В современном мире, устройства применяют во всей электротехнике. Благодаря маленьким размерам и разнообразию характеристик полевого транзистора, встретить его можно в кухонной технике, аудио и телевизионной технике, компьютерах и электронных детских игрушках. Их применяются в системах сигнализации как охранных механизмов, так и пожарной сигнализации.

На заводах транзисторное оборудование применяется для регуляторов мощности станков. В транспорте от работы оборудования на поездах и локомотивов, до системы впрыска топлива частных автомобилей. В ЖКХ от систем диспетчеризации, до систем управления уличным освещением.

Одна из важнейших областей применения транзисторов – производство процессоров. По сути, весь процессор состоит из множества миниатюрных радиодеталей. Но при переходе на частоту работы выше 1,5 ГГц, они лавинообразно начинают потреблять энергию. Поэтому производители процессоров пошли по пути многоядерности, а не путем увеличения тактовых частот.

Плюсы и минусы полевых транзисторов

Полевые транзисторы своими характеристиками оставили далеко позади другие виды устройства. Широкое применение они нашли в интегральных схемах в роли выключателей.

Плюсы:

  • каскад деталей расходует мало энергии;
  • усиление выше, чем у других видов;
  • высокая помехоустойчивость достигается отсутствием прохождения тока в затворе;
  • более высокая скорость включения и выключения – они могут работать на недоступных другим транзисторам частотах.

Минусы:

  • более низкая температура разрушения, чем у других видов;
  • на частоте 1,5 ггц, потребляемая энергия начинает резко возрастать;
  • чувствительность к статическому электричеству.

Характеристики полупроводниковых материалов, взятых за основу полевых транзисторов, позволили применять устройства в быту и производстве. На основе плевых транзисторов создали бытовую технику в привычном для современного человека виде. Обработка высококачественных сигналов, производство процессоров и других высокоточных компонентов невозможна без достижений современной науки.

instrument.guru

Поймем вместе принципы работы транзистора :: SYL.ru

Транзисторы являются активными компонентами и используются повсеместно в электронных цепях в качестве усилителей и коммутационных устройств (транзисторных ключей). Как усилительные приборы они применяются в приборах высокой и низкой частоты, генераторах сигналов, модуляторах, детекторах и многих других цепях. В цифровых схемах, в импульсных блоках питания и управляемых электроприводах они служат в качестве ключей.

Биполярные транзисторы

Так называется наиболее распространенный тип транзистора. Они делятся на npn и pnp типы. Материалом для них наиболее часто является кремний или германий. Поначалу транзисторы делались из германия, но они были очень чувствительны к температуре. Кремниевые приборы гораздо более стойки к ее колебаниям и дешевле в производстве.

Различные биполярные транзисторы показаны на фото ниже. Маломощные приборы расположены в небольших пластиковых прямоугольных или металлический цилиндрических корпусах. Они имеют три вывода: для базы (Б), эмиттер (Э) и коллектор (К). Каждый из них подключен к одному из трех слоев кремния с проводимостью либо n- (ток образуют свободные электроны), либо p-типа (ток образуют так называемые положительно заряженные «дырки»), из которых и состоит структура транзистора.

Принципы работы транзистора нужно изучать, начиная с его устройства. Рассмотрим структуру npn-транзистора, которая изображена на рис.ниже.

Как видим, он содержит три слоя: два с проводимостью n-типа и один – p-типа. Тип проводимости слоев определяется степенью легирования специальными примесями различных частей кремниевого кристалла. Эмиттер n-типа очень сильно легирован, чтобы получить множество свободных электронов как основных носителей тока. Очень тонкая база p-типа слегка легирована примесями и имеет высокое сопротивление, а коллектор n- типа очень сильно легирован, чтобы придать ему низкое сопротивление.

Принципы работы транзистора

Лучшим способом познакомиться с ними является экспериментальный путь. Ниже приведена схема простой цепи. Она использует силовой транзистор для управления свечением лампочки. Вам также понадобится батарейка, небольшаю лампочка от фонарика примерно 4,5 В/0,3 А, потенциометр в виде переменного резистора (5К) и резистор 470 Ом. Эти компоненты должны быть соединены, как показано на рисунке справа от схемы.

Поверните движок потенциометра в крайнее нижнее положение. Это понизит напряжение на базе (между базой и землёй) до нуля вольт (UBE = 0). Лампа не светится, что означает отсутствие тока через транзистор.

Если теперь поворачивать рукоятку от ее нижней позиции, то UBE постепенно увеличивается. Когда оно достигает 0,6 В, ток начинает втекать в базу транзистора, и лампа начинает светиться. Когда рукоятка сдвигается дальше, напряжение UBE остается на уровне 0,6 В, но ток базы увеличивается и это увеличивает ток через цепь коллектор-эмиттер. Если рукоятка сдвинута в верхнее положение, напряжение на базе будет немного увеличено до 0,75 В, но ток значительно возрастет и лампа будет светиться ярко.

А если измерить токи транзистора?

Если мы включим амперметр между коллектором (C) и лампой (для измерения IC), другой амперметр между базой (B) и потенциометром (для измерения IB), а также вольтметр между общим проводом и базой и повторим весь эксперимент, мы сможем получить некоторые интересные данные. Когда рукоятка потенциометра находится в его низшей позиции, UBE равно 0 В, также как и токи IC и IB. Когда рукоятку сдвигают, эти значения растут до тех пор, пока лампочка не начинает светиться, когда они равны: UBE = 0.6 В, IB = 0,8 мА и IC = 36 мА.

В итоге мы получаем от этого эксперимента следующие принципы работы транзистора: при отсутствии положительного (для npn-типа) напряжения смещения на базе токи через его выводы равны нулю, а при наличии напряжения и тока базы их изменения влияют на ток в цепи коллектор – эмиттер.

Что происходит при включении питания транзистора

Во время нормальной работы, напряжение, приложенное к переходу база-эмиттер, распределяется так, что потенциал базы (p-типа) приблизительно на 0,6 В выше, чем у эмиттера (n-типа). При этом к данному переходу приложено прямое напряжение, он смещен в прямом направлении и открыт для протекания тока из базы в эмиттер.

Гораздо более высокое напряжение приложено к переходу база-коллектор, причем потенциал коллектора (n-типа) оказывается более высоким, чем у базы (p-типа). Так что к переходу приложено обратное напряжение и он смещен в обратном направлении. Это приводит к образованию довольно толстого обедненного электронами слоя в коллекторе вблизи базы, когда к транзистору прикладывается напряжение питания. В результате ток через цепь коллектор-эмиттер не проходит. Распределение зарядов в зонах переходов npn-транзистора показан на рисунке ниже.

Какова роль тока базы?

Как же заставить работать наш электронный прибор? Принцип действия транзистора заключается во влиянии тока базы на состояние закрытого перехода база-коллектор. Когда переход база-эмиттер смещен в прямом направлении, небольшой ток будет поступать в базу. Здесь его носителями являются положительно заряженные дырки. Они комбинируются с электронами, поступающими из эмиттера, обеспечивая ток IBE. Однако вследствие того, что эмиттер очень сильно легирован, гораздо больше электронов поступает из него в базу, чем способно соединиться с дырками. Это означает, что возникает большая концентрация электронов в базе, и большинство из них пересекает ее и попадает в обедненный электронами слой коллектора. Здесь они попадают под влияние сильного электрического поля, приложенного к переходу база-коллектор, проходят через обедненный электронами слой и основной объем коллектора к его выводу.

Изменения тока, втекающего в базу, влияют на количество привлеченных от эмиттера электронов. Таким образом, принципы работы транзистора могут быть дополнены следующим утверждением: очень небольшие изменения в базовом токе вызывают очень большие изменения в токе, протекающем от эмиттера к коллектору, т.е. происходит усиление тока.

Типы полевых транзисторов

По английски они обозначаются FETs – Field Effect Transistors, что можно перевести как «транзисторы с полевым эффектом». Хотя есть много путаницы в названиях для них, но встречаются в основном два основных их типа:

1. С управляющим pn-переходом. В англоязычной литературе они обозначаются JFET или Junction FET, что можно перевести как «переходный полевой транзистор». Иначе они именуются JUGFET или Junction Unipolar Gate FET.

2. С изолированным затвором (иначе МОП- или МДП-транзисторы). По английски они обозначаются IGFET или Insulated Gate FET.

Внешне они очень похожи на биполярные, что подтверждает фото ниже.

Устройство полевого транзистора

Все полевые транзисторы могут быть названы УНИПОЛЯРНЫМИ приборами, потому что носители заряда, которые образуют ток через них, относятся к единственному для данного транзистора типу – либо электроны, либо «дырки», но не оба одновременно. Это отличает принцип работы транзистора полевого от биполярного, в котором ток образуется одновременно обоими этими типами носителей.

Носители тока протекают в полевых транзисторах с управляющим pn-переходом по слою кремния без pn-переходов, называемому каналом, с проводимостью либо n-, либо p-типа между двумя выводами, именуемыми «истоком» и «стоком» – аналогами эмиттера и коллектора или, точнее ,катода и анода вакуумного триода. Третий вывод – затвор (аналог сетки триода) – присоединен к слою кремния с другим типом проводимости, чем у канала исток-сток. Структура такого прибора показана на рисунке ниже.

Как же работает полевой транзистор? Принцип работы его заключается в управлении поперечным сечением канала путем приложения напряжения к переходу затвор-канал. Его всегда смещают в обратном направлении, поэтому транзистор практически не потребляет тока по цепи затвора, тогда как биполярному прибору для работы нужен определенный ток базы. При изменении входного напряжения область затвора может расширяться, перекрывая канал исток-сток вплоть до полного его закрытия, управляя таким образом током стока.

www.syl.ru

вид и обозначение, достоинства и недостатки, принцип работы для чайников

В электронике и радиотехнике очень часто применяются полупроводниковые приборы, к которым относятся и транзисторы. Полевые транзисторы (ПТ) потребляют значительно меньше электрической энергии, благодаря чему они применяются в различных маломощных устройствах. Кроме того, существуют модели, работающие на больших токах при малом потреблении питающего напряжения (U).

Общие сведения

FET или ПТ — полупроводниковый прибор, который при изменении управляющего U, регулирует I (силу тока). Этот тип транзистора называется еще униполярным. Появился он позже обычного транзистора (биполярного), но с ростом технологии получил широкое распространение среди цифровых устройств благодаря низкому энергопотреблению. Основное отличие заключается в методе регулирования I. В биполярном — регулирование I происходит при помощи управляющего I, а полевом — при помощи U (Рисунок 1).

Рисунок 1 – Отличие полевого от биполярного Т.

У ПТ нет I управления, и он обладает высоким входным сопротивлением (R), которое достигает несколько сотен ГОм (ГигаОм) или ТОм (ТерраОм). Для того чтобы узнать сферы применения ПТ, нужно внимательно изучить его. Носителями заряда являются электроны или дырки, а у биполярного – электроны и дырки.

Классификация и устройство

ПТ бывают нескольких видов, обладают различными характеристиками и устройством. Они делятся на 2 типа:

  1. С управляющим p-n – переходом (JFET).
  2. С изолированным затвором (MOSFET).

Кроме того, каждый из типов бывает с N и P каналами. У ПТ с N-каналом носителями заряда являются электроны, а у P-канального – дырки. Принцип работы для P и N аналогичен, отличие лишь в подаче U другой полярности в качестве управляющего.

Устройство JFET ПТ (рисунок 2) простое. Область N образовывает канал между зонами P. К концам канала N подключаются электроды, которые называются условно стоком (С) и истоком (И), так как все зависит от схемы подключения. Затвор (З) — тип электрода, который образовывается при закорачивании полупроводников P. Это обусловлено электрическим соединением при воздействии U. Возле С и И находится область повышенной концентрации или легирование (N+) электронов, что приводит к улучшению проводимости канала. Наличие зоны легирования значительно понижает образование паразитных p-n – переходов, образующихся при присоединении алюминия.

Рисунок 2 – Схематическое устройство ПТ типа JFET.

MOFSET называется МОП или МДП, также делятся на типы — со встроенным и индуцируемым каналами. В каждом из этих типов есть модели с P и N каналами. Полевой транзистор, обозначение которого представлено на рисунке 3, иногда обладает 4 выводами.

Рисунок 3 – Обозначение МДП-транзистора.

Устройство довольно простое и показано на рисунке 4. Для ПТ с N-каналом подложка (покрывается SiO2) обладает электропроводимостью P-типа. Через слой диэлектрика проводятся электроды стока и истока от зон с легированием, а также вывод, который закорачивается с истоком. Слой затвора находится над диэлектриком.

Рисунок 4 – Типичное устройство ПТ с индуцированным каналом.

Принцип работы JFET

JFET работает в 2 режимах. Эта особенность связана с тем, что подается на затвор напряжение положительной и отрицательной составляющей (рис. 5). При подключении U > 0 к стоку, а земли к истоку необходимо подсоединить затвор к земле (Uзи = 0). Во время постепенного повышения U между С и И (Uис) ПТ является обыкновенным проводником. При низких значениях Uис ширина канала является максимальной.

При высоких значениях Uис через канал протекают большие значения силы тока между истоком и стоком (Iис). Это состояние получило название омической области (ОО). В полупроводнике N-типа, а именно в зонах p-n – перехода происходит снижение концентрации свободных электронов. Несимметричное разрастание слоя снижения концентрации свободных электронов называется обедненным слоем. Разрастание случается со стороны подключенного источника питания. Происходит сильное сужение канала при повышении Uис, вследствие которого Iис растет незначительно. Работа ПТ в этом режиме называется насыщением.

Рисунок 5 – Схема работы JFET (Uзи = 0).

При подаче низкого отрицательного U на затворе происходит сильное сужение канала и уменьшение Iис. При уменьшении U произойдет закрытие канала, и ПТ будет работать в режиме отсечки, а U, при котором прекращается подача Iис, называется напряжением отсечки (Uотс). На рисунке 6 изображено графическое представление работы ПТ при Uзи < 0:

Рисунок 6 – Графическое представление принципа работы полевого транзистора типа JFET.

При использовании в режиме насыщения происходит усиление сигнала (рис. 7), так как при незначительных изменениях Uис происходит значительное изменение Iис:

Рисунок 7 – Пример S JFET.

Этот параметр является усилительной способностью JFET и называется крутизной стоко-затворной характеристики (S). Единица измерения — mA/В (милиАмпер/Вольт).

Особености работы MOFSET

При подключении U между электродами С и И любой полярности к MOFSET с индуцированным N-каналом ток не потечет, так как между легитивным слоем находится слой с проводимостью P, которая не пропускает электроны. Принцип работы с каналом P-типа такой же, только необходимо подавать отрицательное U. Если подать положительное Uзи на затвор, то возникнет электрическое поле, выталкивающее дырки из зоны P в направлении подложки (рис. 8).

Под затвором концентрация свободных носителей заряда начнет уменьшаться, а их место займут электроны, которые притягиваются положительным зарядом затвора. При достижении Uзи порогового значения концентрация электронов будет значительно больше концентрации дырок. В результате этого произойдет формирование между С и И канала с проводимостью N-типа, по которому потечет Iис. Можно сделать вывод о прямо пропорциональной зависимости Iис от Uзи: при повышении Uзи происходит расширение канала и увеличение Iис. Этот процесс является одним из режимов ПТ — обогащения.

Рисунок 8 – Иллюстрация работы ПТ с индуцированным каналом (тип N).

ВАХ ПТ с изолированным затвором примерно такой же, как и с управляющим переходом (рис. 9). Участок, на котором Iис растет прямо пропорционально росту Uис, является омической областью (насыщения). Участок при максимальном расширении канала, на котором Iис не растет, является активной областью.

При превышении порогового значения U переход типа p-n пробивается, и ПТ является обычным проводником. В этом случае радиодеталь выходит из строя.

Рисунок 9 – ВАХ ПТ с изолированным затвором.

Отличие между ПТ со встроенным и индуцируемым каналами заключается в наличии между С и И канала проводящего типа. Если к ПТ со встроенным каналом подключить между стоком и истоком U разной полярности и оставить затвор включенным (Uзи = 0), то через канал потечет Iис (поток свободных носителей заряда – электронов). При подключении к затвору U < 0 возникает электрическое поле, выталкивающее электроны в направлении подложки. Произойдет уменьшение концентрации свободных носителей заряда, а сопротивление увеличится, следовательно, Iис — уменьшится. Это состояние является режимом обеднения.

При подключении к затвору U > 0 возникает электромагнитное поле, которое будет притягивать электроны из стока, истока и подложки. В результате этого произойдет расширение канала и повышение его проводимости, а Iис увеличится. ПТ начнет работать в режиме обогащения. Вольт-амперная характеристика (ВАХ) представлена на рисунке 10.

Рисунок 10 – ВАХ ПТ со встроенным каналом.

Несмотря на свою универсальность, ПТ обладают преимуществами и недостатками. Эти недостатки следуют из устройства, способа исполнения и ВАХ приборов.

Преимущества и недостатки

Преимущества и недостатки являются условными понятиями, взятыми из сравнения полевых и биполярных транзисторов. Одним из свойств ПТ является высокое сопротивление Rвх. Причем у MOFSET его значение на несколько порядков выше, чем у JFET. ПТ практически не потребляют ток у источника сигнала, который нужно усилить.

Например, если взять обыкновенную схему, генерирующую сигнал на базе микросхемы-микроконтроллера. Эта схема управляет работой электродвигателя, но обладает низким значением тока, которого недостаточно для этих целей. В этом случае необходим усилитель, потребляющий малое количества I и генерирующий на выходе ток высокой величины. В усилителе такого типа и следует применить JFET, обладающий высоким Rвх. JFET обладает низким коэффициентом усиления по U. При построении усилителя на JFET (1 шт.) максимальный коэффициент усиления будет около 20, при использовании биполярного — несколько сотен.

В усилителях высокого качества применяются оба типа транзистора. При помощи ПТ происходит усиление по I, а затем, при помощи биполярного происходит усиление сигнала по U. Однако ПТ обладают рядом преимуществ перед биполярными. Эти преимущества заключаются в следующем:

  1. Высокое Rвх, благодаря которому происходит минимальное потребление I и U.
  2. Высокое усиление по I.
  3. Надежность работы и помехоустойчивость: при отсутствии протекания I через затвор, в результате чего управляющая цепь затвора изолирована от стока и истока.
  4. Высокое быстродействие перехода из одного состояния в другое, что позволяет применять ПТ на высоких частотах.

Кроме того, несмотря на широкое применение, ПТ обладают несколькими недостатками, не позволяющими полностью вытеснить с рынка биполярные транзисторы. К недостаткам относятся следующие:

  1. Повышенное падение U.
  2. Температура разрушения прибора.
  3. Потребление большего количества энергии на высоких частотах.
  4. Возникновение паразитного транзистора биполярного типа (ПБТ).
  5. Чувствительность к статическому электричеству.

Повышенное падение U возникает из-за высокого R между стоком и истоком во время открытого состояния. ПТ разрушается при превышении температуры по Цельсию 150 градусов, а биполярный – 200. ПТ обладает низким энергопотреблением только на низких частотах. При превышении частоты 1,6 ГГц энергопотребление возрастает по экспоненте. Исходя из этого, частоты микропроцессоров перестали расти, а делается упор на создании машин с большим количеством ядер.

При использовании мощного ПТ в его структуре образовывается ПБТ, при открытии которого ПТ выходит из строя. Для решения этой проблемы подложку закорачивают с И. Однако это не решает проблему полностью, так как при скачке U может произойти открытие ПБТ и выход из строя ПТ, а также цепочки из деталей, которые подключены к нему.

Существенным недостатком ПТ является чувствительность к статическому электричеству. Этот недостаток исходит от конструктивной особенности ПТ. Слой диэлектрика (изоляционный) тонкий, и его очень легко разрушить при помощи заряда статического электричества, который может достигать сотен или тысяч вольт. Для предотвращения выхода из строя при воздействии статического электричества предусмотрено заземление подложки и закорачивание ее с истоком. Кроме того, в некоторых типах ПТ между стоком и истоком стоит диод. При работе с интегральными микросхемами на ПТ следует применять антистатические меры: специальные браслеты и транспортировка в вакуумных антистатических упаковках.

Схемы подключения

ПТ подключается примерно так же, как и обыкновенный, но есть некоторые особенности. Существует 3 схемы включения полевых транзисторов: с общими истоком (ОИ), стоком (ОС) и затвором (ОЗ). Чаще всего применяется схема подключения с ОИ (схема 1). Это подключение позволяет получить значительное усиление по мощности. Однако подключение с ОИ используется в низкочастотных усилителях, а также обладает высокой входной емкостной характеристикой.

Схема 1 – Включение с ОИ.

При включении с ОС (схема 2) получается каскад с повторителем, который называется истоковым. Преимуществом является низкая входная емкость. Его применяют для изготовления буферных разделительных каскадов (например, пьезодатчик).

Схема 2 – Подключение с ОС.

При подключении с ОЗ (схема 3) не происходит значительного усиления по току, коэффициент усиления по мощности ниже, чем при подключениях с ОИ и ОС. Однако при помощи этого типа подключения возможно полностью избежать эффекта Миллера. Эта особенность позволяет увеличить максимальную частоту усиления (усиление СВЧ).

Схема 3 – Включение с ОЗ.

Таким образом, ПТ получили широкое применение в области информационных технологий. Однако не смогли вытеснить с рынка радиодеталей биполярные транзисторы. Это связано, прежде всего, с недостатками ПТ, которые кроются в принципе работы и конструктивной особенности. Главным недостатком является высокая чувствительность к полям статического электричества.

220v.guru

Биполярный транзистор и принцип его работы, режимы и схемы, особенности переходов

На определённом этапе времени всем привычные электронные лампы были заменены транзисторами. И это не удивительно, поскольку они имеют гораздо меньший размер, более надёжные и затрачивают гораздо меньше энергии. Такое большое количество положительных сторон привело к тому, что на сегодняшний день биполярные транзисторы являются главными элементами практически всех усилительных схем.

Составные части устройства



Биполярный транзистор разделяется на три основные части:

  1. Эммитер – это один из слоёв полупроводника, его задача заключается в инжектировании носителей заряда в базу (её слой).
  2. База – это один из слоёв полупроводника, считается главным в транзисторе.
  3. Коллектор – слой полупроводника, задачей которого является собрать все заряды, которые прошли через базу.

Как правило, область эммитера немного уже, чем у коллектора. Поскольку изготовление базы происходит из слаболегированного полупроводника, то она является очень тонкой. В результате того, что площадь контакта между эммитером и базой гораздо уже, чем между базой и коллектором, то произвести замену коллектора и эмиттера просто невозможно, даже при большом желании. Подобная ситуация приводит к тому, что биполярный транзистор считается устройством, в котором отсутствует симметрия.

Биполярный транзистор — принцип работы



Принцип действия биполярного транзистора представлен ниже.

Когда транзистор включают в режиме усиления, открывается эммитерный переход, и закрывается переход коллектора. Это происходит в результате подключения источников питания.

Из-за того, что переход эммитера находится в открытом положении, через него происходит переход эммитерного тока, он образуется в результате перехода дырок из базового слоя транзистора в эммитер и аналогичного перехода электронов из эммитера в базовый слой.

В результате этого эммитерный ток состоит из двух основных частей – дырочной и электронной.

Чтобы определить коэффициент инжекции, следует разобраться с уровнем эффективности эммитера.

Инжекция зарядов – это перемещение элементов, содержащих в себе заряд из зоны, где они играли основную роль, в зону, где они стали неосновными.

В базовом слое транзистора происходит рекомбинация электронов, а восполнение их концентрации происходит за счёт плюса источника ЭГ. В итоге электрическая цепь базового слоя биполярного транзистора содержит в себе достаточно слабый ток.

А те электроны, которые попросту не успели поддаться процессу рекомбинации в базовом слое, с помощью разгоняющего воздействия закрытого коллекторного перехода перемещаются в него, и происходит образование коллекторного тока. В результате этого наблюдается экстракция электрических зарядов (переход элементов, которые содержат в себе заряд из зоны, где они играли второстепенную роль в зону, где они играют главную роль).

Вот и весь принцип работы биполярного транзистора.

Режимы функционирования устройства

На этом этапе времени выделяют следующие режимы работы биполярного транзистора:

  1. Активный инверсный режим. В этом случае открыт переход между базовым и коллекторным слоями, а переход между базой и эммитером закрыт. Усилительные свойства в данном режиме очень плохие, поэтому в таком состоянии транзисторы используют в редчайших ситуациях.
  2. Насыщение. Оба вышеуказанных перехода находятся в открытом состоянии. В результате этого элементы коллектора и эммитера, которые содержат в себе заряд, перемещаются в базовый слой, где происходит их активная рекомбинация с основными элементами базы. Из-за чрезмерного количества зарядов происходит снижение сопротивляемости базы, наблюдается уменьшение p — n переходов. В режиме насыщения, цепь транзистора имеет вид короткозамкнутой, а данный элемент представлен в роли эквипотенциальной точки.
  3. Режим отсечки. Оба перехода в биполярном транзисторе закрыты, соответственно, происходит прекращение тока основных носителей заряда между коллекторным и эммитерным слоями. Потоки второстепенных зарядов способны только создавать неуправляемые и малые токи. В результате скудности базового слоя и перемещения носителей зарядов сопротивление вышеуказанных токов в значительной мере возрастает. Из-за подобной работы достаточно часто бытует мнение, что устройство, работающее в таком режиме, являет собой разрыв цепи.
  4. Барьерный режим. В данном режиме базовый слой прямо или с помощью малого сопротивления замыкается с коллекторным слоем. В этом случае, в цепь коллектора или эммитера необходимо включить резистор, который через транзистор начинает задавать ток. В результате такой работы происходит образование эквивалента схемы диода, которая имеет последовательно включённое сопротивление. В подобном состоянии устройства схема способна работать при различных температурных режимах и при разнообразных параметрах транзистора.

Схемы включения транзисторов биполярного типа

Из-за того, что транзистор имеет три контакта, то питание на него следует подавать из 2 источников, сумма которых образует четыре вывода. Подобное действие приводит к тому, что в один из контактов устройства происходит подача напряжения одного знака из различных источников.

С учётом того, в какой контакт производится подача напряжения, выделяют три типа схем включения биполярных транзисторов:

  • с эммитерным слоем;
  • с коллекторным слоем;
  • с базовым слоем.

Каждая из вышеуказанных схем имеет свои преимущества и недостатки.

Схема включения с общим эммитерным слоем

Данная схема создаёт самое большое усиление по току и напряжению. Благодаря таким её свойствам она и является самой распространённой. В данном случае присутствует прямой переход между эммитерным и базовым слоями и обратный переход между базой и коллектором. А тот факт, что на них осуществляется подача напряжения одного знака, способствует тому, что схему можно напитать с помощью одного источника.

Среди отрицательных сторон схемы можно выделить то, что возрастание частоты и температурного режима способствует значительному снижению усилительных свойств устройства. В результате этого следует отметить, что если необходима работа транзистора на высоких частотах, то от использования этой схемы желательно отказаться.

Схема включения с общим базовым слоем

Данная схема создаёт среднее усиление сигнала, но зато она прекрасно подходит для работы на высоких частотах. Если одно и то же устройство будет сначала функционировать по первой схеме, а затем по этой, то можно будет наблюдать значительный рост граничной частоты усиления. Из-за того, что в этой схеме заниженное сопротивление входа и среднее сопротивление выхода, то её лучше использовать в случае наличия антенных усилителей, в которых волновое сопротивление кабелей составляет не более ста Ом.

Среди минусов можно выделить тот момент, что для того, чтобы напитать устройство, требуется использовать 2 источника питания.

Схема включения с общим коллекторным слоем

Среди других схем выделяется тем, что наблюдается полная передача напряжения обратно на вход – это указывает на сильнейшую отрицательную обратную связь.

Уровень усиления по току практически равен значению, присутствующему в первой схеме. Но вот уровень усиления по напряжению очень маленький, что является одним из главных недостатков данной схемы.

Разобраться в особенностях работы биполярного транзистора и его схем достаточно просто, главное — постараться вникнуть.

instrument.guru

устройство, классификация и работа простым языком

С каждым годом появляется все больше и больше электронных средств, а они часто ломаются. На ремонт уходит немало средств, порой, достигая до 50 процентов от стоимости аппарата. И что досадно, некоторые из этих поломок можно было устранить самому, имея начальные знания о том, как работает транзистор. Почему он? Именно транзисторы чаще всего выходят из строя.

Виды транзистора

Чтобы легче разобраться в работе транзистора, необходимо иметь представление о нем. Он является полупроводником, что указывает на его способность проводить ток в одном направлении и не пропускать в другом. Чтобы достичь таких характеристик используются разные способы изготовления. Все эти приборы по своему характеру работы делятся на две группы:

  1. биполярные
  2. полярные

Хотя и те и другие относятся к одному классу — транзисторы, происходящие в них процессы сильно отличаются.

Биполярный

Движение электронов по замкнутой цепи называется электрическим током. Грубо говоря, чем больше электронов, тем больше ток. Если атом отдает электроны, он становится положительно заряженным и, наоборот, притягивая лишние электроны, он становится отрицательно заряженным.

При добавлении в кремний и германий примесей они становятся необходимым материалом, из которых и изготавливаются биполярные транзисторы.

Биполярными называются электронные приборы, состоящие из двух, имеющие разные заряды слоев. Причем два крайних имеют одинаковый заряд. Тот слой, который имеет положительный заряд, называется «p», а отрицательный — «n». В связи с этим различают следующие типы:

Граница между этими слоями называется переход. Внутреннюю область, разделенную двумя переходами, называют базой. Две внешние области называют эмиттер и коллектор. Монокристалл изготовлен таким образом, что одна внешняя область передает в базу носители энергии и называется эмиттером. Другая внешняя область забирает эти носители и называется коллектором.

На электрической схеме биполярный транзистор обозначается в виде круга, внутри которого нарисована черточка, а к ней подходят три прямые. Одна подходит под углом в 90 градусов и обозначает базу, две другие под наклоном. Та из них что имеет стрелку обозначает эмиттер, другая — коллектор. Сам прибор, как правило, имеет три вывода, соответствующих этим областям.

Полевой

Другой вид называется полевой или униполярный. В отличие от биполярного p-n переход работает иначе. Его монокристалл имеет однородный состав. Канал, по которому движутся энергоносители, может быть дырочным или электронным. В дырочном носителем являются положительно заряженные неподвижные ионы, в электронном — отрицательно заряженные. Эти каналы также обозначаются буквами «p» и «n» соответственно.

Вокруг и почти по всей длине этого канала впрыскиваются, вживляются ионы противоположной полярности. Эта область называется затвором, она-то и регулирует проводимость канала. Тот край канала, через который заряженные частицы входят в кристалл, называется исток, а через который выходят — стоком.

Для улучшения электрических характеристик между металлическим каналом и затвором стали добавлять диэлектрик. Если классифицировать транзисторы по структуре, то можно выделить два семейства:

  • МДП (к ним можно отнести и МОП — металл-оксид-проводник)
  • JGBT

МДП расшифровывается как металл-диэлектрик-проводник. Это полевой. Новый JGBT транзистор сочетает в себе достоинства биполярного, но имеет изолированный затвор.

Принцип действия

Один из сложных радиоэлементов — транзистор. Принцип работы его сводится к следующему:

  • регулировка
  • усиление
  • генерация

Биполярные обладают большей мощностью и могут работать с большими частотами. Однако, если нужен широкий спектр усиления, то без полевого не обойтись.

Работа полевого

Рассмотрим, как работает транзистор. Для начинающих радиолюбителей трудно разобраться во всех этих переходах. Чтобы показать принцип работы транзистора простым языком, обратим внимание на следующий пример.

Водопроводный кран вентильного типа способен очень плавно менять напор воды. Это достигается благодаря постепенному изменению пропускного отверстия. На этом же принципе основана работа и полевого транзистора.

Затвор окружает пропускной канал. При подаче на него запирающего напряжения, электрическое поле как бы сдавливает проход, тем самым уменьшая поток заряженных частиц. Как и при закрывании крана необходимо прилагать небольшое усилие, так и мощность затвора, по сравнению с основным каналом, очень мала. Сходство также и в том, что при небольших изменениях напряжения на затворе, сечение прохода также меняется незначительно.

Как работает биполярный

Работа биполярного прибора несколько отличается от работы полевого. В первую очередь отличается способ управления движением заряженных частиц. В полевом используется электрическое поле, в биполярном — ток между базой и эмиттером.

В зависимости от типа прибора стрелочка эмиттера на схеме будет либо направлена к базе, тогда это тип p-n-p, либо от базы, тогда это n-p-n. При подключении к этим зажимам одноименного напряжения («p» подключается к «+”, а «n» подключается к «-“) в цепи эмиттер — база возникает ток. В базе появляется больше носителей заряда и их становится тем больше, чем больше ток в этой цепи.

К коллектору подводится обратное напряжение, т. е. к «p» подключается «-“, а к «n» — «+”. Поскольку между эмиттером и коллектором возникает разность потенциалов, между этими выводами появляется ток. Он будет тем больше, чем больше носителей заряда имеется в базе.

Когда к эмиттеру и базе подключают источник питания противоположного знака, ток прекращается, транзистор закрывается. Что поможет лучше понять работу транзистора? Для чайников важно понять одну истину. Если открыт переход эмиттер — база (подается прямое напряжение), то открыт и сам прибор, в противном случае он закрыт.

Меры предосторожности

Полевые транзисторы очень чувствительны к повышенному напряжению. При работе с ними необходимо предотвратить возможность попадания на них статистического напряжения. Этого можно достичь надев заземленный браслет. При подборе аналога важно учитывать не только рабочее напряжение, но и допустимый ток. А если прибор работает в частотном режиме, то и его частоту.

220v.guru