Закон архимеда для детей – Академия занимательных наук. Физика – Архимедова сила. Закон Архимеда. Видеоуроки физики

Академия занимательных наук. Физика - Архимедова сила. Закон Архимеда. Видеоуроки физики

Архимедова сила. Закон Архимеда. Видеоуроки физики

Выпуск 8

В видеоуроке физики от Академии занимательных наук профессор Даниил Эдисонович расскажет о древнегреческом учёном Архимеде и некоторых из его удивительных открытий. Как узнать, является ли золото чистым? Каким образом многотонные корабли умудряются плавать по океанским волнам? Наша жизнь полна загадочных явлений и хитрых головоломок. Физика способна подобрать ключи к некоторым из них. Посмотрев восьмой видеоурок физики вы познакомитесь с законом Архимеда и Архимедовой силой, а также историей их открытия.

Закон Архимеда

Почему в воде предметы весят меньше, чем на суше? Для человека пребывание в воде сравнимо с пребыванием в состоянии невесомости. Это используют в своих тренировках космонавты. Но из-за чего же так происходит? Дело в том, что на тела, погружённые в воду действует выталкивающая сила, открытая древнегреческим философом Архимедом. Закон Архимеда звучит так — погружённое в жидкость тело теряет в весе столько, сколько весит объём вытесненной им воды. Выталкивающую силу назвали Архимедовой, в честь первооткрывателя. Архимед, был одним из величайших ученых Древней Греции. Этот гениальный математик и механик, жил в Сиракузах в III веке до н. э. Вэто время в Сиракузах правил царь Гиерон. Однажды Гиерон, получив от мастеров заказанную им золотую корону, усомнился в их честности. Ему показалось, что они утаили часть золота, выданного на ее изготовление, и заменили его серебром. Но как уличить ювелиров в подделке? Гиерон поручил Архимеду определить, есть ли в золотой короне примесь серебра. Архимед искал решение задачи постоянно, не переставая думать об этом, когда занимался другими делами. А решение нашлось...  в бане. Архимед, намылился золой и полез в ванну.И произошло то, что бывает всякий раз, когда любой человек, даже не ученый, садится в любую, даже не мраморную ванну — вода в ней поднимается. Но то, на что обычно Архимед не обращал никакого внимания, вдруг заинтересовало его. Он привстал – уровень воды опустился, он снова сел — вода поднялась; причем поднималась она по мере погружения тела. И вот в этот миг Архимеда осенило. Он усмотрел в десятке раз проведенном опыте намек на то, как объем тела связан с его весом. И понял, что задача царя Гиерона разрешима. И так обрадовался своей случайной находке, что как был – голый, с остатками золы на теле – побежал домой через город, оглашая улицу криками: «Эврика! Эврика!». Вот так Архимед, если верить легенде, нашел решение задачи Гиерона. Архимед попросил у царя два слитка — серебряный и золотой. Вес каждого слитка был равен весу короны. Положив в сосуд до краёв наполненный водой сначала серебряный, а затем золотой слиток, учёный измерил объём вытесненной каждым из слитков воды. Золото вытеснило меньше воды, чем серебро. А всё потому, что объём куска золота был меньше куска серебра такого же веса. Ведь золото тяжелее серебра. Затем Архимед погрузил в сосуд корону и измерил объём вытесненной ею воды. Корона вытеснила меньше воды, чем слиток серебра. но больше чем слиток золота. Так мошенничество ювелира было разоблачено. Благодаря Архимедовой силе способны плавать гигантские корабли, весящие сотни тысяч тонн. Это происходит благодаря тому, что они обладают большим водоизмещением. То есть, их объём таков, что вытесняет огромное количество воды. А как вы помните, чем больше объём тела, тем сильнее действует на него Архимедова сила.

www.radostmoya.ru

Занимательные опыты по теме «Архимедова сила»

ОПЫТЫ по теме «Архимедова сила»

Наука – это чудесно, интересно и весело. Но в чудеса со слов верится плохо, их надо потрогать собственными руками. Есть опыт – занимательный!
И, если ты внимательный,
Умом самостоятельный
И с физикой на «ты»
То опыт занимательный –
Весёлый, увлекательный –
Тебе откроет тайны
И новые мечты!


 

1) Живая и мертвая вода

Поставьте на стол литровую стеклянную банку, заполненную на 2/3 водой, и два стакана с жидкостями: один с надписью «живая вода», другой – с надписью «мёртвая». Опустите в банку клубень картофеля (или сырое яйцо). Он тонет. Долейте в банку «живую» воду – клубень всплывёт, добавьте «мёртвую» – он опять утонет. Подливая то одну, то другую жидкость, можно получить раствор, в котором клубень не будет всплывать на поверхность, но и ко дну не пойдёт.
Секрет опыта в том, что в первом стаканчике – насыщенный раствор поваренной соли, во втором – обычная вода. (Совет: перед демонстрацией картофель лучше очистить, а в банку налить слабый раствор соли, чтобы даже незначительное увеличение её концентрации вызывало эффект).

2) Картезианский водолаз из пипетки

Наполните пипетку водой так, чтобы она плавала вертикально, практически полностью погрузившись в воду. Опустите пипетку – водолаза в прозрачную пластиковую бутылку, доверху наполненную водой. Герметично закройте бутылку крышкой. При нажиме на стенки сосуда, водолаз начнёт заполняться водой. Изменяя давление, добейтесь, чтобы водолаз выполнял ваши команды: «Вниз!», «Вверх!» и «Стоп!» (остановка на любой глубине).

 

3) Непредсказуемый картофель

(Опыт можно провести с яйцом). Опустите клубень картофеля в стеклянный сосуд, наполовину заполненный водным раствором поваренной соли. Он плавает на поверхности.
Что произойдёт с картофелем, если подлить в сосуд воды? Обычно отвечают, что картофель всплывёт. Подливайте осторожно воду (её плотность меньше плотности раствора и яйца) через воронку по стенке сосуда, пока он не наполнится. Картофель, к удивлению зрителей, остаётся на прежнем уровне .

 

4) Вращающийся персик

Налейте в стакан газированной воды. Диоксид углерода, растворённый в жидкости под давлением, начнёт выходить из неё. Поместите в стакан персик. Он сразу всплывёт на поверхность и … начнёт вращаться, как колесо. Вести себя подобным образом он будет довольно долго.

Для того чтобы понять причину этого вращения, присмотритесь, что происходит. Обратите внимание на бархатистую кожицу фрукта, к волоскам которой будут прилипать пузырьки газа. Так как на одной половинке персика всегда будет больше пузырьков, то на неё действует большая выталкивающая сила, и она поворачивается вверх.

5) Сила Архимеда в сыпучем веществе

На представлении «Наследие Архимеда» жители Сиракуз соревновались в «доставании со дна морского жемчужины». Аналогичную, но более простую демонстрацию можно повторить, используя небольшую стеклянную банку с пшеном (рисом). Положите туда теннисный шарик (или корковую пробку) и закройте её крышкой. Переверните банку так, чтобы шарик оказался в её нижней части под пшеном. Если создать легкую вибрацию (легонько потрясти банку вверх-вниз), то сила трения между зёрнышками пшена уменьшится, они станут подвижными и шарик через некоторое время под действием силы Архимеда всплывёт на поверхность.

6) Пакет полетел без крыльев

Поставьте свечу , зажгите её, подержите над ней пакет, воздух в пакете нагреется,

Отпустив пакет , убедитесь, как под действием силы Архимеда пакет полетит вверх.

 

7) Разные пловцы по-разному плавают

Налейте в сосуд воды и масла. Опустите гайку, пробку и кусочки льда. Гайка окажется на дне, пробка на поверхности масла, лёд окажется на поверхности воды под слоем масла.

Это объясняется условиями плавания тел:

сила Архимеда больше силы тяжести пробки – пробка плавает на поверхности,

сила Архимеда меньше силы тяжести, действующей на гайку – гайка тонет

сила Архимеда, действующая на кусок льда больше силы тяжести льда – пробка плавает на поверхности воды, но так как плотность масла меньше плотности воды, и меньше плотности льда - масло останется на поверхности над льдом и водой


 

8) Опыт, подтверждающий закон

К пружине подвесьте ведёрко и цилиндр. Объём цилиндра равен внутреннему объёму ведёрка. Растяжение пружины отмечено указателем. Целиком погружайте цилиндр в отливной сосуд с водой. Вода выливается в стакан.

Объём вылившейся воды равен объёму погружённого в воду тела. Указатель пружины отмечает уменьшение веса цилиндра в воде, вызванное действием выталкивающей силы.

Выливайте в ведёрко воду из стакана и увидите, что указатель пружины возвращается к начальному положению. Итак, под действием архимедовой силы пружина сократилась, а под действием веса вытесненной воды вернулась в начальное положение. Архимедова сила равна весу жидкости, вытесненной телом.

9) Исчезло равновесие

Сделайте бумажный цилиндр, подвесим вверх дном на рычаг и уравновесим.

Поднесем спиртовку под цилиндр. Под действием тепла равновесие нарушается, сосуд поднимается вверх. Так как сила Архимеда растёт.

Такие оболочки, наполненные теплым газом или горячим воздухом называют воздушными шарами и применяют для воздухоплавания.

 

ВЫВОД

Проделав опыты, мы убедились, что на тела, погружённые в жидкости, газы и даже сыпучие вещества, действует сила Архимеда, направленная вертикально вверх. Архимедова сила не зависит от формы тела, глубины его погружения, плотности тела и его массы. Сила Архимеда равна весу жидкости в объёме погружённой части тела.

xn--j1ahfl.xn--p1ai

Звёздочки1101: Изучаем законы Архимеда

Почему одни вещества тонут в воде, а другие нет? И почему есть так мало веществ, способных плавать в воздухе (т. е. летать)? Понимание законов плавучести (и погружения) позволяет инженерам строить корабли из металлов, которые тяжелее воды, и конструировать дирижабли и воздушные шары, способные плавать в воздухе. В спасательный жилет накачивают воздух, поэтому он помогает человеку держаться на воде…
 

 Сегодня на кружке «Хочу знать!» мы выясним — почему лёд плавает на воде? Ведь, по сути, лёд — это тоже вода…

Почему же предметы плавают?

 Если погрузить тело в воду, оно вытеснит некоторое количество воды. Тело занимает место, где раньше была вода, и уровень воды поднимается.

Если верить легенде, древнегреческий ученый Архимед (287 — 212 до н.э.), находясь в ванне, догадался, что погруженное тело вытесняет равный объем воды. На средневековой гравюре изображен Архимед, совершивший свое открытие.

Сила, с которой вода выталкивает погруженное в нее тело, называется силой выталкивания.

Закон Архимеда гласит, что сила выталкивания равна весу жидкости, вытесненной погруженным в неё телом. Если сила выталкивания меньше веса тела, то оно тонет, если она равна весу тела, оно плавает.

 Эксперимент № 1: 

Как действует сила выталкивания? Следует отметить уровень воды, опустите в сосуд с водой пластилиновый шарик на резинке. После погружения уровень воды поднимется, а длина резинки уменьшится.

Вывод: Со стороны воды на пластилиновый шарик подействовала сила, направленная вверх. Поэтому уменьшилась длина резинки, т.е. шарик, погруженный в воду стал легче.

Слепите из этого же пластилина лодочку и осторожно опустите её на воду. Как видите, вода поднялась ещё выше. Лодочка вытеснила больше воды, чем шарик, а значит, и сила выталкивания больше.

Волшебство свершилось, тонущий материал плавает на поверхности! Ай да Архимед!

 Чтобы тело не тонуло, его плотность должна быть меньше плотности воды.

Не знаете, что такое плотность? Это масса однородного вещества в единице объема.

Эксперимент № 2: «Зависимость выталкивающей силы от плотности воды»

Возьмите стакан с чистой водой (неполный), сырое яйцо и соль. Поместите в стакан яйцо, если яйцо свежее — оно опустится на дно. Затем аккуратно подсыпайте в стакан соль и наблюдайте, как яйцо начнет всплывать.

 Вывод: При увеличении плотности жидкости увеличивается выталкивающая сила.

В яйце есть воздушный пакет, и при изменении плотности жидкости яйцо всплывает к поверхности на манер подводной лодки.

А вы знаете, что раньше, до изобретения холодильников, наши предки проверяли, свежее яйцо или нет: свежие яйца тонут в чистой воде, а испортившиеся — всплывают, так как внутри них образуется газ.

 Эксперимент № 3  «Водоплавающий лимон»

Наберите в емкость воду и опустите в нее лимон. Лимон плавает. А потом очистите его от кожуры и вновь опустите в воду. Лимон утонул.

Вывод: лимон утонул из-за того, что увеличилась его плотность. Кожура у лимона менее плотная, чем его внутренность, и содержит много частичек воздуха, которые помогают лимону оставаться на поверхности воды.

Эксперимент № 4 

1. В стакан  налить воду и поставить на улицу. Когда вода замёрзнет, стакан лопнет. Положите образовавшийся лёд в емкость с холодной водой и увидите, что он плавает.

2. В другой ёмкости посолите хорошенько воду  и размешайте до полного ее растворения. Взять лёд и повторить опыт. Лёд плавает, и даже лучше, чем в пресной воде, чуть ли не наполовину выступая из воды.

Все ясно! Кубик льда плавает, потому что, при замерзании лёд расширяется и становится легче воды. Плотность обычной, жидкой воды несколько больше, чем плотность замерзшей воды, то есть, льда.При увеличении плотности жидкости увеличивается выталкивающая сила.

 Научные факты:

1факт  Архимед: на всякое тело, погружённое в жидкость, действует выталкивающая сила.

2 факт  Михаил Ломоносов: Лёд не тонет потому, что имеет  плотность – 920 кг\куб.м. А вода, плотнее –1000 кг\куб.м.

Попробуем вообразить, как выглядел бы мир, если бы вода обладала обычными свойствами и лед был бы, как и полагается любому веществу, плотнее жидкой воды.

Зимой намерзающий сверху более плотный лед тонул бы в воде, непрерывно опускаясь на дно водоема. Летом лед, защищенный толщей холодной воды, не мог бы растаять.

Постепенно все озера, пруды, реки, ручьи промерзли бы нацело, превратившись в гигантские ледяные глыбы. Наконец, промерзли бы моря, а за ними и океаны. Наш прекрасный цветущий зеленый мир стал бы сплошной ледяной пустыней, кое-где покрытой тонким слоем талой воды. Одним из таких неповторимых свойств воды является ее способность расширяться при замерзании. Ведь все вещества при замерзании, то есть при переходе из жидкого состояния в твердое, сжимаются, а вода наоборот – расширяется. Ее объем при этом увеличивается на 9%. Но когда на поверхности воды образуется лед, то он, находясь между холодным воздухом и водой, препятствует дальнейшему охлаждению и промерзанию водоемов. Это необычное свойство воды. Попадая в маленькие трещины, которые всегда найдутся в камнях, дождевая вода при замерзании расширяется и разрушает камень. Так, постепенно каменная поверхность становится способной приютить растения, которые своими корнями довершают этот процесс разрушения камней и приводят к образованию на склонах гор почвы.

Лед всегда находится на поверхности воды и служит настоящим теплоизолятором. То есть вода под ним не так охлаждается, ледяная шуба надежно защищает ее от мороза. Оттого редкий водоем промерзает зимой до дна, хотя при экстремальных температурах воздуха это возможно.

Внезапное увеличение объёма при переходе воды в лёд представляет важную особенность воды. С этой особенностью приходится часто считаться в практической жизни. Если оставить бочку с водой на морозе, то вода, замёрзнув, разорвёт бочку. По этой же причине нельзя оставлять воду в радиаторе автомобиля, стоящего в холодном гараже. В сильные морозы нужно опасаться малейшего перерыва в подаче тёплой воды по трубам водяного отопления: вода, остановившаяся в наружной трубе, может быстро замёрзнуть, и тогда труба лопнет.

Да, бревно, какое бы оно ни было большое, в воде не тонет. Секрет этого явления в том, что плотность дерева меньше плотности воды.

Между прочим…

Есть деревья, которые тонут в воде! Причина этого, что их плотность больше, чем плотность воды. Эти деревья называют «железными». К «железным деревьям» относятся, например, парротия персидская, азобе (африканское тропическое железное дерево), амазонское дерево, эбеновое дерево, палисандр, или розовое дерево, кумару и другие. У всех этих деревьев очень твердая и плотная древесина, насыщенная маслами, кора этих деревьев устойчива к гниению. Поэтому лодка из такого дерева тут же пойдет на дно, но зато «железные деревья» — отличный материал для изготовления мебели.

В морях и океанах встречаются иногда огромные ледяные горы — айсберги . Это сползшие с полярных гор и унесённые течением и ветром в открытое море ледники. Высота их может достигать 200 метров, а объём — нескольких миллионов кубических метров. Девять десятых всей массы айсберга спрятаны под водой. Поэтому встреча с ним весьма опасна. Если судно вовремя не заметит движущегося ледяного гиганта, оно может при столкновении получить серьёзные повреждения или даже погибнуть.

Даже не смотря на то, что корабль сделан из железа, очень тяжелый, да ещё перевозит людей и грузы, он не тонет. Почему? А все дело в том, что в корабле кроме команды, пассажиров, груза есть воздух. А воздух намного легче воды. Корабль устроен так, что внутри него есть некоторое пространство, заполненное воздухом. Именно оно поддерживает корабль на поверхности воды и не даёт ему утонуть.

 

Вывод:

1. Лёд состоит из кристаллов воды, между которыми находится воздух. Следовательно, плотность льда меньше плотности  воды.

2. На лёд со стороны воды действует выталкивающая сила.

 Кстати, если бы вода была обычной, а не уникальной жидкостью, мы не получали бы удовольствие от катания на коньках. Мы же не катаемся по стеклу? А ведь оно намного глаже и привлекательнее льда. Но стекло – такой материал, по которому коньки скользить не будут. А вот по льду, даже не очень хорошего качества кататься на коньках одно удовольствие. Вы спросите почему? Дело в том, что тяжесть нашего тела давит на очень тонкое лезвие конька, которое оказывает сильное давление на лед. В результате этого давления от конька лед начинает таять с образованием тонкой пленки воды, по которой конек превосходно скользит.

1122qwe.blogspot.com

закон Архимеда детям Лучшее видео смотреть онлайн

3 г. назад

433 от 30.09.2009 Демонстрация закона Архимеда. Автор сюжета: Алексей Иванченко Режиссёр: Елена Калиберда.

4 г. назад

Уважаемые зрители, Вы можете помочь материально на развитие канала и покупку оборудования для новых опыто...

6 г. назад

Мультфильм для детей школьного возраста. В занимательной форме рассказывается о славном Архимеде, инженер...

5 г. назад

Всякое тело, погружённое в воду, теряет в своём весе столько, сколько весит вода в объёме подводной части...

10 мес. назад

Урок физики в Ришельевском лицее.

7 г. назад

Физические опыты.

8 г. назад

Материал из видеотеки социальной сети работников образования nsportal.ru. Этот фрагмент можно использовать...

6 г. назад

Сюжет телерадиоцентра Телемикс, город Уссурийск.

8 г. назад

Мультфильм Коля, Оля и Архимед 1 часть предоставлен мультяшным сайтом http://sovetskiy.3dn.ru/index/kolja_olja_i_arkhimed/0-39.

5 г. назад

Немного о популярности течения трансерфинг реальности ...

5 г. назад

Подпишитесь на канал "Академия Занимательных Наук" и смотрите новые уроки: http://www.youtube.com/user/AcademiaNauk?sub_confirmation=1...

2 г. назад

Подписывайся на канал TVSmeshariki: https://www.youtube.com/c/smeshariki и не забудь НАЖАТЬ НА КОЛОКОЛЬЧИК Наука для детей -...

4 г. назад

Записывайтесь на бесплатное вводное занятие в Фоксфорде — https://foxford.ru/I/NG На сайте школьники могут подготов...

3 г. назад

Мы расскажем про Архимеда и его гениальный закон, а так же создадим домашнюю подводную лодку. Приятного...

3 г. назад

Прекрасный Ролик об Одном из Самых Известных и Удивительных Ученых в Истории...

3 г. назад

уроки по ФИЗИКЕ - https://www.youtube.com/watch?v=GU96BpToNBM&list=PLBnDGoKqP7bbXbumAkTAbZarei5Re9ho2&index=21&t=2s АЛГЕБРА 7 класс ...

10 мес. назад

Урок физики в Ришельевском лицее.

6 г. назад

Видеоуроки для детей и взрослых из цикла "Законы природы".

1 мес. назад

Всем привет, друзья. Зацените мое новое видео. Я участвую в научной работе, мой проект на тему плотности...

luchshee-video.ru

Урок физики в 7-м классе по теме: "Закон Архимеда"

Разделы: Физика


Цель:

1. Раскрыть учащимся физический смысл закона Архимеда через эксперимент, использование Т.С.О., исторический материал.

2. Развивать логическое мышление учащихся через анализ фрагментов из художественной литературы.

3. Формировать у учащихся любовь к книге как источнику знаний.

Оборудование урока: видеопроектор, кодоскоп, приборы для демонстрации опыта с “ведерком Архимеда”, динамометр демонстрационный, кирпич на резиновом шнуре, аквариум с водой, пробка. На каждом столе: болт на нитке, стаканчик с водой, учебный динамометр, мишень для игры “Снайпер”.

Оформление доски:

“О выталкивающей силе знали все, а чему она равна — понял один” Д.М. Балашов

I. Организационный момент (2')

Ребята, вы видели телевизионный фильм “Капитан Немо”? Как вы думаете, это фантастика или реальность?! Если внимательно прочитать книгу французского фантаста Жуль Верна “Двадцать тысяч лье под водой”, то вы убедитесь в научной справедливости некоторых эпизодов, изучив тему нашего урока сегодня. Видимо, автор хорошо понимал законы физических явлений. И он не одинок.

II. Актуализация знаний (5')

Русский писатель А.П. Чехов в повести “Степь” пишет: (цитаты лучше зачитывать из книг-первоисточников для реализации 2 и 3 цели).

“Егорушка... разбежался и полетел с полуторасаженной вышины. Описав в воздухе дугу, он упал в воду, глубоко погрузился, но дна не достал; какая-то сила, холодная и приятная на ощупь, подхватила и понесла его обратно наверх...”

Какая же сила подхватила Егорушку и подняла вверх? Правильно — выталкивающая сила. Давайте с вами повторим все, что мы о ней знаем, потому что она — и м е н и н н и ц а.

На доске заранее заготовлен кроссворд. Учащиеся, отвечая на вопросы устно, быстро заполняют его на доске.

Вопросы к кроссворду:

  1. Имя какого ученого носит закон, который утверждает: “Давление, производимое на жидкость или газ, передается без изменения в каждую точку жидкости или газа”. (Паскаль.)
  2. Прибор для измерения силы. (Динамометр.)
  3. Куда направлена выталкивающая сила? (Вверх.)
  4. С погружением тела в жидкость давление увеличивается. Какая величина характеризует увеличение давления в жидкости? (Глубина.)
  5. Математическая величина, которая характеризуется произведением длины, ширины и высоты. (Объем) Допишем формулу на доске, она нам пригодится.
  6. Сила, действующая на попру или подвес. (Вес.)
  7. А ну-ка, быстро посмотри,

    И разреши сомненья

    Скажи нам, как узнать внутри

    У жидкости... (Давление.)

    Формулу дописать на доске.

  8. А сейчас я задам последний вопрос, а вы хором ответите на него, прочитав, что получилось по вертикали в выделенных клетках:

    Скажи, какой великий человек

    Прославил свой далекий, древний век

    Тем, что открыл для жидкости закон,

    Тем, что навек был в физику влюблен.* (Архимед.)

*Здесь и далее четверостишия к опытам из книги И.Я. Ланиной “Внеклассная работа по физике”

III. Объявление темы урока (8?) (Исторический материал.)

Тему урока, ребята, вы определили сами и она уже на доске, запишите ее в тетради.

Закон Архимеда.

А вы знаете, почему выталкивающая сила — именинница? Потому что у нее сегодня появилось имя, имя великого мыслителя древности — Архимеда. А чем же он так знаменит? На помощь к нам спешит книга Ефима Ефимовского “След колесницы”. Зачитаем фрагмент.

Сиракузы. III век до нашей эры.

Автор: Жил в Сиракузах мудрец Архимед,

Был другом царя Гиерона,

Какой для царя самый важный предмет?

Вы все догадались — корона!

Захотелось Гиерону

Сделать новую корону.

Золота отмерил строго.

Взял не мало и не много —

Сколько нужно — в самый раз.

Ювелиру на заказ.

Через месяц Гиерону

Ювелир принес корону

Взял корону Гиерон,

Оглядел со всех сторон,

Чистым золотом сверкает…

Но ведь всякое бывает,

И добавить серебро можно к золоту хитро,

А того и хуже — медь

(если совесть не иметь)…

Гиерон: Вот корона, Архимед,

Золотая, или нет?

Архимед: Чистым золотом сверкает.

Гиерон: Но ты знаешь, все бывает!

И добавить серебро можно к золоту хитро,

А того и хуже — медь,

Если совесть не иметь.

Сомневаться стал я что-то:

Честно ль сделана работа?

Можно ль это, ты скажи, определить?

Но корону не царапать, не пилить…

Автор: И задумался ученый,

Что известно? ВЕС короны,

Ну а как найти ОБЪЕМ?

Думал ночью, думал днем.

И однажды в ванне моясь

Погрузился он по пояс.

На пол вылилась вода —

Догадался он тогда,

Как найти ОБЪЕМ короны

И помчался к Гиерону

Не обут и не одет…

А народ кричит вослед:

Что случилось, Архимед?

Может быть, землетрясенье?

Или в городе пожар?

Всполошился весь базар!

Закрывали лавки даже.

Шум, и крики, и смятенье!

Он промчался мимо стражи.

Архимед: Эврика! Нашел решенье!

Автор: Во дворец примчался он

Архимед: Я придумал, Гиерон!

Во дворце

Архимед: Эврика! Раскрыл секрет!

Гиерон: Ты оденься, Архимед!

Вот сандалии, хитон,

И расскажешь все полом!

Архимед: Пусть весы сюда несут

И с водой большой сосуд…

Все доставить Гиерону!

(Слуги все приносят)

На весы кладем корону

И теперь такой же ровно

Ищем слиток золотой…

(Находит кусок золота, по весу равный короне)

Гиерон: Все понятно!

Архимед: Нет, постой!

Мы теперь корону нашу опускаем в эту чашу.

Гиерон! Смотри сюда —

В чаше поднялась вода!

Ставлю черточку по краю.

Гиерон: А корону?

Архимед: Вынимаю.

В воду золото опустим…

Гиерон: В воду золото? Допустим…

Архимед: Поднялась опять вода

Метку ставлю я …

Гиерон: Куда?

Архимед: Ну конечно же по краю.

Гиерон: Ничего не понимаю.

Лишь две черточки я вижу:

Эта — выше, эта — ниже.

Но какой же вывод главный?

Архимед: Равный вес.

Объем — не равный!

Понимаешь, Гиерон.

Я сейчас открыл закон.

Тот закон совсем простой:

Тело вытеснит…

Гиерон: Постой!

Говоришь, объем не равный?

Мастер мой — мошенник явный!

За фальшивую корону

Он ответит по закону!

Автор: На этом прервалась беседа…

Немало воды утекло с стой поры,

Но помнят закон Архимеда

(Через видеопроектор на экран проецируем иллюстрации. Если нет Т.С., то необходимо нарисовать на бумаге атрибуты – уравновешенные весы с короной и куском золота, чан с водой с отметками уровня воды с короной и с золотом. Наглядность необходима для подготовки учащихся к восприятию физического опыта с “ведерком Архимеда”. Мною практиковалось проигрывание спектакля в лицах. Это, естественно, требует дополнительной подготовки учащихся и весь реквизит, чтобы обыгрывать сцену.

Наибольшей эффективности запоминания, а, главное, понимания физической сути открытия и его ценности, удавалось добиться именно включая в урок спектакль. Следует, однако, учесть эмоционально-психологические доминанты в классном коллективе и то, что исторический сюжет – это лишь подготовка к осознанному восприятию физического опыта).

Учитель: Теперь нам понятны слова Д.М. Балашова, которые написаны на доске, и почему выталкивающую силу назвали Силой Архимеда.

IV. Объявление темы урока (12')

1. Фронтальный эксперимент (3')

Ребята, как экспериментально, опытным путем можно определить выталкивающую силу Архимеда, действующую на любое тело, погруженное в жидкость? Хотя бы на эти болтики, что лежат у вас на столе?

В воде тело стало легче на 0,1Н, это и есть величина

Вам достался болтик, а мне кирпич. Как же мне определить , ведь динамометр не выдержит такой нагрузки?

Поднимаю кирпич, резиновый шнур растягивается. Опускаю в аквариум и резиновый шнур заметно сократился. Определить в данном случае нам поможет Закон Архимеда, но его еще надо вывести.

2. Вывод формулы

Через кодоскоп проецирую рисунок с прошлого урока, а нижнюю часть закрываю.

“Вопрос непрост
Прошу подумать всех,
Докажет кто, что жидкость
Давит снизу вверх”.

по закону Паскаля

Закрываю нижнюю часть кодопозитива и открываю её после опыта с “ведёрком Архимеда”.

3. Опыт с “ведерком Архимеда” (3')

        

Опустим цилиндр в воду и соберем всю вытесненную воду в стакан. Выливаем собранную воду из стакана в ведерко; 1) стрелки сравнялись: ; 2) ведерко полное: . Открываем нижнюю часть вывода и проецирую на экран с комментированием и ссылкой на результаты эксперимента. Выключаю кодоскоп. Запишите вывод самостоятельно рядом с рисунком, сделанным на прошлом уроке на заранее оставленном месте. Через 2–3 мин. Высвечиваю для проверки.

4. Вывод и формулировка закона. (2')

— на доске и в тетради.

Выталкивающая сила, действующая на погруженное в жидкость (или газ) тело, равна весу жидкости (или газа), вытесненной этим телом.

V. Решение задачи (5’)

Ребята, вы-то молодцы, , действующую на болтики, нашли, а вот как же быть с кирпичом?

Дано:

Решение:

Если тело в жидкость опустить,
Будет сила снизу на него давить.
Почему же тело погружается,
Может быть, здесь физика кончается?

Ответ: , действующая на кирпич? 12,5 Н. , поэтому он тонет.

Дома: Рассчитайте и сравните с .

VI. Закрепление. (7')

Возвращаемся в читальный зал и попытаемся проанализировать эпизоды из литературных произведений, опираясь на Закон Архимеда.

(1) “Умная галка”. Так называется небольшой рассказ Л.Н. Толстого.

Хотела галка пить. На дворе стоял кувшин с водой, а в кувшине была вода только на дне. Галке нельзя было достать. Она стала кидать в кувшин камушки и столько накидала, что вода стала выше и можно было пить.

Зачем галка бросала камни? Почему вода поднималась?

(2) Н.А. Некрасов. “Дедушка Мазай и зайцы”

…Мимо бревно суковатое плыло,
Сидя, и стоя, и лежа пластом,
Зайцев с десяток спасалось на нем.
“Взял бы я вас — да потопите лодку!”
Жаль их, однако, да жаль и находку —
Я зацепился багром за сучок
И за собою бревно поволок…

Почему Мазай зацепил бревно, а не посадил зайцев в лодку?

FA >…, если VT >…

(3) К.Г. Паустовский, эпизод из повести “Кара-Бугаз”.

…Наш кок отпросился искупаться, но залив его не принял. Он высоко выкидывал его ноги, и при всем тщании, кок погрузиться в воду не смог. Это повеселило команду и улучшило несколько ее дурное расположение. Кок к вечеру покрылся язвами и утверждал, что вода залива являет собой разбавленную царскую водку, иначе — серную кислоту…

Почему кок не смог искупаться в заливе Кара-Бугаз?

FA >…, если   ж >…

(4) В отрывке из романа В.Д. Иванова “Русь изначальная” рассказывается, как воин-разведчик Ратибор собирается перейти на другой берег реки. Для этого он взял длинную толстую тростинку, …чтобы дышать под водой. Ноздри и уши пловец заткнул желтым воском… придерживая тростинку за конец губами, он скрылся под водой и обеими руками поднял камень величиной с коровью голову. Обвязав груз тонкой веревкой, Ратибор устроил петлю для руки…

Зачем Ратибор одел кольчугу и еще взял камень?

(5) Опускаю в воду аквариума болтик и пробку и сопровождаю опыт строками:

Если взять два разных тела,
В жидкость опустить одну,
Видно, что одно всплывает
А другое вмиг ко дну.
Жидкость та ж, сомненья нет,
Ну а в чем же здесь секрет?

Ребята, как говорят о человеке, который не умеет плавать? — “Плавает, как топор”. А какая поговорка скрыта в опыте с пробкой? “Выскочил, как пробка из воды”:

VII. Итоги урока. (2')

Ребята, когда говорят “Что ты сидишь, как на именинах?”, то имеют ввиду, что ничего не делаешь. А мы сегодня хорошо поработали и совсем не устали, а с помощью фрагментов из художественной литературы узнали много нового, поэтому вдумчивое чтение книг не только увлекательно, но и полезно! Еще раз по записям в левой части доски повторяем основные выводы.

VIII. Домашнее задание: ОС к §46-47 (по учебнику С.В. Громова)

Составить опорный сигнал по теме: выталкивающая сила и закон Архимеда, условия плавания тел.

IX. Проверка усвоения знаний (3')

Игра “Снайпер”. Выполнение — 2 мин., проверка — 1 мин. И оценки получают все.

На каждый вопрос отметь крестиком столбик с правильным ответом.

Подпиши фамилию, имя, класс.

Игра “Снайпер”

1. Учащимся перед уроком раздаю листки с отрезанным правым углом и нумерацией заданий. Отрезанный угол помогает их расположить в одном положении. Прошу перегнуть листочек по вертикали два раза, получилось 4 столбика. “Мишень” готова:

2. На экран через кодоскоп высвечиваю задания с выбором правильного ответа.

3. На каждый вопрос отметь крестиком столбик с правильным ответом.

Подпиши фамилию, имя, класс.

2 минуты на ответ 1 минута на проверку.

Листочки передают по рядам на первый стол. Ребята на первой парте складывают их быстро так, чтобы срезанный угол был вверху справа и передают учителю.Остается сверху положить листочек с правильными ответами и проколоть шилом, циркурем и т.д.; тут же объявить оценки. Если эта игра освоена и часто применяется на уроке, то способствует быстрой проверке качества усвоения знаний и результативность. По сути, это оценка учителю за урок. Если класс не подготовлен к игре, то мишени лучше подготовить учителю самому заранее.

14.02.2006

xn--i1abbnckbmcl9fb.xn--p1ai

Закон Архимеда — Википедия (с комментариями)

Материал из Википедии — свободной энциклопедии

Зако́н Архиме́да — один из главных законов гидростатики и статики газов.

Формулировка и пояснения

Закон Архимеда формулируется следующим образом[1]: на тело, погружённое в жидкость (или газ), действует выталкивающая сила, равная весу жидкости (или газа) в объёме погруженной части тела. Сила называется силой Архимеда:

<math>{F}_A = \rho {g} V,</math>

где <math>\rho</math> — плотность жидкости (газа), <math>{g}</math> — ускорение свободного падения, а <math>V</math> — объём погружённого тела (или часть объёма тела, находящаяся ниже поверхности). Если тело плавает на поверхности (равномерно движется вверх или вниз), то выталкивающая сила (называемая также архимедовой силой) равна по модулю (и противоположна по направлению) силе тяжести, действовавшей на вытесненный телом объём жидкости (газа), и приложена к центру тяжести этого объёма.

Следует заметить, что тело должно быть полностью окружено жидкостью (либо пересекаться с поверхностью жидкости). Так, например, закон Архимеда нельзя применить к кубику, который лежит на дне резервуара, герметично касаясь дна.

Что касается тела, которое находится в газе, например в воздухе, то для нахождения подъёмной силы нужно заменить плотность жидкости на плотность газа. Например, шарик с гелием летит вверх из-за того, что плотность гелия меньше, чем плотность воздуха.

Закон Архимеда можно объяснить при помощи разности гидростатических давлений на примере прямоугольного тела.

<math>P_B-P_A = \rho g h </math>
<math>F_B-F_A = \rho g h S = \rho g V, </math>

где PA, PB — давления в точках A и B, ρ — плотность жидкости, h — разница уровней между точками A и B, S — площадь горизонтального поперечного сечения тела, V — объём погружённой части тела.

В теоретической физике также применяют закон Архимеда в интегральной форме:

<math>{F}_A = \iint\limits_S{p {dS}}</math>,

где <math>S</math> — площадь поверхности, <math>p</math> — давление в произвольной точке, интегрирование производится по всей поверхности тела.

В отсутствие гравитационного поля, то есть в состоянии невесомости, закон Архимеда не работает. Космонавты с этим явлением знакомы достаточно хорошо. В частности, в невесомости отсутствует явление (естественной) конвекции, поэтому, например, воздушное охлаждение и вентиляция жилых отсеков космических аппаратов производятся принудительно, вентиляторами.

Обобщения

Некий аналог закона Архимеда справедлив также в любом поле сил, которое по-разному действуют на тело и на жидкость (газ), либо в неоднородном поле. Например, это относится к полю сил инерции (например, центробежной силы) — на этом основано центрифугирование. Пример для поля немеханической природы: диамагнетик в вакууме вытесняется из области магнитного поля большей интенсивности в область с меньшей.

Вывод закона Архимеда для тела произвольной формы

Гидростатическое давление жидкости на глубине <math>h</math> есть <math>p = \rho g h </math>. При этом считаем <math>\rho</math> жидкости и напряжённость гравитационного поля постоянными величинами, а <math>h</math> — параметром. Возьмём тело произвольной формы, имеющее ненулевой объём. Введём правую ортонормированную систему координат <math>Oxyz</math>, причём выберем направление оси z совпадающим с направлением вектора <math>\vec{g}</math>. Ноль по оси z установим на поверхности жидкости. Выделим на поверхности тела элементарную площадку <math>dS</math>. На неё будет действовать сила давления жидкости направленная внутрь тела, <math>d\vec{F}_A = -pd\vec{S}</math>. Чтобы получить силу, которая будет действовать на тело, возьмём интеграл по поверхности:

<math>\vec{F}_A=-\int\limits_S{p\,d\vec{S}}=-\int\limits_S{\rho g h \,d\vec{S}}=-\rho g\int\limits_S{h \,d\vec{S}}=^*-\rho g\int\limits_V{grad(h)\,dV}=^{**}-\rho g\int\limits_V{\vec{e}_zdV}=-\rho g \vec{e}_z \int\limits_V{dV} = (\rho g V) (-\vec{e}_{z})</math>

При переходе от интеграла по поверхности к интегралу по объёму пользуемся обобщённой теоремой Остроградского-Гаусса.

<math>{}^* h(x,y,z) = z; \quad

^{**} grad(h)=\nabla h=\vec{e}_{z}</math>

Получаем, что модуль силы Архимеда равен <math>\rho g V</math>, а направлена она в сторону, противоположную направлению вектора напряжённости гравитационного поля.

Условие плавания тел

Поведение тела, находящегося в жидкости или газе, зависит от соотношения между модулями силы тяжести <math>{F_T}</math> и силы Архимеда <math>{F_A}</math>, которые действуют на это тело. Возможны следующие три случая:

  • <math>{F_T} > {F_A}</math> — тело тонет;
  • <math>{F_T} = {F_A}</math> — тело плавает в жидкости или газе;
  • <math>{F_T} < {F_A}</math> — тело всплывает до тех пор, пока не начнёт плавать.

Другая формулировка (где <math>\rho_{t}</math> — плотность тела, <math>\rho_{s}</math> — плотность среды, в которую оно погружено):

  • <math>\rho_{t} > \rho_{s}</math> — тело тонет;
  • <math>\rho_{t} = \rho_{s}</math> — тело плавает в жидкости или газе;
  • <math>\rho_{t} < \rho_{s}</math> — тело всплывает до тех пор, пока не начнёт плавать.

См. также

Напишите отзыв о статье "Закон Архимеда"

Примечания

  1. Всё написанное ниже, если не оговорено иное, относится к однородному полю силы тяжести (например, вблизи поверхности планеты).

Ссылки

Отрывок, характеризующий Закон Архимеда

Уже поздно ночью они вместе вышли на улицу. Ночь была теплая и светлая. Налево от дома светлело зарево первого начавшегося в Москве, на Петровке, пожара. Направо стоял высоко молодой серп месяца, и в противоположной от месяца стороне висела та светлая комета, которая связывалась в душе Пьера с его любовью. У ворот стояли Герасим, кухарка и два француза. Слышны были их смех и разговор на непонятном друг для друга языке. Они смотрели на зарево, видневшееся в городе.
Ничего страшного не было в небольшом отдаленном пожаре в огромном городе.
Глядя на высокое звездное небо, на месяц, на комету и на зарево, Пьер испытывал радостное умиление. «Ну, вот как хорошо. Ну, чего еще надо?!» – подумал он. И вдруг, когда он вспомнил свое намерение, голова его закружилась, с ним сделалось дурно, так что он прислонился к забору, чтобы не упасть.
Не простившись с своим новым другом, Пьер нетвердыми шагами отошел от ворот и, вернувшись в свою комнату, лег на диван и тотчас же заснул.

На зарево первого занявшегося 2 го сентября пожара с разных дорог с разными чувствами смотрели убегавшие и уезжавшие жители и отступавшие войска.
Поезд Ростовых в эту ночь стоял в Мытищах, в двадцати верстах от Москвы. 1 го сентября они выехали так поздно, дорога так была загромождена повозками и войсками, столько вещей было забыто, за которыми были посылаемы люди, что в эту ночь было решено ночевать в пяти верстах за Москвою. На другое утро тронулись поздно, и опять было столько остановок, что доехали только до Больших Мытищ. В десять часов господа Ростовы и раненые, ехавшие с ними, все разместились по дворам и избам большого села. Люди, кучера Ростовых и денщики раненых, убрав господ, поужинали, задали корму лошадям и вышли на крыльцо.
В соседней избе лежал раненый адъютант Раевского, с разбитой кистью руки, и страшная боль, которую он чувствовал, заставляла его жалобно, не переставая, стонать, и стоны эти страшно звучали в осенней темноте ночи. В первую ночь адъютант этот ночевал на том же дворе, на котором стояли Ростовы. Графиня говорила, что она не могла сомкнуть глаз от этого стона, и в Мытищах перешла в худшую избу только для того, чтобы быть подальше от этого раненого.
Один из людей в темноте ночи, из за высокого кузова стоявшей у подъезда кареты, заметил другое небольшое зарево пожара. Одно зарево давно уже видно было, и все знали, что это горели Малые Мытищи, зажженные мамоновскими казаками.
– А ведь это, братцы, другой пожар, – сказал денщик.
Все обратили внимание на зарево.
– Да ведь, сказывали, Малые Мытищи мамоновские казаки зажгли.
– Они! Нет, это не Мытищи, это дале.
– Глянь ка, точно в Москве.
Двое из людей сошли с крыльца, зашли за карету и присели на подножку.
– Это левей! Как же, Мытищи вон где, а это вовсе в другой стороне.
Несколько людей присоединились к первым.
– Вишь, полыхает, – сказал один, – это, господа, в Москве пожар: либо в Сущевской, либо в Рогожской.
Никто не ответил на это замечание. И довольно долго все эти люди молча смотрели на далекое разгоравшееся пламя нового пожара.
Старик, графский камердинер (как его называли), Данило Терентьич подошел к толпе и крикнул Мишку.
– Ты чего не видал, шалава… Граф спросит, а никого нет; иди платье собери.
– Да я только за водой бежал, – сказал Мишка.
– А вы как думаете, Данило Терентьич, ведь это будто в Москве зарево? – сказал один из лакеев.
Данило Терентьич ничего не отвечал, и долго опять все молчали. Зарево расходилось и колыхалось дальше и дальше.
– Помилуй бог!.. ветер да сушь… – опять сказал голос.
– Глянь ко, как пошло. О господи! аж галки видно. Господи, помилуй нас грешных!
– Потушат небось.
– Кому тушить то? – послышался голос Данилы Терентьича, молчавшего до сих пор. Голос его был спокоен и медлителен. – Москва и есть, братцы, – сказал он, – она матушка белока… – Голос его оборвался, и он вдруг старчески всхлипнул. И как будто только этого ждали все, чтобы понять то значение, которое имело для них это видневшееся зарево. Послышались вздохи, слова молитвы и всхлипывание старого графского камердинера.

Камердинер, вернувшись, доложил графу, что горит Москва. Граф надел халат и вышел посмотреть. С ним вместе вышла и не раздевавшаяся еще Соня, и madame Schoss. Наташа и графиня одни оставались в комнате. (Пети не было больше с семейством; он пошел вперед с своим полком, шедшим к Троице.)
Графиня заплакала, услыхавши весть о пожаре Москвы. Наташа, бледная, с остановившимися глазами, сидевшая под образами на лавке (на том самом месте, на которое она села приехавши), не обратила никакого внимания на слова отца. Она прислушивалась к неумолкаемому стону адъютанта, слышному через три дома.
– Ах, какой ужас! – сказала, со двора возвративись, иззябшая и испуганная Соня. – Я думаю, вся Москва сгорит, ужасное зарево! Наташа, посмотри теперь, отсюда из окошка видно, – сказала она сестре, видимо, желая чем нибудь развлечь ее. Но Наташа посмотрела на нее, как бы не понимая того, что у ней спрашивали, и опять уставилась глазами в угол печи. Наташа находилась в этом состоянии столбняка с нынешнего утра, с того самого времени, как Соня, к удивлению и досаде графини, непонятно для чего, нашла нужным объявить Наташе о ране князя Андрея и о его присутствии с ними в поезде. Графиня рассердилась на Соню, как она редко сердилась. Соня плакала и просила прощенья и теперь, как бы стараясь загладить свою вину, не переставая ухаживала за сестрой.
– Посмотри, Наташа, как ужасно горит, – сказала Соня.
– Что горит? – спросила Наташа. – Ах, да, Москва.
И как бы для того, чтобы не обидеть Сони отказом и отделаться от нее, она подвинула голову к окну, поглядела так, что, очевидно, не могла ничего видеть, и опять села в свое прежнее положение.

wiki-org.ru

Особенности изучения темы "Закон Архимеда" в малокомплектных школах

ГЛАВА 1. Закон Архимеда

Проделаем опыты. К коромыслу весов подвесим два одинаковых шара. Их вес одинаков, поэтому коромысло находится в равновесии (рис. «а»). Подставим под правый шар пустой стакан. От этого вес шаров не изменится, поэтому равновесие сохранится (рис. «б»).

Заполним стакан углекислым газом, плотность которого больше плотности воздуха (рис. «в»). Равновесие нарушится, показывая, что вес правого шара стал меньше. Это произошло потому, что на шар в углекислом газе действует большая архимедова сила, чем в воздухе.

Второй опыт. Подвесим к динамометру большую картофелину. Вы видите, что её вес равен 3,5 Н. Погрузим картофелину в воду. Мы обнаружим, что её вес уменьшился и стал равен 0,5 Н.

Вычислим изменение веса картофеля:

DW = 3,5  0,5  = 3 

Почему же вес картофеля уменьшился именно на 3 Н? Очевидно потому, что в воде на картофель подействовала выталкивающая сила такой же величины. Другими словами, сила Архимеда равна изменению веса тела:

Эта формула выражает способ измерения архимедовой силы: нужно дважды измерить вес тела и вычислить его изменение. Полученное значение равно силе Архимеда.

Для вывода следующей формулы проделаем опыт с прибором «ведерко Архимеда». Основные его части следующие: пружина со стрелкой 1, ведерко 2, тело 3, отливной сосуд 4, стаканчик 5.

Сначала пружину, ведерко и тело подвешивают к штативу (рис. «а») и отмечают положение стрелки жёлтой меткой. Затем тело помещают в отливной сосуд. По мере погружения тело вытесняет некоторый объем воды , который сливается в стаканчик (рис. «б»). Вес тела становится меньше, поэтому пружина сжимается, и стрелка поднимается выше жёлтой метки.

Перельём воду, вытесненную телом, из стаканчика в ведерко (рис. «в»). Самое удивительное в том, что когда вода будет перелита (рис «г»), стрелка не просто опустится вниз, а укажет точно на жёлтую метку! Значит, вес влитой в ведерко воды уравновесил архимедову силу .

В виде формулы этот вывод запишется так:

Обобщая результаты опыта, получим закон Архимеда : выталкивающая сила, действующая на тело в жидкости (или газе), равна весу жидкости (газа), взятой в объеме этого тела и направлена противоположно вектору его веса.

Вычисление силы Архимеда

В предыдущем параграфе мы назвали две формулы, при помощи которых силу Архимеда можно измерить. Теперь выведем формулу, при помощи которой силу Архимеда можно вычислить.

Закон Архимеда выражается формулой (см. §3-е):

F арх = W ж

Примем, что вес вытесненной жидкости равен действующей на неё силе тяжести:

W ж = F тяж = m жg

Масса вытесненной жидкости может быть найдена по формуле для расчета плотности:

r = m/V Þ m = rV

Подставляя формулы друг в друга, получим равенство:

F  = W = F  = m g = rV g

Выпишем начало и конец этого равенства:

F  = r gV

Вспомним, что закон Архимеда справедлив для жидкостей и газов. Поэтому вместо обозначения r » более правильно использовать обозначение r/ ». Также заметим, что объем жидкости, вытесненной телом, в точности равен объему погруженной части тела: V = V  . С учетом этих уточнений получим:

вывели частный случай закона Архимеда – формулу, выражающую способ вычисления силы Архимеда. Вы спросите: почему же эта формула – «частный случай», то есть менее общая?

Поясним примером. Вообразим, что мы проводим опыты в космическом корабле. Согласно формуле F  = W , архимедова сила равна нулю (так как вес жидкости равен нулю), согласно же формуле F арх = rж/г gV пчт архимедова сила нулю не равна, так как ни одна из величин (r, g , V ) в невесомости в ноль не обращается. Перейдя от воображаемых опытов к настоящим, мы убедимся, что справедлива именно общая формула. F  = F 

Или, подробнее:

r gV  = m g

Разделим левую и правую части равенства на коэффициент «g »:

r V  = m

Вспомнив, что m = rV , получим равенство:

r V  = r V

Преобразуем это равенство в пропорцию:

В левой части пропорции стоит дробь, показывающая долю, которую составляет объем погруженной части тела от объема всего тела. Поэтому всю дробь называют погруженной долей тела:

Используя эту формулу, предскажем, чему должна быть равна погруженная доля бревна при его плавании в воде:

ПДТ (полена) » 500 кг/м3 : 1000 кг/м3 = 0,5

Число 0,5 означает, что плавающее в воде бревно погружено наполовину. Так предсказывает теория, и это совпадает с практикой. Итак, обе формулы в рамках являются менее общими, чем исходная, то есть имеют более узкие границы применимости . Почему же так произошло? Причина – применение нами формулы W = Fтяж . Вспомним, что она не верна, если тело и его опора движутся непрямолинейно (см. § 3-г). Космический корабль именно так и движется – по круговой орбите вокруг Земли.

ГЛАВА 2. МЕТОДИЧЕСКИЕ РАЗРАБОТКИ ПО ТЕМЕ: «Давление твердых тел, жидкостей и газов. Сила Архимеда»

Форма урока выбрана не случайно. По мнению С.А.Шмакова, ведущего исследователя игр, “Игра - одно из интереснейших явлений культуры. Игра, как тень, родилась вместе с ребенком, стала его спутником, верным другом. Она заслуживает большого человеческого уважения, гораздо большего, чем воздают ей люди сегодня, за те колоссальные воспитательные резервы, за огромные педагогические возможности, в ней заложенные”. [1]

Во время игры раскрываются скрытые способности ребенка: кто-то, оказывается, хорошо рисует и может подготовить плакаты и рисунки для проведения конкурса, кто-то пишет стихи, а кто-то будет страстным болельщиком. Я не первый год провожу этот урок. Из года в год вносятся изменения, меняется урок, меняются дети, но постоянно то, что после проведения его долго остается состояние праздника, блеск в глазах детей.

Ход урока.

Звучит музыкальная заставка:

“Мы начинаем КВН. Для чего? Для чего? Чтоб не осталось в стороне Никого, никого…”

Учитель:

Мы начинаем наш необычный урок. Он, действительно, никого не оставит в стороне.

Учитель представляет членов жюри (это свободные от уроков учителя), команды и их капитанов. Состязание состоит из 6 конкурсов: [2]

1. Конкурс “Приветствие”. Это визитная карточка команды – максимальная оценка 3 балла.

2. Конкурс “Разминка” – 5 баллов.

3. Конкурс “Путешествие” – 5 баллов.

4. Конкурс болельщиков. 3 балла.

5. Конкурс “Эрудитов” - 7 баллов.

6. Конкурс капитанов. – 5 баллов.

После жеребьевки команды по очереди представляют свое “Приветствие” , в котором они обосновывают свое название и говорят свой девиз.

Команда “Мушкетеров” объясняет свое название тем, что они “как мушкетеры” очень смелые, находчивые. Они могут найти выход из любой ситуации и, потому, их девиз: “Вперед! Только вперед, к победе!”.

Вторая команда объясняет свое название тем, что они очень веселые, остроумные. Им это очень помогает в учебе и поможет в игре. Их девиз: “Дайте нам точку опоры, и мы победим!”, а также поют свою песенку:

Дорогого Архимеда не забудем никогда. Свойства жидкости и газа Будем помнить мы всегда. Будем в ванне мы купаться, Слово “Эврика!” кричать, Если опыт нам удастся, Можем Землю мы сдвигать.

После каждого конкурса жюри объявляет результат.

Следующий конкурс “Разминка”.

Команды подготовили по 5 вопросов, которые поочередно задают друг другу.[3,4] На обсуждение вопроса дается по 20 секунд.

Вопросы:

1. В два одинаковых сосуда налили одинаковые объемы воды и керосина. В каком сосуде давление на дно будет больше? (В сосуде с водой, так как плотность воды больше).

2. Зачем у лопаты верхний край, на который наступают, изгибают, а лезвие лопаты заостряют?

3. (В первом случае – чтобы уменьшить давление на стопу, во втором – чтобы увеличить давление на землю).

4. Какой ученый первый указал на существование атмосферного давления? (Отто фон Герике)

5. Кто первый придумал воздушный шар, и кто первый совершил кратковременный полет?

6. (Братья Монгольфье. Путешественники – овца, петух, утка).

7. Почему водным животным не нужен прочный скелет? (Средняя плотность живых организмов населяющих водную среду мало отличается от плотности воды, поэтому их вес почти полностью уравновешивается Архимедовой силой).

mirznanii.com