Транзистор на рисунке имеет следующие выводы – Транзистор на рисунке имеет следующие выводы:

Радио для всех - Транзисторы

 

 

Слово Transistor является аббревиатурой и представляет собой комбинацию слов Transfer + Varistor, используемых для описания их режима работы еще в первые дни своего создания.

Три изобретателя транзистора: (слева направо) Уильям Шокли, Джон Бардин. И Уолтер Браттен.
Которые были награждены Нобелевской премией 1956 года по физике.

 

Первый транзистор

 

Добавьте дополнительный полупроводниковый слой к соединительному диоду, и вы получите BJT. BJT - трехслойный (легированный) полупроводниковый "сэндвич",который может быть либо PNP, либо NPN.

 

 

BJT - это регулятор тока, управляемый током. Основной ток протекает от эмиттера к коллектору (PNP) или от коллектора к эмиттеру (NPN). Вы управляете основным током, изменяя  базовый ток. Управляющий ток протекает от эмиттера до базы (PNP-прямая проводимость) или от базы к эмиттеру (NPN-обратная проводимость). Маленькая стрелка на эмиттере всегда указывает направлении тока/ Ток эмиттера = базовый ток + ток коллектора по KCL (международный калибровочный стандарт для измерения электропроводности).

 

 

BJT являются «биполярными», потому что они используют оба типа несущей (электроны + дырки). Когда базовый ток равен 0 (или меньше порогового тока), транзистор выключен (становится полностью непроводящим. Когда базовый ток максимален, транзистор насыщается (становится полностью проводящим). Поскольку подвижность электронов больше подвижности дырок, NPN является более распространенным. Управляемый ток протекает через 2 внешних слоя, а не в базовом.

 

BJT как переключатель

Примечание: BJTs фактически имеют 5 рабочих режимов (а не только обрезание или насыщение)/ Для наших целей мы будем иметь дело главным образом с областями отсечки и насыщения, что позволяет нам использовать BJT в качестве прогрессивного переключателя

 

 

Крошечный сигнал, взятый из микрофона (представьте себе хлопок), однажды выпрямленный, можно использовать для включения базы транзистора и включения лампы. Крошечный ток будеи управлять гораздо большим током (усилением). Аккумулятор обеспечивает больший ток, а не транзистор (без магии). Чем громче хлопок, тем ярче горит лампочка (активный режим) пока не достигнет насыщения.

BJT, как мы уяснили, это в основном управляемое током устройство.

 

На транзисторе NPN


·Высокий потенциал на коллекторе
·Низкий потенциал у эмиттера
·Протекает ток, когда базовому элементу придается высокий потенциал


На транзисторе NPN


·Высокий потенциал на эмиттере
·Низкий потенциал на коллекторе
·Протекает ток, когда база подключена к низкому потенциалу

 

Режимы BJT


-Область отсечки: VBE <VFB, iB = 0
-Транзистор действует как выключатель
-Активная линейная область: VBE = VFB, iB ≠ 0, iC = βiB
-Транзистор действует как усилитель тока
-Область насыщения: VBE = VFB, iB> iC, max / β

В этом режиме транзистор действует как переключатель включения

 

3 параметра, представляющие интерес


-Коэффициент усиления по току (β)
-Падение напряжения от базы к эмиттеру при VBE = VFB
-Минимальное падение напряжения на коллекторе и эмиттере при насыщении транзистора

 

Поскольку биполярный транзистор является трехконтактным устройством, существует три возможных способа его подключения в электронной схеме, причем один вывод является общим для входа и выхода. Каждый способ соединения по-разному реагирует на входной сигнал в цепи, поскольку статические характеристики транзистора изменяются в зависимости от схемы.

  • Общая конфигурация базы - имеет коэффициент усиления по напряжению , но не коэффициент усиления по току.
  • Общая конфигурация излучателя - имеет коэффициент усиления по току и напряжению .
  • Общая конфигурация коллектора - имеет коэффициент усиления по току, но без усиления напряжения .

 

Конфигурация с общей базой (ОБ)

Как следует из названия, в базовой конфигурации базовое соединение является общим как для входного сигнала, так и для выходного сигнала, при этом входной сигнал подается между базовым и эмиттерным терминалами. Соответствующий выходной сигнал берется между базовым и коллекторным терминалами, как показано на базовом терминале, заземленном или подключенном к фиксированной опорной точке напряжения.

Входной ток, протекающий в эмиттер, достаточно велик, так как сумма его как основного тока, так и тока коллектора соответственно, следовательно, токовый выход коллектора меньше входа тока эмиттера, что приводит к коэффициенту усиления по току для этого типа схемы «1», (Единицы) или меньше, другими словами, общая базовая конфигурация «ослабляет» входной сигнал.

Общая цепь базового транзистора

Эта конфигурация усилителя такого типа является схемой усилителя без инвертирующего напряжения, поскольку напряжения Vin и Vout сигнала являются « синфазными » . Этот тип структуры транзистора не очень распространен из-за его необычно высоких характеристик усиления напряжения. Его входные характеристики соответствуют характеристикам прямого смещенного диода, в то время как выходные характеристики соответствуют характеристикам освещенного фотодиода. Также этот тип биполярной конфигурации транзистора имеет высокое отношение выходного сигнала к входному сопротивлению или, что более важно, «нагрузочное» сопротивление ( RL ) к «входному» сопротивлению ( Rin ), что дает ему значение «Resistance Gain». Тогда коэффициент усиления напряжения ( Av ) для общей базовой конфигурации определяется как:

Общий базовый коэффициент усиления напряжения

Где: Ic / Ie - текущий коэффициент усиления, альфа ( α ) и RL / Rin - коэффициент усиления сопротивления. Схема общей базы обычно используется только в однокаскадных схемах усилителя, таких как микрофонный предусилитель или радиочастотный ( Rf ) усилители, благодаря своей очень хорошей частотной характеристике.

Конфигурация с общим эмиттером (ОЭ)

В конфигурации с общим эмиттером или заземленным эмиттером входной сигнал подается между базой и эмиттером, в то время как выходной сигнал берется между коллектором и эмиттером, как показано. Этот тип конфигурации является наиболее часто используемой схемой для транзисторных усилителей и представляет собой «нормальный» метод биполярного транзисторного соединения. Общая конфигурация усилителя эмиттера обеспечивает наибольший коэффициент усиления по току и мощности для всех трех конфигураций биполярных транзисторов. Это связано главным образом с тем, что входной импеданс НИЗКИЙ, поскольку он подключен к прямому смещенному PN-переходу, в то время как выходной импеданс ВЫСОКИЙ, как он взят из обратного смещенного PN-перехода.

Общая схема с эмиттером

В этом типе конфигурации ток, выходящий из транзистора, должен быть равен токам, втекающим в транзистор, когда ток эмиттера задан как Ie = Ic + Ib . Поскольку сопротивление нагрузки ( RL ) последовательно соединено с коллектором, коэффициент усиления тока общей конфигурации эмиттерного транзистора является довольно большим, поскольку он представляет собой отношение Ic / Ib . Текущий коэффициент усиления транзисторов задается греческим символом Beta , ( β ). Поскольку ток эмиттера для общей конфигурации эмиттера определяется как Ie = Ic + Ib , отношение Ic / Ie называется Alpha , учитывая греческий символ α . Обратите внимание: значение Alpha всегда будет меньше единицы. Поскольку электрическое соотношение между этими тремя токами Ib , Ic и Ie определяется физической конструкцией самого транзистора, любое небольшое изменение базового тока ( Ib ) приведет к значительно большему изменению тока коллектора ( Ic ) , Тогда небольшие изменения тока, текущего в базе, будут, таким образом, управлять током в схеме эмиттер-коллектор. Как правило, для большинства транзисторов общего назначения значение бета имеет значение от 20 до 200. Таким образом, если транзистор имеет значение бета, равное, например, 100, то один электрон будет течь от базового терминала на каждые 100 электронов, протекающих между клеммой эмиттер-коллектор. Объединяя выражения для Alpha , α и Beta , β математическое соотношение между этими параметрами и, следовательно, текущее усиление транзистора может быть задано как:

Где: « Ic » - ток, протекающий в коллекторную клемму, « Ib » - ток, протекающий в базовую клемму, а « Ie » - ток, текущий через клемму эмиттера. Затем подведем итог. Этот тип конфигурации биполярного транзистора имеет больший входной импеданс, силу тока и усиление мощности, чем у базовой конфигурации, но его коэффициент усиления намного ниже. Общая конфигурация излучателя представляет собой инвертирующую схему усилителя. Это означает, что результирующий выходной сигнал 180

° « находится в противофазе » с сигналом входного напряжения.

Конфигурация с общим коллектором (ОК)

В общем коллекторе или конфигурации с заземленным коллектором коллектор теперь распространен через источник питания. Входной сигнал подключается непосредственно к базе, а выход берется из нагрузки эмиттера, как показано. Этот тип конфигурации обычно называют цепью следящего элемента напряжения или схемы следящего элемента эмиттера . Конфигурация общего коллектора или эмиттерного повторителя очень полезна для приложений согласования импеданса из-за очень высокого входного импеданса в области сотен тысяч Ом при относительно низком выходном импедансе.

Общая схема

Общая конфигурация эмиттера имеет коэффициент усиления по току, приблизительно равный β- значению самого транзистора. В конфигурации общего коллектора сопротивление нагрузки расположено последовательно с эмиттером, поэтому его ток равен току эмиттерного тока. Поскольку ток эмиттера представляет собой комбинацию коллектора и суммарного тока базы, сопротивление нагрузки в этом типе конфигурации транзистора также имеет как коллекторный ток, так и входной ток базы, протекающей через него. Тогда текущее усиление схемы задается как:

Текущий коэффициент коллектора

Этот тип конфигурации биполярного транзистора является неинвертирующей схемой, в которой напряжения сигнала Vin и Vout являются « синфазными » . Он имеет коэффициент усиления по напряжению, который всегда меньше «1» (единица). Сопротивление нагрузки общего транзистора коллектора принимает как базовый, так и коллекторный токи, дающие большой коэффициент усиления по току (как в случае с общей конфигурацией эмиттера), что обеспечивает хорошее усиление тока с очень небольшим коэффициентом усиления по напряжению. Теперь мы можем суммировать различные зависимости между отдельными токами постоянного тока транзисторов, протекающими через каждую ветвь, и коэффициентами усиления постоянного тока, приведенными выше в следующей таблице.

Связь между DC-токами

Конфигурации BJT

С обобщенными характеристиками различных конфигураций транзисторов, приведенными в следующей таблице:

Характеристика

Общая
база

Общий
эмиттер

Общий
коллектор

Входное сопротивление

Низкое

среднее

Высокое

Выходное сопротивление

Очень высоко

Высокое

Низкое

Угол фазы

0 o

180 o

0 o

Напряжение

Высокое

среднее

Низкое

Текущий прирост

Низкий

средний

Высокий

Усиление мощности

Низкий

Очень высокий

средний

 

Типичная схема подключения

 

 

Решим задачку

 

Дано:

VB - 5 В

R — 1 кОм

hfe = 50

Найти:

Ice-?

Решение:

 

IBE =  =  = 0,005A

ICE = IBE hfe = 0,005 x 50 = 0,25A

 

Вывод:

Если на базу подаётся 5 В через резистор в 1 кОм, транзистор откроется настолько, что будет способен пропустить до 250 мА. При этом управляющий ток составит всего 5 мА

 

Биполярный транзистор в качестве переключателя

Когда база NPN-транзистора заземлено (0 вольт) и ток базы отсутствует, Ib течет, ток не течет от эмиттера к коллектору, и поэтому транзистор отключается «OFF». Если база смещена вперед более чем на 0,7 вольт, ток будет протекать от эмиттера к коллектору, и транзистор считается включенным. При работе в этих двух режимах транзистор работает как переключатель. Проблема здесь заключается в том, что база транзисторов должна переключаться между нулем и некоторым большим положительным значением, чтобы транзистор стал насыщенным, в этот момент увеличенный базовый ток Ib поступает в устройство, в результате чего ток коллектора Ic становится большим, а Vce маленьким. Тогда мы можем видеть, что небольшой ток на базе может управлять гораздо большим током, протекающим между коллектором и эмиттером. Отношение тока коллектора к базовому току ( β ) известно как коэффициент усиления тока транзистора. Типичное значение β для стандартного биполярного транзистора может находиться в диапазоне от 50 до 200 и может варьироваться даже между транзисторами с одинаковой кодировкой цифрами но разными буквами.

 

Читаем далее по теме

 

Условные обозначения транзисторов

Транзистор IGBT

Транзистор JFET

Транзистор Дарлингтона

МОП- транзистор (MOSFET)

 

 

 

 

www.junradio.com

Полевой МОП-транзистор | Практическая электроника

— Георгий Иваныч, он же Гога, он же Гоша, он же Юрий,

он же Гора, он же Жора, здесь проживает?

— Здесь только Георгий Иваныч.

из кинофильма «Москва слезам не верит»

Ну вот наконец-то  дошли и до МОП-транзисторов ;-).
Как часто вы слышали название МОП, MOSFET, MOS, полевик, МДП-транзистор, транзистор с изолированным затвором? Да-да… это все слова синонимы и относятся они к одному и тому же радиоэлементу.

Полное название такого радиоэлемента на английский манер звучит как Metal Oxide Semiconductor Field Effect Transistors (MOSFET), что в дословном переводе звучит как Металл Оксид Полупроводник Поле Влияние Транзистор. Если преобразовать на наш могучий русский язык, то получается как полевой транзистор со структурой Металл Оксид Полупроводник или просто МОП-транзистор ;-). Почему МОП-транзистор также называют МДП-транзистором и транзистором с изолированным затвором? С чем это связано? Об этих и других вещах вы узнаете в нашей статье. Не переключайтесь на другую вкладку! 😉

Итак

В семействе МОП-транзисторов в основном выделяют 4 вида:

1) N-канальный с индуцированным каналом

2) P-канальный с индуцированным каналом

3) N-канальный со встроенным каналом

4) P-канальный со встроенным каналом

Как вы могли заметить, разница только в обозначении самого канала. С индуцированным каналом он обозначается штриховой линией, а со встроенным каналом — сплошной.

 

В современном мире МОП-транзисторы со встроенным каналом используются все реже и реже, поэтому в наших статьям мы их затрагивать не будем, а будем рассматривать только N и P — канальные транзисторы с индуцированным каналом.

Начнем наш цикл статей про МОП-транзисторы именно с самого распространенного N-канального МОП-транзистора с индуцированным каналом. Go!

 

Если взять тонкий-тонкий нож и разрезать МОП-транзистор вдоль, то можно увидеть вот такую картину:

Если рассмотреть с точки зрения еды на вашем столе, то МОП-транзистор будет больше похож на бутерброд. Полупроводник P-типа — толстый кусок хлеба, диэлектрик — тонкий кусок колбасы, а сверху кладем еще слой металла — тонкую пластинку сыра. И у нас получается вот такой бутер:

А как  будет строение транзистора сверху-вниз? Сыр — металл, колбаса — диэлектрик, хлеб — полупроводник. Следовательно получаем Металл-Диэлектрик-Полупроводник. А если взять первые буквы с каждого названия, то получается МДП — Металл-Диэлектрик-Полупроводник, не так ли? Значит, такой транзистор можно назвать по первым буквам МДП-транзистором ;-). А так как в качестве диэлектрика используется очень тонкий слой оксида кремния (SiO2), можно сказать что почти стекло, то и вместо названия «диэлектрик» взяли название «оксид, окисел», и получилось Металл-Окисел-Полупроводник, сокращенно МОП. Ну вот, теперь все встало на свои места ;-).

Давайте еще раз рассмотрим структуру нашего МОП-транзистора:

Имеем «кирпич» полупроводникового материала P-проводимости. Как вы помните, основными носителями в полупроводнике P-типа являются дырки, поэтому их концентрация в данном материале намного больше, чем электронов. Но электроны тоже есть в P-полупроводнике. Как вы помните, электроны в P-полупроводнике —  это неосновные носители и их концентрация очень мала, по сравнению с дырками. «Кирпич» P-полупроводника носит название Подложки. Она является основой МОП-транзистора, так как на ней создаются другие слои. От подложки выходит вывод с таким же названием.

Другие слои — это материал N+ типа, диэлектрик, металл. Почему N+, а не просто N? Дело в том, что этот материал сильно легирован, то есть концентрация электронов в этом полупроводнике очень большая. От  полупроводников N+ типа, которые располагаются по краям, отходят два вывода: Исток и Сток. Между Истоком и Стоком через диэлектрик располагается металлическая пластинка, от который идет вывод и называется Затвором. Между Затвором и другими выводами нет никакой электрической связи. Затвор вообще изолирован от всех выводов транзистора, поэтому МОП-транзистор также называют транзистором с изолированным затвором.

Итак, смотря на рисунок выше, мы видим, что МОП-транзистор на схеме имеет 4 вывода (Исток, Сток, Затвор, Подложка), а в реальности только 3. В чем прикол? Дело все в том, что Подложку обычно соединяют с Истоком. Иногда это уже делается в самом транзисторе еще на этапе разработки. В результате того, что Исток соединен с Подложкой, у нас образуется диод между Стоком и Истоком, который иногда даже не указывается в схемах, но всегда присутствует:

Поэтому, требуется соблюдать цоколевку при подключении МОП-транзистора в схему.

Итак, как же будет выглядеть рабочая схема транзистора? Что куда подавать и что где снимать?

Да тут все то же самое как и в полевом транзисторе с управляющим P-N переходом. Исток — это вывод, откуда начинают свой путь основные носители заряда, Сток — это вывод, куда они притекают, а Затвор — это вывод, с помощью которого мы контролируем поток основных носителей.

Пусть Затвор у нас пока что никуда не подключен. Для того, чтобы устроить движуху электронов через Исток-Сток, нам потребуется источник питания Bat:

Если рассмотреть наш транзистор с точки зрения P-N переходов и диодов на их основе, то эту можно нарисовать эквивалентную схемку для нашего рисунка. Она будет выглядеть вот так:

где

И-исток, П-Подложка, С-Сток.

Как вы видите, диод VD2 включен в обратном направлении, так что электрический ток никуда не потечет.

Значит, в этой схеме

никакой движухи электрического тока не намечается.

НО…

Если подать определенное напряжение на Затвор, в подложке начинаются волшебные превращения. В ней начинает индуцироваться канал.

Индукция, индуцирование — это буквально означает «наведение», «влияние». Под этим термином понимают возбуждение в объекте какого-либо свойства или активности в присутствии возбуждающего субъекта (индуктора), но без непосредственного контакта (например, через электрическое поле). Последнее выражение для нас имеет более глубокий смысл: «через электрическое поле».

Давайте глянем, как начинает индуцироваться канал в МОП-транзисторе.

Также нам не помешает вспомнить, как ведут себя заряды различных знаков. Те, кто не играл на физике на последней парте в  морской бой и не плевал через корпус шариковой ручки бумажными шариками в одноклассниц, тот наверняка вспомнит, что одноименные заряды отталкиваются, а разноименные — притягиваются:

На основе этого принципа еще в начале ХХ века ученые сообразили, где все это можно применить и создали гениальный радиоэлемент. Оказывается, достаточно подать на Затвор положительное напряжение относительно Истока, как сразу под Затвором возникает электрическое поле. А раз  подаем на Затвор положительное напряжение, значит он будет заряжаться положительно не так ли? Так как у нас слой диэлектрика очень тонкий, следовательно, электрическое поле будет также влиять и на подложку, в которой дырок намного больше, чем электронов. А раз и на Затворе положительный потенциал и дырки обладают положительным зарядом, следовательно, одноименные заряды отталкиваются, а разноименные  — притягиваются. Картина будет выглядеть следующим образом пока что без источника питания между Истоком и Стоком:

Дырки обращаются в бегство подальше от Затвора и поближе к выводу Подложки, так как одноименные заряды отталкиваются, а электроны наоборот пытаются пробиться к металлической пластинке затвора, но им мешает диэлектрик, который не дает им воссоединиться с Затвором и уравнять потенциал до нуля. Поэтому электронам ничего другого не остается, как просто создать вавилонское столпотворение около слоя диэлектрика.

В результате, картина будет выглядеть следующим образом:

Видели да? Исток и Сток соединились тонким каналом из электронов! Говорят, что такой канал индуцировался из-за электрического поля, которое создал Затвор транзистора.

Так как этот канал соединяет Исток и Сток, которые сделаны из N+ полупроводника, следовательно у нас получился N-канал. А  такой транзистор уже будет называться N-канальным МОП-транзистором. Если вы читали статью проводники и диэлектрики, то наверняка помните, что в проводнике очень много свободных электронов. Так как Сток и Исток соединились мостиком из большого количества электронов, следовательно этот канал стал проводником для электрического тока. Проще говоря, между Истоком и Стоком образовался проводок, по которому может бежать электрический ток.

Получается, если подать напряжение между Стоком и Истоком при индуцированном канале, то мы можем увидеть вот такую картину:

Как вы видите, цепь стает замкнутой и в цепи начинает спокойно протекать электрический ток.

Но это еще не все! Чем сильнее поле, тем больше концентрация электронов, тем толще получается канал. А как сделать поле сильнее? Достаточно подать побольше напруги на Затвор 😉 Подавая бОльшее напряжение на Затвор с помощью Bat2, мы  увеличиваем толщину канала, а значит и его проводимость! Или простыми словами, мы можем менять сопротивление канала, «играя» напряжением на затворе 😉 Ну гениальнее некуда!

В нашей статье мы разобрали N-канальный МОП транзистор с индуцированным каналом. Также есть еще и P-канальный  МОП-транзистор с индуцированным каналом. P-канальный работает точно также, как и N-канальный, но вся разница в том, что основными носителями будут являться уже дырки. В этом случае все напряжения в схеме меняем на инверсные, в отличие от N-канального транзистора:

На ютубе нашел очень неплохое видео, поясняющее работу полевого МОП-транзистора. Рекомендую к просмотру (не реклама):

А вот и  продолжение

www.ruselectronic.com

Введение в биполярные транзисторы (BJT)

Добавлено 29 августа 2017 в 19:10

Сохранить или поделиться

Изобретение биполярного транзистора (БТ, BJT) в 1948 году привело к революции в электронике. Технические трюки, ранее требующие относительно больших, механически хрупких, потребляющих много энергии вакуумных ламп, неожиданно достигались с помощью крошечных, механически прочных, потребляющих мало энергии частиц кристаллического кремния. Эта революция позволила разработать и изготовить легкие, недорогие электронные устройства, которые мы сейчас считаем само собой разумеющимися. Понимание того, как работают транзисторы, имеет первостепенное значение для всех, кто интересуется электроникой.

Я собираюсь максимально сосредоточиться на практических назначении и применении биполярных транзисторов, а не исследовать квантовый мир теории полупроводников. Обсуждение электронов и дырок, по-моему, лучше оставить для другой главы. Здесь я хочу выяснить, как использовать эти компоненты, а не анализировать их внутренние детали. Я не хочу умалять важность понимания физики полупроводников, но иногда интенсивное фокусирование на физике твердотельных приборов умаляет понимание функций этих приборов на уровне компонентов. Однако, используя этот подход, я полагаю, что читатель обладает определенными минимальными знаниями о полупроводниках: о разнице между легированными "P" и "N" полупроводниками, о функциональных характеристиках PN (диодного) перехода, о значениях терминов "обратное смещение" и "прямое смещение". Если эти понятия вам не совсем ясны, то прежде, чем приступить к этой главе, лучше обратиться к предыдущим главам этой книги.

Биполярный транзистор состоит из трехслойного «сэндвича» из легированных полупроводниковых материалов, либо P-N-P на рисунке ниже (b), либо N-P-N на рисунке ниже (d). Каждый слой, образующий транзистор, имеет определенное название, и каждый слой снабжен проводным контактом для подключения к внешней схеме. Условные графические обозначения показаны на рисунке ниже (a) и (c).

Биполярный транзистор (БТ, BJT): PNP (a) условное обозначение и (b) физический макет, NPN (c) условное обозначение и (d) физический макет

Функциональной разницей между PNP транзистором и NPN транзистором является правильность (полярность) смещения перехода во время работы. Для любого заданного режима работы направления токов и полярности напряжений для каждого типа транзисторов находятся в точности противоположно друг другу.

Биполярные транзисторы работают как регуляторы тока, управляемые током. Другими словами, транзисторы ограничивают величину проходящего тока в соответствии с меньшим управляющим током. Основной поток электронов, который управляется, протекает от коллектора к эмиттеру или от эмиттера к коллектору в зависимости от типа транзистора (PNP и NPN, соответственно). Маленький поток электронов, который управляет основным током, протекает от базы к эмиттеру или от эмиттера к базе опять же в зависимости от типа транзистора (PNP и NPN, соответственно). В соответствии со стандартами обозначений полупроводниковых приборов стрелка всегда указывает в направлении, противоположном направлению потока электронов (рисунок ниже).

Маленький поток электронов база-эмиттер управляет большим потоком электронов коллектор-эмиттер, протекающим в направлении, противоположном направлению стрелки эмиттера (направления электрического тока, которое принято считать направлением от «+» к «–», совпадает с направлением стрелки эмиттера)

Биполярные транзисторы называются биполярными потому, что основной поток электронов через них происходи в двух типах полупроводникового материала: P и N, поскольку основной ток идет от эмиттера к коллектору (или наоборот). Другими словами, два типа носителей заряда – электроны и дырки – входят в состав этого основного тока через транзистор.

Как вы можете видеть, управляющий ток и управляемый ток всегда соединяются вместе в выводе эмиттера, и их электроны всегда текут против направления стрелки транзистора. Это первое и главное правило в использовании транзисторов: все токи должны протекать в правильном направлении, чтобы устройство работало как регулятор тока. Маленький управляющий ток обычно называют просто током базы, потому что он является единственным током, который проходит через вывод базы транзистора. И наоборот, большой управляемый ток называется током коллектора, потому что он является единственным током, который проходит через вывод коллектора. Ток эмиттера представляет собой сумму тока базы и тока коллектора в соответствии с законом токов Кирхгофа.

Отсутствие тока через базу транзистора выключает его подобно разомкнутому ключу и предотвращает протекание тока через коллектор. Ток базы превращает транзистор в что-то похожее на замкнутый ключ и дает пропорциональному значению тока пройти через коллектор. Ток коллектора в основном ограничивается током базы, независимо от величины напряжения, доступного для его раскачки. В следующем разделе будет более подробно рассмотрено использование биполярных транзисторов в качестве переключающих элементов.

Подведем итоги:

  • Биполярные транзисторы названы так потому, что контролируемый ток должен проходит через два типа полупроводникового материала: P и N. Ток в разных частях транзистора состоит из обоих потоков: и электронов, и дырок.
  • Биполярные транзисторы состоят либо из P-N-P, либо из N-P-N полупроводниковой «сэндвичной» структуры.
  • Три вывода биполярного транзистора называются эмиттер, база и коллектор.
  • Транзисторы функционируют как регуляторы тока, позволяя небольшому току управлять большим током. Величина тока, доступного между коллектором и эмиттером, в основном определяется величиной тока, протекающего между базой и эмиттером.
  • Для правильного функционирования транзистора в качестве регулятора тока, управляющий (базовый) ток и управляемый (коллекторный) ток должны идти в правильных направлениях: складываться в эмиттере, поток электронов должен быть направлен противоположно направлению стрелки эмиттера, и, следовательно, направление электрического тока (протекающего от «+» к «–») должно совпадать с направлением стрелки эмиттера.

Оригинал статьи:

Сохранить или поделиться

radioprog.ru

Экспериментальное определение структуры и выводов  биполярного транзистора

Опубликовано:

Иноземцев В.А., Иноземцева С.В. Экспериментальное определение структуры и выводов биполярного транзистора. Проблемы учебного физического эксперимента: Сб. научн. Тр. Вып. 11.- м.: ИОСО РАО, 2001.

 

При изготовлении на занятиях радиотехнического кружка различных электронных устройств достаточно часто используют транзисторы, извлеченные из неработающих приборов. В связи с этим возникает проблема определения структуры и выводов транзисторов.

При экспериментальном определении структуры транзистора (р-n-р или n-р-n) его можно рассматривать состоящим из двух диодов, соединенных в зависимости от структуры  анодами  или  катодами  (рис.  1 а, б),  причем  точка соединения диодов соответствует выводу базы транзистора. Для определения структуры и вывода базы транзистора воспользуемся омметром с известной полярностью напряжения, подаваемого на гнезда омметра от внутреннего источника питания. Обычно положительный полюс внутреннего источника питания омметра соединен с  гнездом “общий”.

Следует отметить, что существуют омметры и с другой полярностью напряжения на гнездах. Так, например, авометр Ц20-05 выпускается в двух модификациях: в одной из них на общее гнездо омметра выведен плюс внутреннего источника питания, а в другой - минус. Поэтому перед экспериментальным определением структуры и вывода базы транзистора следует с помощью диода с маркированной полярностью проверить, какой полюс внутреннего источника питания омметра соединен с общим гнездом.

При одной полярности щупов омметра, подключаемых к переходу транзистора, сопротивление перехода оказывается малым (прямое подключение), а при другой - большим (обратное подключение). Если при малом сопротивлении переходов транзистора плюсовой щуп омметра касался одного и того же вывода, значит это вывод базы и транзистор имеет структуру n-р-n. Если в этой же ситуации минусовой щуп омметра касался одного и того же вывода (базы), то транзистор р-n-р типа.

 После того, как определена структура транзистора и найден вывод базы транзистора, приступают к определению выводов  эмиттера и коллектора.

На рисунках, поясняющих принцип работы биполярного транзистора, области эмиттера и коллектора выглядят симметрично и, казалось бы, выводы коллектора и эмиттера можно поменять местами. Однако конструктивно эмиттер и коллектор выполняются по-разному (имеют неодинаковую концентрацию носителей заряда и площадь поверхности). Поэтому менять их местами не следует, так как получится существенно меньший коэффициент усиления по току и меньшая мощность рассеяния транзистора. Для некоторых транзисторов в этом случае может возникнуть лавинный пробой перехода база-эмиттер, что нарушит нормальную работу собранного электронного устройства. На рисунке 2 приведены две выходные характеристики транзистора КТ315А в схеме включения с общим эмиттером: 1 - для стандартного включения транзистора, 2 - для случая, когда эмиттер и коллектор транзистора поменяли местами (инверсный режим работы).

Существует несколько вариантов экспериментального определения выводов эмиттера и коллектора. Рассмотрим два из них.

Возьмем резистор сопротивлением 10-100 кОм и включим его между выводом базы и предполагаемым выводом коллектора. К выводам эмиттера и коллектора омметр нужно подключить так, как показано на рис. 3а и 3б  для транзистора n-р-n типа, а на рис. 4а и 4б - для транзистора р-n-р типа. На всех рисунках предполагаемый вывод коллектора расположен вверху (по рисунку). Правильному выбору выводов коллектора и эмиттера соответствует меньшее сопротивление, фиксируемое  омметром, т. е. подключение по схемам рис. 3а, 4а.


Рассмотрим второй вариант определения выводов коллектора и эмиттера. В качестве источника питания используют любой источник постоянного напряжения (3-9 В). Миллиамперметр включают между положительным полюсом источника и предполагаемым выводом коллектора для транзисторов n-р-n типа (рис. 5а и 5б), между отрицательным полюсом источника и предполагаемым выводом коллектора для транзисторов р-n-р типа (рис. 6а и 6б). Предполагаемый вывод  коллектора, как и в предыдущем случае, расположен на рисунке вверху. Правильно выбранному выводу коллектора соответствует больший ток, фиксируемый миллиамперметром.

В этом варианте можно определить не только выводы транзистора, но и приблизительно определить коэффициент усиления транзистора по току.

ivatv.narod.ru

Введение в электронику. Транзисторы

Серия статей известного автора множества радиолюбительских публикаций  Дригалкина В.В.  для начинающих радиолюбителей

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “Радиолюбитель“

Транзисторы

Транзистор входит в целую группу деталей, которую называют полупроводниковые приборы. Кроме транзистора, в нее входят диоды, стабилитроны и другие детали. В каждой из них использован полупроводниковый материал (полупроводник). Что это такое? Все существующие вещества можно условно поделить на три большие группы. Одни из них – медь, железо, алюминий и прочие металлы – хорошо проводят электрический ток. Это проводники. Древесина, фарфор, пластмасса совсем не проводят тока. Они – непроводники, изоляторы (диэлектрики).
Полупроводники же занимают промежуточное положение между проводниками и диэлектриками. Такие материалы проводят ток только при определенных условиях.

Из полупроводниковых приборов транзистор чаще всего применяется в радиоэлектронике, особенно биполярный. Первые такие транзисторы были изготовлены на основе германия. В настоящее время их изготавливают в основном из кремния и арсенида галлия. У биполярного транзистора три вывода: база (б), эмитер (е) и коллектор (к). Назначение выводов называют цоколевкой или в народе – расПИНовкой (от английского PIN – вывод). Цоколевку транзисторов можно найти в специальной справочной литературе.

Транзистор – усилительный прибор. Условно его можно сравнить с таким известным Вам устройством, как рупор. Довольно произнести что-нибудь перед узким отверстием рупора, направив широкое отверстие в сторону приятеля, который стоит за несколько десятков метров, и голос, усиленный рупором, будет ему хорошо слышан. Если воспринять узкое отверстие как вход рупора-усилителя, а широкий – как выход, то можно сказать, что исходный сигнал в несколько раз более сильный от входных. Это и есть показатель усилительной способности рупора, его коэффициент усиления. Некоторые разновидности транзисторов и их обозначение на принципиальной схеме представлены на Рис. 1.

Если пропустить через участок база-эмитер слабый ток, он будет усилен транзистором в десятки и даже в сотни раз. Усиленный ток потечет через участок коллектор-эмитер2. В зависимости от наибольшего тока, что можно пропускать через коллектор, транзисторы разделяют на маломощные, средней и большой мощности. Кроме того, эти полупроводниковые приборы могут быть структуры р-п-р или n-p-n (на английском). Так различаются транзисторы с разным расположением пластов полупроводниковых материалов3 (если в диоде два пласта материалов, то здесь их три) . Тем не менее, не думайте, что транзисторы разной структуры имеют и разное усиление. Это совсем не обязательно. Усилительная способность транзистора определяется его так называемым статическим коэффициентом передачи тока. Для некоторых конструкций этот коэффициент важный, и его указывают в описании.
Статический коэффициент передачи тока транзистора указывает во сколько раз больший ток по участку коллектор-эмиттер способен пропустить транзистор по отношению к току база-эмиттер. Для некоторых схем этот параметр очень важен. В отечественной схемотехнике он обозначается как h31э, в зарубежной как hFE.
Приведу пример: допустим, hFE = 500, и через переход база-эмиттер проходит ток 0.1mA, тогда транзистор пропустит максимум через себя 50mA. Если в электрической цепи за транзистором стоит деталь, потребляющая 30mA, то у транзистора будет запас, и он передаст именно 30mA, но если стоит деталь, потребляющая больше 50mA (например, 80mA), то ей будет доступно всего 50mA.
В электронных конструкциях может встретится еще одна разновидность транзистора – полевой. У него чаще всего три вывода, но называют их по-другому: затвор (как база), исток (эмитер), сток (коллектор). Некоторые полевые транзисторы в металлическом корпусе имеют четыре вывода – затвор, исток, сток и корпус. Последний вывод, как Вы уже догадались, соединен с корпусом транзистора. Подбирать эти транзисторы по усилительной способности не нужно, а вот проверять исправность особенно не нового транзистора рекомендуется, т.к. “полевики” выходят из строя при самых непредвиденных обстоятельствах. В частности полевые транзисторы очень чувствительны к статическому электричеству, поэтому их рекомендуется проверять, предварительно организовав заземление. Для снятие статики достаточно коснуться рукой батареи отопления или любых заземленных предметов. При хранении полевых транзисторов, особенно маломощных, их выводы должны быть замкнуты между собой. Полевые транзисторы, благодаря ряду уникальных параметров, в том числе высокому входному сопротивлению, находят широкое применение в блоках питания компьютеров, мониторов, телевизоров и другой радиоэлектронной аппаратуры.



Транзисторы бывают и однопереходные. У этой детали две базы и один эмиттер. В отличии от биполярных и полевых транзисторов однопереходные представляет собой прибор с отрицательным сопротивлением. Это означает, что в определённых условиях входное напряжение или сигнал могут уменьшаться даже при возрастании выходного тока через нагрузку. Когда однопереходном транзистор находится во включённом состоянии, выключить его можно только разомкнув цепь, либо сняв входное напряжение.

По диапазону рабочих частот транзисторы делятся на низкочастотные, среднечастотные и высокочастотные.

По мощности различают транзисторы малой, средней и большой мощности. Чем мощнее транзистор – тем больше его внешний вид. Такие транзисторы имеют отверстия для крепления на радиатор – кусочек алюминия, который рассеивает тепло полупроводника, выделяемое во время его работы.

Среди транзисторов присутствуют фотоэлементы. Фототранзистор отличается от классического варианта тем, что область базы доступна для светового облучения, за счёт чего появляется возможность управлять усилением электрического тока с помощью оптического излучения. Применяют два варианта включения фототранзисторов: диодное — с использованием только двух выводов (эмиттера и коллектора) и транзисторное — с использованием трех выводов, когда на вход подают не только световой, но и электрический сигналы.


Перейти к следующей статье: Тиристоры



radio-stv.ru

Транзистор | Электронные печеньки

Транзистор

Транзистор — полупроводниковый прибор позволяющий с помощью слабого сигнала управлять более сильным сигналом. Из-за такого свойства часто говорят о способности транзистора усиливать сигнал. Хотя фактически, он ничего не усиливает, а просто позволяет включать и выключать большой ток гораздо более слабыми токами. Транзисторы весьма распространены в электронике, ведь вывод любого контроллера редко может выдавать ток более 40 мА, поэтому, даже 2-3 маломощных светодиода уже не получится питать напрямую от микроконтроллера. Тут на помощь и приходят транзисторы. В статье рассматриваются основные типы транзисторов, отличия P-N-P от N-P-N биполярных транзисторов, P-channel от N-channel полевых транзисторов, рассматриваются основные тонкости подключения транзисторов и раскрываются сферы их применения.

Не стоит путать транзистор с реле. Реле — простой выключатель. Суть его работы в замыкании и размыкании металлических контактов. Транзистор устроен сложнее и в основе его работы лежит электронно-дырочный переход. Если вам интересно узнать об этом больше, вы можете посмотреть прекрасное видео, которое описывает работу транзистора от простого к сложному. Пусть вас не смущает год производства ролика — законы физики с тех пор не изменились, а более нового видео, в котором так качественно преподносится материал, найти не удалось:

Биполярный транзистор

Биполярный транзисто предназначен для управления слабыми нагрузками (например, маломощные моторы и сервоприводы). У него всегда есть три вывода:

  • Коллектор (англ. collector) — подаётся высокое напряжение, которым транзистор управляет

  • База (англ. base) — подаётся или отключается ток для открытия или закрытия транзистора
  • Эмиттер (англ. emitter) — «выпускной» вывод транзистоа. Через него вытекает ток от коллектора и базы.

Биполярный транзистор управляется током. Чем больший ток подаётся на базу, тем больший ток потечёт от коллектора к эмиттеру. Отношение тока, проходящего от эмиттера к коллектору к току на базе транзистора называется коэффициент усиления. Обозначается как hfe (в английской литературе называется gain).

Например, если hfe = 150, и через базу проходит 0.2 мА, то транзистор пропустит через себя максимум 30 мА. Если подключен компонент, который потребляет 25 мА (например, светодиод), ему будет предоставлено 25 мА. Если же подключен компонент, который потребляет 150 мА, ему будут предоставлены только максимальные 30 мА. В документации к контакту указываются предельно допустимые значени токов и напряжений база->эмиттер и коллектор->эмиттер. Превышение этих значений ведёт к перегреву и выходу из строя транзистора.

Весёлые картинки:

Работа биполярного транзистора

NPN и PNP биполярные транзисторы

Различают 2 типа полярных транзисторов: NPN и PNP. Отличаются они чередованием слоёв. N (от negative — отрицательный) — это слой с избытком отрицательных переносчиков заряда (электронов), P (от positive — положительный) — слой с избытком положительных переносчиков заряда (дырок). Подробнее о электронах и дырках рассказано в видео, приведённом выше.

От чередования слоёв зависит поведение транзисторов. На анимации выше представлен NPN транзистор. В PNP управление транзистором устроено наоборот — ток через транзистор течёт, когда база заземлена и блокируется, когда через базу пропускают ток. В отображении на схеме PNP и NPN отличаются направлением стрелки. Стрелка всегда указывает на переход от N к P:

Обозначение NPN (слева) и PNP (справа) транзисторов на схеме

NPN транзисторы более распространены в электронике, потому что являются более эффективными.

Полевый транзистор

Полевые транзисторы отличаются от биполярных внутренним устройством. Наиболее распространены в любительской электронике МОП транзисторы. МОП — это аббревиатура от металл-оксид-проводник. То-же самое по английски: Metal-Oxide-Semiconductor Field Effect Transistor сокращённо MOSFET. МОП транзисторы позволяют управлять большими мощностями при сравнительно небольших размерах самого транзистора. Управление транзистором обеспечивается напряжением, а не током. Поскольку транзистором управляет электрическое поле, транзистор и получил своё название —  полевой.

Полевые транзисторы имеют как минимум 3 вывода:

  • Сток (англ. drain) — на него подаётся высокое напряжение, которым хочется управлять

  • Затвор (англ. gate) — на него подаётся напряжение для управления транзистором

  • Исток (англ. source) — через него проходит ток со стока, когда транзистор «открыт»

Здесь должна быть анимация с полевым транзистором, но она ничем не будет отличаться от биполярного за исключением схематического отображения самих транзисторов, поэтому анимации не будет.

N канальные и P канальные полевые транзисторы

Полевые транзисторы тоже делятся на 2 типа в зависимости от устройства и поведения. N канальный (N channel) открывается, когда на затвор подаётся напряжение и закрывается. когда напряжения нет. P канальный (P channel) работает наоборот: пока напряжения на затворе нет, через транзистор протекает ток. При подаче напряжения на затвор, ток прекращается. На схеме полевые транзисторы изображаются несколько иначе:

По аналогии с биполярными транзисторами, полевые различаются полярностью. Выше был описан N-Channel транзистор. Они наиболее распространены.

P-Channel при обозначении отличается направлением стрелки и, опять же, обладает «перевёрнутым» поведением.

Обозначение N канальных (слева) и P канальных (справа) транзисторов на схеме

Существует заблуждение, согласно которому полевой транзистор может управлять переменным током. Это не так. Для управления переменным током, используйте реле.

Транзистор Дарлингтона

Транзистора Дарлингтона не совсем корректно относить к отдельному типу транзисторов. Однако, не упомянуть из в этой статье нельзя. Транзистор Дарлингтона чаще всего встречается в виде микросхемы, включающей в себя несколько транзисторов. Например, ULN2003. Транзистора Дарлингтона характеризуется возможность быстро открываться и закрывать (а значит, позволяет работать с ШИМ) и при этом выдерживает большие токи. Он является разновидностью составного транзистора и представляет собой каскадное соединение двух или, редко, более транзисторов, включённых таким образом, что нагрузкой в эмиттере предыдущего каскада является переход база-эмиттер транзистора следующего каскада, то есть транзисторы соединяются коллекторами, а эмиттер входного транзистора соединяется с базой выходного. Кроме того, в составе схемы для ускорения закрывания может использоваться резистивная нагрузка эмиттера предыдущего транзистора. Такое соединение в целом рассматривают как один транзистор, коэффициент усиления по току которого, при работе транзисторов в активном режиме, приблизительно равен произведению коэффициентов усиления всех транзисторов.

Схема составного транзистора дарлингтона

Не секрет, что плата Ардуино способна подать на вывод напряжение 5 В с максимальным током до 40 мА. Этого тока не хватит для подключения мощной нагрузки. Например, при попытке подключить к выводу напрямую светодиодную ленту или моторчик, вы гарантированно повредите вывод Ардуино. Не исключено, что выйдет из строя всё плата. Кроме того, некоторые подключаемые компоненты могут требовать напряжения более 5 В для работы. Обе эти проблемы решает транзистор. Он поможет с помощью небольшого тока с вывода Ардуино управлять мощным током от отдельного блока питания или с помощью напряжения в 5 В управлять бОльшим напряжением (даже самые слабые транзисторы редко имеют предельное напряжение ниже 50 В). В качестве примера рассмотрим подключение мотора:

Подключение мощного мотора с помощью транзистора

На приведённой схеме мотор подключается к отдельному источнику питания. Между контактом мотора и источником питания для мотора мы поместили транзистора, который будет управляться с помощью любого цифрового пина Arduino. При подаче на вывод контроллера сигнала HIGH с вывода контроллера мы возьмём совсем небольшой ток для открытия транзистора, а большой ток потечёт через транзистор и не повредит контроллер. Обратите внимание на резистор, установленный между выводом Ардуино и базой транзистора. Он нужен для ограничения тока, протекающего по маршруту микроконтроллер — транзистор — земля и предотвращения короткого замыкания. Как упоминалось ранее, максимальный ток, который можно взять с вывода Arduino — 40 мА. Поэтому, нам понадобится резистор не менее 125 Ом (5В/0,04А=125Ом). Можно без опаски использовать резистор на 220 Ом. На самом деле, резистор стоит подбирать с учётом тока, который необходимо подать на базу для получения необходимого тока через транзистор. Для правильного подбора резистора нужно учитывать коэффициент усиления (hfe).

ВАЖНО!! Если вы подключаете мощную нагрузку от отдельного блока питания, то необходимо физически соединить между собой землю («минус») блока питания нагрузки и землю (пин «GND») Ардуино. Иначе управлять транзистором не получится.

При использовании полевого транзистора, токоограничительный резистор на затворе не нужен. Транзистор управляется исключительно напряжением и ток через затвор не течёт.

Поделиться ссылкой:

Похожее

uscr.ru

Транзистор и Биполярный транзистор, расчёт транзисторного каскада

В данной статье расскажем про транзистор. Покажем схемы его подключения и расчёт транзисторного каскада с общим эмиттером.

ТРАНЗИСТОР — это полупроводниковый прибор для усиления, генерирования и преобразования электрических колебаний, выполненный на основе монокристаллического полупроводника (Si – кремния, или — германия), содержащего не менее трёх областей с различной — электронной (n) и дырочной (p) — проводимостью. Изобретён в 1948 американцами У. Шокли, У. Браттейном и Дж. Бардином. По физической структуре и механизму управления током различают транзисторы биполярные (чаще называют просто транзисторами) и униполярные (чаще называют полевыми транзисторами). В первых, содержащих два, или более электронно-дырочных перехода, носителями заряда служат как электроны, так и дырки, во вторых — либо электроны, либо дырки. Термн «транзистор» нередко используют для обозначения портативных радиовещательных приёмников на полупроводниковых приборах.

Управление током в выходной цепи осуществляется за счёт изменения входного напряжения или тока. Небольшое изменение входных величин может приводить к существенно большему изменению выходного напряжения и тока. Это усилительное свойство транзисторов используется в аналоговой технике (аналоговые ТВ, радио, связь и т. п.).

Биполярный транзистор

Биполярный транзистор может быть n-p-n и p-n-p проводимости. Не заглядывая во внутренности транзистора, можно отметить разницу проводимостей лишь в полярности подключения в практических схемах источников питания, конденсаторов, диодов, которые входят в состав этих схем. На рисунке справа графически изображены n-p-n и p-n-p транзисторы.

У транзистора три вывода. Если рассматривать транзистор как четырёхполюсник, то у него должно быть два входных и два выходных вывода. Следовательно, какой то из выводов должен быть общим, как для входной, так и для выходной цепи.

 

Схемы включения транзистора

Схема включения транзистора с общим эмиттером – предназначена для усиления амплитуды входного сигнала по напряжению и по току. При этом входной сигнал, усиливаясь транзистором, инвертируется. Другими словами фаза выходного сигнала поворачивается на 180 градусов. Эта схема, является основной, для усиления сигналов разной амплитуды и формы. Входное сопротивление транзисторного каскада с ОЭ бывает от сотен Ом до единиц килоом, а выходное — от единиц до десятков килоом.

Схема включения транзистора с общим коллектором – предназначена для усиления амплитуды входного сигнала по току. Усиления по напряжению в такой схеме не происходит. Правильнее сказать, коэффициент усиления по напряжению даже меньше единицы. Входной сигнал транзистором не инвертируется.
Входное сопротивление транзисторного каскада с ОК бывает от десятков до сотен килоом, а выходное в пределах сотни ом — единиц килоом. Благодаря тому, что в цепи эмиттера находится, как правило, нагрузочный резистор, схема обладает большим входным сопротивлением. Кроме того, благодаря усилению входного

meanders.ru