Виды транзистор – Маркировка транзисторов – какая она бывает? Типы, параметры и характеристики транзисторов, маркировка

Содержание

Типы транзисторов: характеристика и параметры

Прежде чем рассматривать типы транзисторов, следует выяснить, что вообще представляет собой транзистор и для чего используется.

Что такое транзистор

Транзистором называется полупроводниковый триод, представляющий собой компонент, используемый в области радиоэлектроники, изготавливаемый из полупроводниковых материалов. Он имеет три вывода, позволяющие управлять в цепи электрическим током с помощью входного сигнала.

Из-за своих качеств применяется в тех случаях, когда необходимо преобразовать, сгенерировать или усилить электрические сигналы. Название транзистора применяется и для других устройств, имитирующих основное качество транзистора – способность изменять сигнал в двух различных состояниях, при одновременном изменении сигнала управляющего электрода.

Виды и характеристика

Все транзисторы подразделяются на два вида – NPN и PNP. В этих на первый взгляд сложных аббревиатурах, нет ничего особо сложного. Данными буквенными обозначениями определяется порядок наложения специфических слоев. Такими слоями являются pn-переходы в полупроводниковых материалах, использованных для их изготовления. Глядя визуально на любой полупроводник, невозможно определить тип полупроводниковой структуры, расположенной внутри корпуса. Эти данные обозначаются маркировкой, нанесенной на корпус. Тип транзистора необходимо знать заранее, поскольку использование его в схеме может быть самым различным.

Следует помнить о том, что NPN и PNP совершенно разные. Поэтому их нельзя просто так перепутать или заменить между собой. Заменить один на другой возможно при определенных условиях. Основное условие – значительное изменение схемы включения этих транзисторов. Таким образом, для определенных узлов радиотехнических устройств, применяются только свои, конкретные марки, в противном случае, устройство просто выйдет из строя, и не будет работать.

Технологические различия

Помимо типа pn-перехода, все они различаются технологией применяемой для их изготовления.

В связи с этим, можно отметить два видаа транзисторов, различающихся параметрами:

  • Биполярные - отличаются подачей в их базу тока небольшой величины. Этот ток, в свою очередь, служит для управления количеством тока, проходящего между эмиттером и коллектором.
  • Полевые - оборудуются тремя выводами, носящими название затвор, сток и исток. В данном случае, на затвор транзистора воздействует не ток, а напряжение. Эти транзисторы отличаются различной полярностью.

electric-220.ru

Типы транзисторов - подробная классификация полупроводника

Классификация, основанная на их структуре

 

Точечный транзистор

Это были одни из первейших германиевых транзисторов, которые работали на основе сложного и ненадёжного процесса образования электричества. По этой причине не справлялись с возложенными на них задачами довольно часто. У них был коэффициент усиления тока a с общей базой больше единицы и демонстрировал отрицательное сопротивление.

Биполярный плоскостной транзистор

Эти транзисторы имеют три вывода (эмиттер, базу и коллектор), отсюда вытекает то, что они обладают двойным соединением, а именно соединением база-эмиттер и соединением коллектор-база. Это токоуправляемые устройства, чья проводимость тока основывается одновременно на главном, и на побочном носителе заряда (поэтому транзистор и называется биполярным).

Они могут быть и (i) npn с основными носителями заряда в виде электронов или (ii) pnp. Обособленно стоят многие другие типы биполярных плоскостных транзисторов:

Биполярный гетеротранзистор: эти транзисторы подходят для устройств с высокой частотой и у них участки эмиттера и базы сделаны из отличающихся полупроводниковых материалов.

Транзистор Шотки или зажатые транзисторы Шотки: они используют барьер Шотки для избегания насыщения транзистора.

Лавинные транзисторы: это по-особенному устроенные транзисторы, которые действуют в зоне лавинного сбоя (где действующее напряжение будет больше чем напряжение сбоя) и имеют очень высокие скорости переключения.

Транзисторы Дарлингтона: эти транзисторы имеют два отдельных транзистора, которые каскадно включены таким образом, что в результате устройство обладает очень высоким коэффициентом усиления тока.

Транзистор с множественным эмиттером: этот вид транзисторов специально сделан так, чтобы понимать логические операции.

Транзистор с множественной базой: он использует для усиления очень низкий уровень сигнала среди шумного окружения за счёт конструктивного добавления сигнала, в отличии от случайного шума.

Диффузионный транзистор: эти транзисторы основаны на том, что имеется диффундирующий полупроводниковый материал с необходимыми присадками.

 

Полевой транзистор

Эти транзисторы являются транзисторами, которые управляются напряжением. Эти транзисторы имеют три вывода. Один из них, вывод затвора, контролирует поток электрического тока между выводом источника и выводом стока. Их также называют монополярными устройствами, поскольку их проводимость тока является лишь следствием основных носителей заряда, согласно с чем, они могут быть одновременно N-канальными (большинство носителей заряда являются электронами) и P-канальными полевыми транзисторами.

Полевые транзисторы также могут быть подразделены на:

Плоскостные полевые транзисторы: Они могут быть как pn, так и транзисторами с металлическим полупроводником, которые зависят от того, имеют ли они pn-соединение или соединение в виде Барьера Шотки.

Металлические оксидные полупроводниковые полевые транзисторы или транзисторы с изолированным затвором: Эти устройства имеют изолирующий слой под их выводом затвора, который приводит к очень высокому полному сопротивлению на входе. Они могут быть как истощающими, так и усиливающими, что зависит от того, имеют ли они уже существующий канал или нет, что уже влияет на их поведение в присутствии или отсутствии напряжения на затворе.

Металлические окисел полупроводниковые полевые транзисторы с двойным затвором: Это в частности очень полезные транзисторы в устройствах с радиочастотой. Они имеют два последовательных контроля затвора.

Транзистор с высокой мобильностью электронов или гетероструктурный полевой транзистор: Эти транзисторы характеризуются присутствием гетеро-связей, которые заключаются между разными материалами на той и другой стороне соединения и используются в устройствах с очень высокой микроволновой частотой. Другие разновидности этих транзисторов, включая метаморфные, псевдоморфные, индуцированные, гетероструктрные изолированные и модуляционные с примесями.

Плавниковые полевые транзисторы: Они имеют двойной затвор, ширина их эффективного канала обеспечивается тонким кремниевым “плавником”, который формирует тело транзистора.

Вертикальный металл-окисел полупроводниковый: По конструкции схож с обычным металл-окисел полупроводниковым, но есть и различие, заключающееся в наличии V-образной канавки, которая увеличивает их сложность и стоимость.

Металл-окисел полупроводниковый с U-образной канавкой: У них структура в виде траншей, и они почти такие же как предыдущие, только канавка у них не V-образная, а U-образная.

Траншейный металл-окисел полупроводниковый: Имеется вертикальная структура с выводом источника и стока на вершине и дне соответственно.

Металлический нитрид окисел полупроводниковый: Этот вид транзистора является дополнением к технологии металл окисел полупроводниковых и использует нитрид окисел как изоляционный слой.

Полевые транзисторы с быстрым обратным или быстрым восстанавливающим эпитаксиальным диодом: Это ультра быстрые полевые транзисторы с возможностью быстрого выключения для диода, расположенного в корпусе.

Обеднённый полевой транзистор: Эти транзисторы основаны на абсолютно истощенных субстратах.

Туннельный полевой транзистор: Они работают на принципе квантового туннелирования и широко применяются в электронике с низкой энергией, включая цифровые схемы.

Ионно-чувствительный полевой транзистор: Данный транзистор использует концентрацию ионов для регулирования величины потока электрического тока, проходящего через него. Эти устройства широко используются в медико-биологических исследованиях и наблюдении за окружающей средой.

Биологически-чувствительные полевые транзисторы: В этих транзисторах биологические молекулы, привязанные к выводу затвора, изменяют распределение заряда и меняют проводимость каналов. Существует множество разновидностей этих устройств, например днк полевые транзисторы, иммунные полевые транзисторы и т.д.

Полевые транзисторы с органической памятью за счёт наночастиц: Эти устройства имитируют поведение интернейрон сигнала и применяется в области искусственного интеллекта.

Органические полевые транзисторы: Их структура основана на концепции тонкоплёночных транзисторов. Для их канала используются органические полупроводники. Они широко используются в электронике, разлагаемой микроорганизмами.

Шестиугольные полевые транзисторы: Их область матрицы основана на базовых ячейках, имеющих шестиугольную форму, которые, в свою очередь, уменьшают размер матрицы, увеличивая плотность канала.

Полевые транзисторы с углеродной нанотрубкой: Канал сделан из углеродной нанотрубки (одиночной или массива), а не из кремния.

Полевой транзистор с нанолентой из графена: Они используют наноленты из графена как материал для их каналов.

Полевые транзисторы с вертикальной прорезью

: Эти двух-затворные устройства с вертикальной кремниевой прорезью ни что иное как узкий коридор кремния между двух более больших кремниевых участков.

Квантовые полевые транзисторы: эти транзисторы характеризуются очень высокой скоростью действия и работой на принципе квантового туннелировнаия.

T-инвертированные транзисторы: Часть такого устройства вертикально расширена из горизонтальной плоскости.

Тонкоплёночный транзистор: В качестве активного полупроводника используются тонкие плёнки, изолятор и металл прокладываются по непроводящему материалу, такому как стекло.

Баллистические транзисторы: Их используют в высокоскоростных интегрированных схемах, их работа основана на использовании электромагнитных сил.

Электролит окисел полупроводниковые полевые транзисторы: У них металлическая часть стандартных металл-окисел полупроводниковых заменена на электролит. Их используют для обнаружения нейронной активности.

Классификация, основанная на функциях транзисторов

1. Транзисторы с маленьким сигналом

: Этот тип транзисторов используется в частности для усиления сигналов с низким уровнем (редко – для переключения) и может быть как npn, так и pnp по своей конструкции.

2. Маленькие переключающие транзисторы: Широко применяются для переключения, несмотря на то, что они могут быть вовлечены в процесс усиления. Эти транзисторы доступны сразу и в виде npn, и в виде pnp.

3. Силовой транзистор: Их используют как силовые усилители в мощных устройствах. Это могут быть npn, или pnp, или транзисторы Дарлингтона.

4. Высокочастотные транзисторы: их также называют радиочастотными транзисторами. Они используются в устройствах, где есть высокоскоростное переключение, где маленькие сигналы действуют на больших частотах.

5. Фототранзистор: Это устройства с двумя выводами, которые чувствительны к свету. Они являются ни чем иным, как стандартными транзисторами, которые имеют фоточувствительную область как замещение базовой области.

6. Однопереходные транзисторы: Используются исключительно как переключатели и не подходят для усиления.

7. Транзисторы для биомедицинских исследований и для исследования окружающей среды

: Их название говорит само за себя.

В дополнение к этому, существуют также биполярные транзисторы с изолированным затвором, которые сочетают в себе особенности одновременно биполярных плоскостных транзисторов и полевых транзисторов. Они используют изолированный затвор для контроля биполярного силового транзистора, выступая в роли переключателя.

Также есть устройства, которые имеют два туннельных перехода, включая участок, контролирующий затвор. Их называют одиночными электронными транзисторами. Транзисторы без переходов и с нанопроволокой не имеют перехода затвора, что приводит к более плотным и дешёвым микрочипам. Наконец, стоит отметить, что это были лишь некоторые типы транзисторов среди множества типов, которые представлены на рынке.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

elektronchic.ru

Транзисторы (полевые, биполярные) - обозначение, типы, применение

Транзистор был изобретен в 50-х годах прошлого века, его появление произвело настоящий фурор - достаточно сказать, что его изобретатели получили Нобелевскую премию.

Здесь будут рассмотрены основные типы транзисторов, принцип их работы в объеме, соответствующем основам схемотехники, поскольку начинающим тонкости работы транзистора на электронно - молекулярном уровне, на мой взгляд, ни к чему.

Технология изготовления транзисторов определяет основные их типы:

  • биполярные,
  • полевые.

Кроме того, каждый из перечисленных типов можно классифицировать по типу проводимости, определяемой материалами, комбинациями (сочетаниями) полупроводников, используемых при их производстве.

БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ

Принцип действия, условные обозначения биполярного транзистора.

  1. Биполярный транзистор состоит из трех слоев полупроводника, называемых "база" (Б), "коллектор" (К), "эмиттер" (Э). Ток, протекающий через переход база - эмиттер (Iб) вызывает изменения сопротивления зоны эмиттер - коллектор, соответственно изменяется ток коллектора Iк, причем его значения больше нежели базового. Это основной принцип работы биполярного транзистора, его практические приложения рассмотрим позже.
  2. Поскольку материал транзистора полупроводник, то ток может протекать только в одном направлении, определяемом типом перехода. Соответственно этим определяется полярность подключения (тип проводимости) транзистора (прямая - p-n-p, обратная - n-p-n. Вот, собственно, вся теория, которая Вам первоначально необходима.

ПОЛЕВЫЕ ТРАНЗИСТОРЫ

Полевой транзистор имеет несколько иную конструкцию. Замечу - это достаточно простой вариант, но для понимания принципа действия полевого транзистора вполне подходит.

Принцип действия, условные обозначения полевого транзистора.

  1. Выводы здесь называются "затвор" (З), "сток" (С), "исток" (И). Сток - исток соединены между собой зоной полупроводника, называемой каналом. Сопротивление этого канала зависит от величины напряжения, приложенного к затвору, значит ток, протекающий от истока к стоку (Iс) зависит от напряжения между затвором и истоком.
  2. В зависимости от проводимости кристалла различают полевые приборы с p каналом и n каналом.

ПРИМЕНЕНИЕ ТРАНЗИСТОРОВ

Область применения транзисторов определяется не только их типом, но также характеристиками конкретного прибора, однако можно выделить два основных режима работы:

  • динамический - при нем любое входного сигнала вызывает соответствующее изменение выходного. Иначе этот режим называют усилительным.
  • ключевой - при этом режиме транзистор или полностью открыт или полностью закрыт. В идеале, переходные процессы между этими состояниями должны отсутствовать. Ключевой режим позволяет применять транзистор для управления значительными нагрузками при сравнительно слабых управляющих сигналах.

© 2012-2018 г. Все права защищены.

Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


eltechbook.ru

Виды транзисторов

Существуют десятки тысяч транзисторов. Их все можно разделить на несколько типов по характеристикам. Я расскажу какие существуют виды транзисторов и чем они друг от друга отличаются. 

Транзисторы можно разделить на виды по таким характеристикам как: 

  • Физическое строение
  • Принцип действия
  • Мощность
  • Полоса пропускания частот
  • Коэффициент усиления по току
  • и т.д.

Но основными являются четыре: физическая структура транзистора, принцип действия транзистора, мощность и полоса рабочих частот транзистора.

По принципу действия все транзисторы можно разделить на две большие группы: биполярные транзисторы и полевые транзисторы. Различаются они как принципом действия, так и физическим строением. При этом различается как структура транзистора, так и принцип их функционирования. Внешне оба вида выполняют те же функции, но внутри у полевых и биполярных транзисторов всё работает иначе. 

Посмотри на схему выше. Как ты уже заметил, и у биполярных и у полевых транзисторов есть общие характеристики: мощность и частота. Которые могут быть малыми, средними, высокими.

Рассеиваемая мощность транзистора

При это маломощными считаются транзисторы, которые в состоянии рассеять не более 0.3 Вт, транзисторы средней мощности в состоянии рассеять уже от 0.3 Вт до 1.5 Вт. Ну а мощные транзисторы рассеивают более 1.5Вт. 

Полоса пропускания транзистора

Так называют диапазон частот, в которых транзистор сохраняет свои качества как транзистора. На выбор транзистора по частоте сильно влияет тип твоего устройства и с какими частотами сходящих сигналов оно должно уметь работать правильно.

Биполярный транзистор

Я не буду описывать строение транзистора, для этого сущесвуют другие статьи. В этот раз я хочу заострить твоё внимание на том, что в семейсве биполярных транзисторов есть два клана. Этоклан транзисторов со структурой N-P-N и клан со структурой P-N-P. Кроме физ. строения каких либо других различий между ними нет. 

Полевые транзисторы

Полевые транзисторы также как и биполярные можно разделить на транзисторы P- и N-типа. Но помимо этого они делять ещё два вида: MOSFET и JFET. MOSFET -- это полевой транзистор с изолированным затвором и JFET -- это полевой транзистор с единственным PN-переходом.

Разница между полевым и биполярным транзисторами
Принцип работы биполярный полевой
Управляются током. Для работы требуется подавать начальный ток смещения на базу Управляются напряжением. Всё что им требуется для работы - это подача напряжения на затвор
 

Обладают сравнительно малым входным сопротивлением, поэтому потребляют от больший ток, чем полярные

Обладают высоким входным сопротивлением, что означает практически отсутствующих входной ток транзистора. Позволяет меньше нагружатьисточник питания за счет меньшего потребления тока от источника
Усиление по току Биполярные транзисторы обладают больее высоким коэфф. усиления. Коэфф. усиления меньше, чем в биполярном транзисторе.
Размер Имеют средний и большой размер. Полевые транзисторы можно производить для повернохстного монтажа. А также использовать в интегральных схемах.
Популярность Сегодня биполярне транзисторы стали уступать свои позиции перед FET FET-транзисторы сновятся все более популярны и активно используются в коммерческом ПО.
Стоимость Биполярные транзисторы дешевы в производстве. FET, а особенно MOSFET значительно дороже произвести, чем биполярные транзисторы.

 

Вот и всё. Конечно за кадром остались глубокие принципы работы транзисторов. Но сделано это намеренно. О них я расскажу как-нибудь в другой раз. 

mp16.ru

Биполярные транзисторы. Виды. Характеристики. работа. Устройство

Биполярные транзисторы это полупроводниковые приборы с тремя электродами, подключенными к трем последовательно находящимся слоям, с различной проводимости. В отличие от других транзисторов, которые переносят один тип заряда, он способен переносить сразу два типа.

Схемы подключения, использующие биполярные транзисторы, зависят от производимой работы и типа проводимости. Проводимость может быть электронной, дырочной.

Разновидности биполярных транзисторов

Биполярные транзисторы разделяют по различным признакам на виды по:

  • Материалу изготовления: кремний или арсенид галлия.
  • Величине частоты: до 3 МГц – низкая, до 30 МГц – средняя, до 300 МГц – высокая, более 300 МГц – сверхвысокая.
  • Наибольшей рассеиваемой мощности: 0-0,3 Вт, 0,3-3 Вт, свыше 3 Вт.
  • Типу прибора: 3 слоя полупроводника с последовательной очередностью типа проводимости.
Устройство и работа

Слои транзистора, как внутренний, так и наружный, объединены с встроенными электродами, которые имеют свои названия в виде базы, эмиттера и коллектора.

Особых отличий по видам проводимости у коллектора и эмиттера не наблюдается, однако процент включения примесей у коллектора намного меньше, что позволяет повысить допустимое напряжение на выходе.

Средний слой полупроводника (база) имеет большую величину сопротивления, так как выполнена из слаболегированного материала. Она контактирует с коллектором на значительной площади. Это позволяет повысить теплоотвод, который необходим вследствие выделения тепла от смещения перехода в другую сторону. Хороший контакт базы с коллектором дает возможность легко проходить электронам, которые являются неосновными носителями.

Слои перехода выполнены по одному принципу. Однако биполярные транзисторы считаются несимметричными приборами. При чередовании крайних слоев местами с одной проводимостью нельзя образовать подобные параметры полупроводника.

Схемы подключения транзисторов выполнены таким образом, что могут обеспечить ему как закрытое, так и открытое состояние. При активной работе, когда полупроводник открыт, смещение эмиттера выполнено в прямом направлении. Для полного понимания этой конструкции, нужно подключить напряжение питания по изображенной схеме.

При этом граница на 2-м переходе коллектора закрыта, ток через нее не идет. Практически возникает обратное явление ввиду рядом расположенных переходов, их влияния друг на друга. Так как к эмиттеру подсоединен минусовой полюс батареи, то переход открытого вида дает возможность электронам проходить на базу, в которой осуществляется их рекомбинация с дырками, являющимися главными носителями. Появляется ток базы Iб. Чем выше базовый ток, тем больше выходной ток. В этом заключается принцип действия усилителей.

По базе протекает только диффузионное движение электронов, так как нет работы электрического поля. Из-за малой толщины этого слоя и значительном градиенте частиц, практически все они поступают на коллектор, хотя база имеет большое сопротивление. На переходе имеется электрическое поле, которое способствует переносу и втягивает их. Токи эмиттера и коллектора одинаковые, если не считать малой потери заряда от перераспределения на базе: I э = I б + I к.

Характеристики
  1. Коэффициент усиления тока β = Iк / Iб.
  2. Коэффициент усиления напряжения Uэк / Uбэ.
  3. Сопротивление на входе.
  4. Характеристика частоты – возможность работы транзистора до определенной частоты, при выходе за границы которой процессы перехода опаздывают за изменением сигнала.
Режимы работ и схемы

Вид схемы влияет на режим действия биполярного транзистора. Сигнал может сниматься и отдаваться в двух местах для разных случаев, а электродов имеется три штуки. Следовательно, что один произвольный электрод должен быть сразу выходом и входом. По такому принципу подключаются все биполярные транзисторы, и имеют три вида схем, которые мы рассмотрим ниже.

Схема с общим коллектором

Сигнал проходит на сопротивление RL, которое также включено в цепь коллектора.

Такая схема подключения дает возможность создать всего лишь усилитель по току. Достоинством такого эмиттерного повторителя можно назвать образование значительного сопротивления на входе. Это дает возможность для согласования каскадов усиления.

Схема с общей базой

Сигнал входа проходит через С1, далее снимается в цепи выхода коллектора, где базовый электрод общий. В итоге образуется усиление напряжения по подобию с общим эмиттером.

В схеме можно найти недостаток в виде малого входного сопротивления. Схема с общей базой используется чаще всего в качестве генератора колебаний.

Схема с общим эмиттером

Чаще всего при использовании биполярных транзисторов выполняют схему с общим эмиттером. Напряжение проходит по сопротивлению нагрузки RL, к эмиттеру питание подключается отрицательным полюсом.

Сигнал переменного значения приходит на базу и эмиттер. В цепи коллектора он становится по значению больше. Главными элементами схемы являются резистор, транзистор и выходная цепь усилителя с источником питания. Дополнительными элементами стали: емкость С1, которая не дает пройти току на вход, сопротивление R1, благодаря которому открывается транзистор.

В цепи коллектора напряжение транзистора и сопротивления равны значению ЭДС: E= Ik Rk+Vke.

Отсюда следует, что малым сигналом Ec определяется правило изменения разности потенциалов в переменное выходное транзисторного преобразователя. Такая схема дает возможность увеличению тока входа во много раз, так же, как напряжению и мощности.

Из недостатков такой схемы можно назвать малое сопротивление на входе (до 1 кОм). Как следствие, возникают проблемы в образовании каскадов. Сопротивление выхода равно от 2 до 20 кОм.

Рассмотренные схемы показывают действие биполярного транзистора. На его работу влияет частота сигнала и перегрев. Для решения этого вопроса применяют дополнительные отдельные меры. Эмиттерное заземление образует на выходе искажения. Для создания надежности схемы, выполняют подключение фильтров, обратных связей и т.д. После таких мер, схема работает лучше, но уменьшается усиление.

Режимы работы

На быстродействие транзистора оказывает влияние величина подключаемого напряжения. Рассмотрим разные режимы работы на примере схемы, в которой транзисторы подключаются с общим эмиттером.

Отсечка

Этот режим образуется при снижении напряжения VБЭ до 0,7 вольта. В таком случае переход эмиттера закрывается, и ток на коллекторе отсутствует, так как в базе отсутствуют электроны, и транзистор остается закрытым.

Активный режим

При подаче напряжения, достаточного для открытия транзистора, на базу, возникает малый ток входа и большой выходной ток. Это зависит от размера коэффициента усиления. В этом случае транзистор работает усилителем.

Режим насыщения

Эта работа имеет свои отличия от активного режима. Полупроводник открывается до конца, коллекторный ток достигает наибольшего значения. Его повышения можно добиться только путем изменения нагрузки, либо ЭДС выходной схемы. При корректировке тока базы ток коллектора не изменяется. Режим насыщения имеет особенности в том, что транзистор открыт полностью и работает переключателем. Если объединить режимы насыщения и отсечки биполярных транзисторов, то можно создать ключи.

Свойства характеристик выхода влияют на режимы. Это изображено на графике.

При отложении на осях координат отрезков, соответствующих наибольшему току коллектора и размеру напряжения, и далее, объединения концов друг с другом, образуется красная линия нагрузки. По графику видно: точка тока и напряжения сместится по линии нагрузки вверх при повышении базового тока.

Участок между заштрихованной характеристикой выхода и осью Vke является работа отсечки. В этом случае транзистор закрыт, а обратная величина тока мала. Характеристика в точке А вверху пересекается с нагрузкой, после которой при последующем повышении IВ ток коллектора уже не меняется. На графике участком насыщения является закрашенная часть между осью Ik и наиболее крутым графиком.

Биполярные транзисторы в различных режимах

Транзистор взаимодействует с сигналами разных видов во входной цепи. В основном транзистор применяется в усилителях. Входной переменный сигнал изменяет ток на выходе. В этом случае используются схемы с общим эмиттером или коллектором. В цепи выхода для сигнала необходима нагрузка.

Чаще всего для этого применяют сопротивление, установленное в цепи выхода коллектора. При его правильном выборе, значение напряжения на выходе будет намного больше, чем на входе.

Во время преобразования сигнала импульсов режим сохраняется таким же, как для синусоидальных сигналов. Качество изменения гармоник определяется характеристиками частоты полупроводников.

Режим переключения

Транзисторные ключи служат для бесконтактных переключений в электрических цепях. Эта работа заключается в прерывистой регулировке величины сопротивления полупроводника. Биполярные транзисторы наиболее применимы в устройствах переключения.

Полупроводники применяются в схемах изменения сигналов. Их универсальная работа и широкая классификация дает возможность использовать транзисторы в различных цепях, которые определяют их возможности работы. Основными применяемыми схемами являются усиливающие, а также переключающие цепи.

Похожие темы:

 

electrosam.ru

Транзисторы. Общие сведения.

Что такое транзистор?

Транзистор – электронный полупроводниковый прибор, предназначенный для усиления, генерирования и преобразования электрических сигналов. Если быть точнее, то транзистор позволяет регулировать силу электрического тока подобно тому, как водяной кран регулирует поток воды. Отсюда следуют две основные функции прибора в электрической цепи — это усилитель и переключатель.

Существует бесконечное множество разных типов транзисторов – от огромных усилителей высокой мощности размером с кулак, до миниатюрных переключателей на кристалле процессора размером в считанные десятки нанометров (в одном метре 109 нанометров).

Что значит слово «транзистор» и как это связано с его работой?

Слово «транзистор» происходит от двух английских слов — «transfer» (переносить) и «resistor» (сопротивление). Что можно буквально перевести, как «переходное сопротивление». Однако, лучше всего для описания работы этого прибора, подойдет название «переменное сопротивление». Поскольку в электронной цепи, транзистор ведет себя именно как переменное сопротивление. Только если у таких переменных резисторов, как потенциометр и обычный выключатель, нужно менять сопротивление с помощью механического воздействия, то у транзистора его меняют посредством напряжения, которое подается на один из электродов прибора.

Обозначения и типы транзисторов.

Устройство и обозначение транзисторов разделяют на две большие группы. Первая – это биполярные транзисторы (БТ) (международный термин – BJT, Bipolar Junction Transistor). Вторая группа – это униполярные транзисторы, еще их называют полевыми (ПТ) (международный термин – FET, Field Effect Transistor).

Полевые, в свою очередь, делятся на транзисторы с PN-переходом (JFET — Junction FET) и с изолированным затвором (MOSFET- Metal-Oxide-Semiconductor FET) .

Применение биполярных транзисторов.

На сегодняшний день биполярные транзисторы получили самое широкое распространение в аналоговой электронике. Если быть точнее, то чаще всего их используют в качестве усилителей в дискретных цепях (схемах, состоящих из отдельных электронных компонентов).

Также нередко отдельные БТ используются совместно с интегральными (состоящими из многих компонентов на одном кристалле полупроводника) а налоговыми и цифровыми микросхемами. В этом возникает необходимость, например, когда нужно усилить слабый сигнал на выходе из интегральной схемы, обычно не располагающей высокой мощностью.

Применение полевых транзисторов.

В области цифровой электроники, полевые транзисторы, а именно полевые транзисторы с изолированным затвором (MOSFET), практически полностью вытеснили биполярные благодаря многократному превосходству в скорости и экономичности. Внутри архитектуры логики процессоров, памяти, и других различных цифровых микросхем, находятся сотни миллионов, и даже миллиарды MOSFET, играющих роль электронных переключателей.

hightolow.ru

Хотите знать что такое транзистор? Смотрите наши видео уроки! Читайте статью.

Первоначальное название радиодетали – триод, по числу контактов. Этот радиоэлемент способен управлять током в электрической цепи, под воздействием внешнего сигнала. Уникальные свойства применяются в усилителях, генераторах и других аналогичных схемных решениях.

Обозначение транзисторов на схеме

Долгое время в радиоэлектронике царствовали ламповые триоды. Внутри герметичной колбы, в специальной газовой или вакуумной среде размещались три основных компонента триода:

  • Катод
  • Сетка
  • Анод

Когда на сетку подавался управляющий сигнал небольшой мощности, между катодом и анодом можно было пропускать несравнимо большие значения. Величина рабочего тока триода многократно выше, чем управляющего. Именно это свойство позволяет радиоэлементу выполнять роль усилителя.

Триоды на основе радиоламп работаю достаточно эффективно, особенно при высокой мощности. Однако габариты не позволяют применять их в современных компактных устройствах.

Представьте себе мобильный телефон или карманный плейер, выполненный на таких элементах.

Вторая проблема заключается в организации питания. Для нормального функционирования, катод должен быть сильно разогрет, чтобы началась эмиссия электронов. Нагрев спирали требует много электроэнергии. Поэтому ученые всего мира всегда стремились создать более компактный прибор с такими же свойствами.

Первые образцы появились в 1928 году, а в середине прошлого столетия был представлен работающий полупроводниковый триод, выполненный по биполярной технологии. За ним закрепилось название «транзистор».

Что такое транзистор?

Транзистор – полупроводниковый электроприбор в корпусе или без него, имеющий три контакта для работы и управления. Главное свойство такое же, как у триода – изменение параметров тока между рабочими электродами при помощи управляющего сигнала.

Благодаря отсутствию необходимости разогрева, транзисторы затрачивают мизерное количество энергии на обеспечение собственной работоспособности. А компактные размеры рабочего полупроводникового кристалла, позволяют использовать радиодеталь в малогабаритных конструкциях.

Благодаря независимости от рабочей среды, кристаллы полупроводника можно использовать как в отдельном корпусе, так и в микросхемах. В комплекте с остальными радиоэлементами, транзисторы выращивают прямо на монокристалле.

Выдающиеся механические свойства полупроводника нашли применение в подвижных и переносных устройствах. Транзисторы нечувствительны к вибрации, резким ударам. Обладают неплохой температурной стойкостью (при сильной нагрузке применяют радиаторы охлаждения).

Поэтому достаточно быстро ламповые триоды были вытеснены компактными, прочными и недорогими транзисторами.

Однако применение радиоламп не прекращено. В мощных радиопередатчиках, генераторах – ламповые усилители успешно применяются. Некоторые возможности мощных радиоламп недостижимы (или реализация имеет слишком высокую цену) для полупроводниковых приборов.

[tip]Это интересно! В бытовом исполнении часто можно встретить современные ламповые приборы. Например, любимые меломанами усилители звука. Считается, что их звучание более мягкое.[/tip]

Классификация транзисторов

По структуре кристалла. Основных направлений конструкции (а стало быть, и свойств детали) – два. Они наглядно изображены на иллюстрации:

Чтобы понять, что такое транзистор – необходимо знать принцип его работы.

В этом видео подробно о структуре транзистора, для чего он нужен и как он работает.

Полевые транзисторы

Работают точно так же, как вакуумные триоды. Имеют два рабочих вывода (сток и исток) и управляющий (затвор). Электрический ток протекает между стоком и истоком с интенсивностью, которая зависит от управляющего сигнала. Сигнал в виде поперечного электрического поля формируется между затвором и стоком или затвором и истоком.

Все разновидности полевых транзисторов на иллюстрации:

Рассмотрим основные виды:

Управляющий p-n переход.
Сток и исток подключены к полупроводниковой пластине. Она может быть n- или p- типа. Управляющий электрод соединен с пластиной при помощи p-n перехода. Управляющий сигнал малой мощности открывает p-n канал, заставляя транзистор работать в режиме усиления сигнала.

Прекращение подачи управляющего сигнала приводит к отключению канала. Разумеется, между управляющим сигналом и рабочим током существует линейная зависимость.

Главная особенность полевого транзистора – управление осуществляется не током, а напряжением. Применение полевых транзисторов – в основном интегральные схемы. Мизерное (близкое к нулю) потребление электроэнергии, позволяет использовать радиодетали в системах с компактными и маломощными источниками питания, например – наручных часах.

Полевые транзисторы большой мощности применяются в качественных звуковых усилителях, в качестве альтернативы вакуумным триодам.

Разумеется, как и любая другая деталь – полевики могут выходить из строя. Чтобы по ошибке не выбросить исправную деталь, можно проверить транзистор в домашних условиях

Как прозвонить полевой транзистор мультиметром?

Обратите внимание

Если ваш прибор имеет функцию проверки транзисторов – воспользуйтесь ей. Мы рассматриваем мультиметр без такой функции.

    • Переводим тестер в режим проверки диодов. За виртуальный диод принимается переход между стоком и истоком. Исправный переход работает в точности, как полупроводниковый диод;
    • Соединяем плюсовой контакт измерительного провода с истоком, минусовой со стоком. Если транзистор исправен – показания мультиметра должны быть в пределах 500-600;
    • Чтобы проверка была окончательной, необходимо проверить протекание тока в обратном направлении. Меняем полярность подключения. Тестер показывает условно бесконечное сопротивление. На дисплее цифра 1.

  • Проверка полевого транзистора не ограничена тестированием перехода на проводимость. Надо проверить открытие рабочего канала. Специального источника питания не нужно, мы рассматриваем способ, как проверить транзистор мультиметром автономно. Достаточно питания тестера, чтобы открыть переход. Минусовой щуп подключаем к истоку, плюсовой к управляющему затвору. У исправного транзистора откроется канал исток-сток.
  • Прозвонка транзистора в канале исток-сток покажет падение напряжения на канале p-n перехода.
  • Меняем полярность на электродах исток-сток. Если транзистор исправен – канал p-n перехода закроется. Проверяем ток в канале исток-сток — проверка транзистора мультиметром показывает закрытый p-n переход.

МДП транзистор с изолированным затвором.
В отличие от предыдущей модели – затвор отделен от канала диэлектриком. Так называемое срабатывание затвора возникает только при достижении определенного напряжения и заданной полярности.

Такие транзисторы имеют узкую специализацию, и применяются в основном в составе микросхем. Методика, как проверить полевой транзистор тут не подходит. Собственно, это и не нужно, транзисторы штучно практически не используются.

Для закрепления прочитанного, смотрите видео на тему: Как проверить полевой транзистор мультиметром.

Биполярные транзисторы

Метод работы принципиально отличается от полевых полупроводниковых триодов. На полупроводниковом кристалле создается два p-n перехода.

Рабочий ток образуется за счет переноса заряда либо электронами, либо так называемыми дырками. То есть ток может протекать в любом (но только одном) направлении. Поэтому транзисторы такого типа именуются биполярными.

Биполярный транзистор, как и любой другой, имеет три вывода.

  1. База. Соединяется со средним слоем полупроводника;
  2. Эмиттер и коллектор. Эти контакты имеют соединение с внешними слоями кристалла.

Благодаря универсальности работы, на биполярниках выполняется множество схем – в основном усилительные.

  • Схема с общей базой. Универсально подключение. Щадящий режим, но при этом способность усиливать рабочий сигнал – слабая;
  • Схема с общим эмиттером. Очень высокий КПД, рабочий сигнал усиливается с максимально возможным коэффициентом. Недостатки – сложный расчет сопротивления на входе (при проектировании схем) и сильная зависимость от температуры;
  • Схема с общим коллектором. В сравнение с предыдущим вариантом включения, способность усиления сигнала существенно меньше. Можно эффективно использовать входное сопротивление элемента.

Режимы работы транзисторов, выполненных по биполярной технологии:

Активный режим прямой.
Эмиттер-база в открытом состоянии, коллектор-база закрыт. Как проверить транзистор мультиметром в таком режиме? Зная схему подключения – как обычный диод.

Активный режим инверсия.
Эмиттер-база закрыт, коллектор-база открыт. Проверка радиоэлемента проводится аналогичным способом, только полярность тестера обратная.

Насыщение.
Переходы находятся в открытом состоянии. Запуск такого режима осуществляется одновременным подключением к внешнему источнику обоих переходов. Состояние стабильное.

Отсечка.
Коллекторный переход включен в инверсном направлении. Эмиттерный переход работает в двух направлениях. Важно! Для обеспечения режима нельзя подавать напряжение выше порога срабатывания.

Барьер.
База подключена к коллектору. Для мягкости работы последовательно с рабочей цепью подключается резистор. Схему можно использовать в качестве диода с резистивным ограничителем по току.

Если вы разобрались в принципе работы, вопросов как прозвонить транзистор возникнуть не должно. С точки зрения мультиметра, транзистор – это набор диодов. При понимании, в каком направлении открыты p-n переходы, проверка сводится к прозвонке виртуальных диодов.

Смотрите подробное видео про биполярные транзисторы, их структуру и способы применения в электронике.

obinstrumente.ru