Ускорение через радиус – Движение по окружности. Уравнение движения по окружности. Угловая скорость. Нормальное = центростремительное ускорение. Период, частота обращения (вращения). Связь линейной и угловой скорости

Центростремительное ускорение – вывод формулы и практическое применение :: SYL.ru

Центростремительное ускорение сопровождает нас повсюду. Именно оно заставляет нашу Землю вращаться вокруг Солнца. Возникающая при этом сила тяжести позволяет нам существовать на этой планете. Как можно понять, что представляет собой центростремительное ускорение? Определение этой физической величины представлено ниже.

Наблюдения

Самый простой пример ускорения тела, движущегося по окружности, можно наблюдать, вращая камень на веревке. Вы тянете веревку, а веревка тянет камень к центру. В каждый момент времени веревка сообщает камню некоторое количество движения, и каждый раз – в новом направлении. Можно представить движение веревки в виде серии слабых рывков. Рывок – и веревка изменяет свое направление, еще рывок – еще раз изменение, и так по кругу. Если вы внезапно отпустите веревку, рывки прекратятся, а вместе с ними и прекратится изменение направления скорости. Камень будет двигаться в направлении касательной к кругу. Возникает вопрос: “С каким ускорением будет двигаться тело в это мгновение?”

Формула центростремительного ускорения

Прежде всего стоит заметить, что движение тела по окружности является сложным. Камень участвует в двух видах движения одновременно: под действием силы он движется к центру вращения, и одновременно по касательной к окружности, от этого центра удаляется. Согласно Второму закону Ньютона, сила, удерживающая камень на веревке, направлена к центру вращения вдоль этой веревки. Туда же будет направлен вектор ускорения.

Пусть за некоторое время t наш камень, равномерно двигаясь со скоростью V, попадает из точки A в точку B. Предположим, что в момент времени, когда тело пересекало точку B, на него перестала действовать центростремительная сила. Тогда за промежуток времени оно попало бы в точку K. Она лежит на касательной. Если бы в тот же момент времени на тело действовали бы только центростремительные силы, то за время t, двигаясь с одинаковым ускорением, оно оказалось бы в точке O, которая расположена на прямой, представляющей собой диаметр окружности. Оба отрезка являются векторами и подчиняются правилу векторного сложения. В результате суммирования этих двух движений за отрезок времени t получаем результирующую движения по дуге AB.

Если промежуток времени t взять пренебрежимо малым, то дуга AB будет мало отличаться от хорды AB. Таким образом, можно заменить движение по дуге движением по хорде. В этом случае перемещение камня по хорде будет подчиняться законам прямолинейного движения, то есть пройденное расстояние AB будет равно произведению скорости камня на время его движения. AB = V х t.

Обозначим искомое центростремительное ускорение буквой a. Тогда пройденный только под действием центростремительного ускорения путь можно рассчитать по формуле равноускоренного движения:

AO = at2 / 2.

Расстояние AB равно произведению скорости и времени, то есть AB = V х t,

AO – вычислено ранее по формуле равноускоренного движения для перемещения по прямой: AO = at2 / 2.

Подставляя эти данные в формулу и преобразуя их, получаем простую и изящную формулу центростремительного ускорения:

a = v2 / R

Словами это можно выразить так: центростремительное ускорение тела, двигающегося по окружности, равно частному от деления линейной скорости в квадрате на радиус окружности, по которой вращается тело. Центростремительная сила в таком случае будет выглядеть так, как на картинке ниже.

Угловая скорость

Угловая скорость равна частному от деления линейной скорости на радиус окружности. Верно и обратное утверждение: V = ωR, где ω – угловая скорость

Если подставить это значение в формулу, можно получить выражение центробежного ускорения для угловой скорости. Оно будет выглядеть так:

a = ω2R.

Ускорение без изменения скорости

И все же, отчего тело с ускорением, направленным к центру, не движется быстрее и не перемещается ближе к центру вращения? Ответ кроется в самой формулировке ускорения. Факты говорят о том, что движение по окружности реально, но для его поддержания требуется ускорение, направленное к центру. Под действием силы, вызванной данным ускорением, происходит изменение количества движения, в результате чего траектория движения постоянно искривляется, все время меняя направление вектора скорости, но не изменяя ее абсолютной величины. Двигаясь по кругу, наш многострадальный камень устремляется внутрь, в противном случае он продолжал бы двигаться по касательной. Каждое мгновение времени, уходя по касательной, камень притягивается к центру, но не попадает в него. Еще одним примером центростремительного ускорения может стать водный лыжник, описывающий небольшие круги на воде. Фигура спортсмена наклонена; он как бы падает, продолжая движение и наклонившись вперед.

Таким образом, можно сделать вывод о том, что ускорение не увеличивает скорость тела, так как векторы скорости и ускорения перпендикулярны друг к другу. Добавляясь к вектору скорости, ускорение лишь меняет направление движения и удерживает тело на орбите.

Превышение запаса прочности

В предыдущем опыте мы имели дело с идеальной веревкой, которая не рвалась. Но, допустим, наша веревка самая обычная, и даже можно вычислить усилие, после которого она просто порвется. Для того чтобы рассчитать эту силу, достаточно сопоставить запас прочности веревки с нагрузкой, которую она испытывает в процессе вращения камня. Вращая камень с большей скоростью, вы сообщаете ему большее количество движения, а значит, и большее ускорение.


При диаметре джутовой веревки около 20 мм ее прочность на разрыв равна около 26 кН. Примечательно, что длина веревки нигде не фигурирует. Вращая груз размером в 1 кг на веревке радиусом в 1 м, можно вычислить, что линейная скорость, необходимая для ее разрыва равна 26 х 103 = 1кг х V2 / 1 м. Таким образом, скорость, которую опасно превышать, будет равна √26 х 103 = 161 м/с.

Сила тяжести

При рассмотрении опыта мы пренебрегали действием силы тяжести, так как при таких больших скоростях ее влияние пренебрежимо мало. Но можно заметить, что при раскручивании длинной веревки тело описывает более сложную траекторию и постепенно приближается к земле.

Небесные тела

Если перенести законы движения по окружности в космос и применить их к движению небесных тел, можно заново открыть несколько давно знакомых формул. Например, сила, с которой тело притягивается к Земле, известна по формуле:

F= m*g.

В нашем случае множитель g и является тем самым центростремительным ускорением, которое было выведено из предыдущей формулы. Только в этом случае роль камня будет выполнять небесное тело, притягивающееся к Земле, а роль веревки – сила земного притяжения. Множитель g будет выражен через радиус нашей планеты и скорость ее вращения.

Итоги

Сущность центростремительного ускорения состоит в тяжелой и неблагодарной работе удержания движущегося тела на орбите. Наблюдается парадоксальный случай, когда при постоянном ускорении тело не изменяет величины своей скорости. Для неподготовленного ума такое заявление довольно парадоксально. Тем не менее и при расчете движения электрона вокруг ядра, и при вычислении скорости вращения звезды вокруг черной дыры, центростремительной ускорение играет не самую последнюю роль.

www.syl.ru

Нормальное ускорение

Рассмотрим подробнее нормальное ускорение:
       Быстрота изменения направления касательной к траектории    определяется скоростью движения точки по окружности и степенью искривленности траекторий.

       Степень искривленности плоской кривой характеризуется кривизной С.

       Радиус кривизны  r – радиус такой окружности, которая сливается с кривой в данной точке на бесконечно малом ее участке dS.

       Центры таких окружностей – центры кривизны т. O и O‘ (рис. 2.10),

   (2.3.10)  
       Скорость изменения направления касательной можно выразить как произведение скорости изменения угла на единичный вектор, показывающий направление изменения угла: где – единичный вектор, направленный перпендикулярно касательной в данной точке, т.е. по радиусу кривизны к центру кривизны.

Рис. 2.10


       Из (2.3.10) следует, что , но т.к.  dS = vdt, то .
       Тогда и, следовательно ; наконец, , т.е.        Нормальное ускорение показывает быстроту изменения направления вектора скорости. Модуль нормального ускорения равен
   (2.3.11)  
       Термин “центростремительное ускорение” используется в случае, когда движение происходит по окружности. Если же движение происходит по произвольной кривой, то соответствующим аналогом является термин “нормальное ускорение” (перпендикулярное к касательной в любой точке траектории).

       Итак, возвращаясь к выражению (2.3.8), можно записать, что суммарный вектор ускорения при движении точки вдоль плоской кривой равен:

       Изобразим на рис. 2.11 взаимное расположение векторов ускорения:

Рис. 2.11

       Как видно из этого рисунка, модуль общего ускорения равен:
   (2.3.12)  
       Рассмотрим несколько предельных (частных) случаев:
  1. aτ = 0;     an = 0  –  равномерное прямолинейное движение;
  2. aτ = const;     an = 0  –  равноускоренное прямолинейное движение;
  3. aτ = 0;     a
    n
     = const  –  равномерное движение по окружности.

ens.tpu.ru

Центростремительное ускорение – Наука и образование

Нам известно, что всякое криволинейное движение происходит под действием силы, направленной под углом к скорости. В случае равномерного движения по окружности этот угол будет прямым. В самом деле, если, например, вращать шарик, привязанный к верёвке, то направление скорости шарика в любой момент времени перпендикулярно верёвке.

Сила же натяжения верёвки, удерживающая шарик на окружности, направлена вдоль верёвки к центру вращения.

По второму закону Ньютона эта сила будет вызывать ускорение тела в том же направлении. Ускорение, направленное по радиусу к центру вращения, называется

центростремительным ускорением.

Выведем формулу для определения величины центростремительного ускорения.

Прежде всего, заметим, что движение по окружности – сложное движение. Под действием центростремительной силы тело движется к центру вращения и одновременно по инерции удаляется от этого центра по касательной к окружности.

Пусть за время t тело, двигаясь равномерно со скоростью v, переместилось из D в Е. Допустим, что в тот момент, когда тело находилось в точке D, на него перестала бы действовать центростремительная сила. Тогда за время t оно переместилось бы в точку К, лежащую на касательной DL. Если же в начальный момент тело оказалось бы под действием только одной центростремительной силы (не двигалось по инерции), то оно за время t, двигаясь равноускоренно, переместилось бы в точку F, лежащую на прямой DC. В результате сложения этих двух движений за время t получается результирующее движение по дуге DE.

Возьмём промежуток времени t столь малым, чтобы дуга DE мало отличалась от хорды DE, т. е. заменим движение по дуге движением по хорде. В этом случае путь тела по хорде DE будет равен vt, т.е. DE = vt.

Обозначим через а искомое центростремительное ускорение. Тогда путь DF, который тело проходит за время t под действием только одной центростремительной силы, выразится известной формулой пути равноускоренного движения:

DF = at2/2

Теперь воспользуемся известной геометрической теоремой, на основании которой

(DE)2 = DC · DF

Поскольку DE = vt, DF = at2/2 , DC = 2R, то из равенства, после простых преобразований получается формула центростремительного ускорения:

a = v2/R

Величина центростремительного ускорения точки равна частному от деления квадрата линейной скорости на радиус окружности

.

Центростремительное ускорение можно выразить также через угловую скорость и радиус окружности.

Мы знаем, что v = ωR, где ω – угловая скорость. Если поставить это значение скорости в формулу, то получим:

a = ω2R

scibio.ru

Центростремительное ускорение. Равнопеременное движение по окружности.

Вычислим величину ускорения при равномерном движении точки по окружности и найдем его направление.

Пусть за некоторый промежуток времени t тело переместилось из точки А в точку А1 с постоянной по модулю скоростью. Изобразим вектора скорости в этих точках и найдем вектор изменения скорости .

Рассмотрим треугольники АА1О и А1СВ. Эти треугольники равнобедренные и углы при их вершинах равны, т.к.

АО┴СВ и А1ОА1С (углы со взаимно перпендикулярными сторонами). Следовательно, эти треугольники подобны.

Из подобия треугольников следует пропорция:  или, переходя к физическим обозначениям .

Разделим правую и левую части равенства на промежуток времени, за которое совершено перемещение, и учтем, что  и . Тогда: .

Примеры:

– Земля при вращении вокруг оси ацс=0,03 м/с2,

– Земля при вращении вокруг Солнца ацс=0,006 м/с2,

– Солнечная система при вращении вокруг центра Галактики ацс=3.10-10 м/с2.

 

Теперь определим направление ускорения. Т.к. мы должны для определения ускорения брать предел при Δt→0,  то из рисунка видно, что угол

φ будет уменьшаться (→0), а b→900.

Это значит, что прямая А1В (вектор ) будет стремиться наложиться на АО. Но вектор ускорения сонаправлен с вектором изменения скорости.

Следовательно, вектор ускорения при равномерном движении по окружности направлен к центру окружности (центру вращения). Поэтому ускорение наз. центростремительным ускорением.

Центростремительное ускорение меняет скорость только по направлению, но не меняет по величине. Вектор центростремительного ускорения перпендикулярен вектору скорости.

Используя связь между угловой и линейной скоростями, получим: .

www.eduspb.com

1.1.8 Движение тела по окружности. Угловая и линейная скорости точки. Центростремительное ускорение точки

Видеоурок: Движение по окружности

Лекция: Движение тела по окружности. Угловая и линейная скорости точки. Центростремительное ускорение точки

Движение по окружности

Траектория движения – окружность.

Так как скорость – векторная величина, то она зависит не только от модуля значения, но и от направления. Поэтому движение тела по окружности можно назвать равноускоренным. Даже если тело будет двигаться с постоянной по величине скоростью, её направление будет постоянно изменяться.


Любое криволинейное движение можно свести к нескольким движениям по окружности. Примером данного движения является бег по стадиону, ход стрелки часов, прогулка на корде лошади и другое.Основные характеристики движения

1. Линейная скорость


Мгновенная скорость (линейная) – на протяжении всего движения меняет свое направление вдоль касательной к траектории.
Так как траектория движения точки – окружность, то в качестве пути в числителе находится формула длины перемещения.

Поэтому формула мгновенной скорости приобретает следующий вид, где Т – период:

2. Центростремительное ускорение


Направлено перпендикулярно к линейной скорости на протяжении всего движения.

Центростремительное ускорение определяется по формуле:

3. Период вращения


Период вращения – это величина, определяющая время, за которое тело делает одно полное вращение.

Период – это скалярная величина. Основной единицей периода является [Т]=1с.  

Период определяется по формуле:

где N – количество оборотов, t – время, за которое они были совершены.


4. Частота вращения


Определяет, насколько часто совершаются обороты в единицу времени.

Частота – скалярная величина. Измеряется в

 [n] = 1с-1.

Частота определяется по формуле:

5. Угловое перемещение


Угловое перемещение – величина, которая определяется углом поворота радиуса, соединяющего центр описываемой окружности, с точкой, где находится тело, относительно начального его положения.


Данная величина может измеряться в градусной или радианной мере углов.

6. Угловая скорость


Это значение, которое определяет, насколько изменяется угловое перемещение со временем.

Измеряется в 1 рад/с.Определяется по формуле:
где
– угловая скорость материальной точки, 1/с
– угол поворота радиус – вектора, рад- промежуток времени, с

Угловое перемещение связано с линейной скоростью и центростремительным ускорением следующей формулой:



cknow.ru

Движение по окружности | ЭТО ФИЗИКА

Движение тела по окружности является частным случаем криволинейного движения. Наряду с вектором перемещения  удобно рассматривать угловое перемещение Δφ (или угол поворота), измеряемое в радианах (рис. 1.6.1). Длина дуги связана с углом поворота соотношением  

При малых углах поворота Δl ≈ Δs.

Рисунок 1.6.1.

Линейное  и угловое Δφ перемещения при движении тела по окружности

Угловой скоростью ω тела в данной точке круговой траектории называют предел (при Δt→0) отношения малого углового перемещения Δφ к малому промежутку времени Δt:

Угловая скорость измеряется в рад/с.

Связь между модулем линейной скорости υ и угловой скоростью ω:

При равномерном движении тела по окружности величины υ и ω остаются неизменными. В этом случае при движении изменяется только направление вектора

Равномерное движение тела по окружности является движением с ускорением. Ускорение

направлено по радиусу к центру окружности. Его называют нормальным или центростремительным ускорением. Модуль центростремительного ускорения связан с линейной υ и угловой ω скоростями соотношениями:

Для доказательства этого выражения рассмотрим изменение вектора скорости   за малый промежуток времени Δt. По определению ускорения

Рисунок 1.6.2.

Центростремительное ускорение тела  при равномерном движении по окружности

Векторы скоростей  и  в точках A и B направлены по касательным к окружности в этих точках. Модули скоростей одинаковы υA =υB = υ.

Из подобия треугольников OAB и BCD (рис. 1.6.2) следует:

При малых значениях угла Δφ = ωΔt расстояние |AB| =Δs ≈ υΔt. Так как |OA| = R и |CD| = Δυ, из подобия треугольников на рис. 1.6.2 получаем:

При малых углах Δφ направление вектора  приближается к направлению на центр окружности. Следовательно, переходя к пределу при Δt→0,  получаем:

При изменении положения тела на окружности изменяется направление на центр окружности. При равномерном движении тела по окружности модуль ускорения остается неизменным, но направление вектора ускорения изменяется со временем. Вектор ускорения в любой точке окружности направлен к ее центру. Поэтому ускорение при равномерном движении тела по окружности называется центростремительным.

В векторной форме центростремительное ускорение может быть записано в виде

где  – радиус-вектор точки на окружности, начало которого находится в ее центре.

Если тело движется по окружности неравномерно, то появляется также касательная (или тангенциальная) составляющая ускорения (см 1.1):

В этой формуле Δυτ = υ2 – υ1 – изменение модуля скорости за промежуток времени Δt.

Направление вектора полного ускорения  определяется в каждой точке круговой траектории величинами нормального и касательного ускорений (рис. 1.6.3).

Рисунок 1.6.3.

Составляющие ускорения  и   при неравномерном движении тела по окружности

Движение тела по окружности можно описывать с помощью двух координат x и y (плоское движение). Скорость тела в каждый момент можно разложить на две составляющие υx и υy (рис. 1.6.4).

При равномерном вращении тела величины x, y, υx, υy будут периодически изменяться во времени по гармоническому закону с периодом

Рисунок 1.6.4.

Разложение вектора скорости   по координатным осям

 

www.its-physics.org

4.5 Кинематика равномерного вращения по окружности

При движении по окружности с постоянной по величине линейной скоростью υ тело имеет направленное к центру окружности постоянное центростремительное ускорение

aц = υ2/R, (18)

где R – радиус окружности.

Вывод формулы для центростремительного ускорения

По определению .

(19)

Рисунок 6 Вывод формулы центростремительного ускорения

На рисунке треугольники, образованные векторами перемещений и скоростей, подобны. Учитывая, что == R и== υ, из подобия треугольников находим:

(20)

откуда

(21)

Поместим начало координат в центр окружности и выберем плоскость, в которой лежит окружность, за плоскость (x, y). Положение точки на окружности в любой момент времени однозначно определяется полярным углом φ, измеряемым в радианах (рад), причем

x = R cos(φ + φ0), y = R sin(φ + φ0), (22)

где φ0 определяет начальную фазу (начальное положение точки на окружности в нулевой момент времени).

В случае равномерного вращения угол φ, измеряемый в радианах, линейно растет со временем:

φ = ωt, (23)

где ω называется циклической (круговой) частотой. Размерность циклической частоты: [ω] = c–1 = Гц.

Циклическая частота равна величине угла поворота (измеренного в рад) за единицу времени, так что иначе ее называют угловой скоростью.

Зависимость координат точки на окружности от времени в случае равномерного вращения с заданной частотой можно записать в виде:

x= R cos(ωt + φ0), (24)

y = R sin(ωt + φ0).

Время, за которое совершается один оборот, называется периодом T.

Частота ν = 1/T. (25)

Размерность частоты: [ν] = с–1 = Гц.

Связь циклической частоты с периодом и частотой: 2π = ωT, откуда

ω = 2π/T = 2πν. (26)

Связь линейной скорости и угловой скорости находится из равенства:

2πR = υT, откуда

υ = 2πR/T = ωR. (27)

Выражение для центростремительного ускорения можно записать разными способами, используя связи между скоростью, частотой и периодом:

aц = υ2/R = ω2R = 4π2ν2R = 4π2R/T2. (28)

4.6 Связь поступательного и вращательного движений

Основные кинематические характеристики движения по прямой с постоянным ускорением: перемещение s, скорость υ и ускорение a. Соответствующие характеристики при движении по окружности радиусом R: угловое перемещение φ, угловая скорость ω и угловое ускорение ε (в случае, если тело вращается с переменной скоростью).

Из геометрических соображений вытекают следующие связи между этими характеристиками:

перемещение s → угловое перемещение φ = s/R;

скорость υ → угловая скорость ω = υ /R;

ускорение a → угловое ускорение ε = a/R.

Все формулы кинематики равноускоренного движения по прямой могут быть превращены в формулы кинематики вращения по окружности, если сделать указанные замены. Например:

s = υt → φ = ωt, (29)

υ = υ0 + at → ω = ω0 + εt. (29а)

Связь между линейной и угловой скоростями точки при вращении по окружности можно записать в векторной форме. Действительно, пусть окружность с центром в начале координат расположена в плоскости (x, y). В любой момент времени вектор , проведенный из начала координат в точку на окружности, где находится тело, перпендикулярен вектору скорости тела, направленному по касательной к окружности в этой точке. Определим вектор, который по модулю равен угловой скорости ω и направлен вдоль оси вращения в сторону, которая определяется правилом правого винта: если завинчивать винт так, чтобы направление его вращения совпадало с направлением вращения точки по окружности, то направление движения винта показывает направление вектора. Тогда связь трех взаимно перпендикулярных векторов,иможно записать с помощью векторного произведения векторов:

. (30)

studfiles.net