Закон тесла электромагнитной индукции – Законы электромагнитной индукции Фарадея • Джеймс Трефил, энциклопедия «Двести законов мироздания»

О Николе Тесле: Трансформатор Теслы, опыты Теслы

Тесла – это единица измерения электромагнитной индукции, названная так по фамилии известного физика-практика Никола Тесла. Этот учёный прославился своим участием в «войне тока», исследованиями в сфере электричества и электромагнитной индукции. Именно благодаря ему сейчас в бытовых целях используется именно переменный ток от крупных производящих предприятий.

Тесла во время эксперимента

Кроме того Никола Тесла известен созданием трансформатора своего имени, знаменитого тем, что обладает довольно интересными визуальными и физическими характеристиками.

Тайна Николя Тесла

Ранние годы Никола Теслы не предвещали ничего странного: учился, получил аттестат зрелости, после чего закончил Грацкий технический университет. Все изменилось в 1880 году. После смерти отца Никола пришлось переехать в Прагу, где он устроился работать инженером в одну из государственных компаний, занимающихся телефонным сообщением. В 1882 году у молодого Никола появляется теория о вращающемся магнитном поле.

Что достаточно интересно, одновременно законы электромагнитной индукции и вращающего поля заинтересовали и другого физика – итальянца  Г. Феррариса. Они практически одновременно приступают к работе над электродвигателем, использующим энергию этого поля. В 1882 году Тесла увольняется из телефонной компании и переходит работать в компанию Эдисона, и с 1883 года Никола работает в Страсбурге, занимаясь асинхронным двигателем в свободное от основных задач время. В 1883 году двигатель был окончен, а его работа была продемонстрирована учёному совету.

По окончанию работ над вокзалом в Страсбурге Тесла возвращается в Париж, но так как руководство компании не выплатило ему причитающейся премии за проведённые работы, он увольняется и перебирается на постоянное место жительства в США. Существует ряд версий, что молодому учёному было предложено перебираться в Российскую империю, что, однако, представляется довольно спорным вопросом истории. В Российской Империи на тот момент не было достаточно развитых производств, где бы пригодился опыт молодого инженера-электрика.

Летом 1884 года по прибытию в Нью-Йорк Тесла вновь устраивается на работу в компании, принадлежащей Томасу Эдисону. Но уже в 1885 году между Эдисоном и молодым инженером Теслой возникает конфликт на почве спора, в результате которого Никола увольняется из компании. Нужно отметить, что в очередной раз причиной ссоры послужили финансовые средства, которые были обещаны Эдисоном за работу по усовершенствованию двигателей постоянного тока, но эти деньги так и не были выплачены. Речь шла о довольно значительной сумме в 50 тыс. долларов США.

После увольнения Тесла открыл свою компанию, в ходе развития которой он снова перешёл дорогу Томасу Эдисону, который был сторонником развития электросетей постоянного тока, в то время как Тесла предугадал выгоды переменного. В ходе конкурентной борьбы между этими направлениями началась так называемая «война токов», закончившаяся только в 2007 году.

Тем не менее, компания Тесла динамично развивалась, а сам учёный выдвигал все новые теории и предъявлял на суд учёного сообщества новые устройства и изобретения. Так, в 1917 году Теслой было предложено первое в мире устройство радиолокации для обнаружения подводных лодок. Но основной темой исследования Никола по-прежнему был закон электромагнитной индукции.

Один из резонансных трансформаторов Тесла

8 января 1943 года Никола Тесла умер в гостинице «Нью-Йоркер». С этим закончилась и эпоха его изобретений. В 20-ом веке вряд ли найдётся равный ему по живости ума и видению мира физик. Именем Теслы не названы законы физики, так как исследуемая им теория электромагнитного резонанса была открыта ещё до него. Тесла больше известен как физик-практик, созидатель, изобретавший новые устройства и пробивавший их использование.

Деятельность Н. Теслы до сих пор окружена загадками и тайнами, среди всего прочего ему приписывают взрыв на реке Тунгуска, известный как Тунгусский метеорит, не оставивший после себя никаких следов. Тайна Николы Теслы – это и землетрясение в Нью-Йорке, и мифические «Лучи смерти», и, конечно, Филадельфийский эксперимент и исчезновение эсминца «Элдридж».

Легенды о тайне Теслы будоражат воображения, хотя зачастую от них остались только слухи и байки очевидцев.

Это интересно. Легенды об Никола Тесле подогревает и неизвестность того, что случилось с башней Ворденклиф: почему крупнейшие банкиры США вдруг отказались спонсировать столь перспективный проект передачи энергии на расстояние.

Свечение

Трансформатор Теслы

Никола Тесла известен своими исследованиями в сфере высокочастотных резонансных трансформаторов, классическим образцом которых является трансформатор Теслы.

Патент на него был получен Никола в 1896 году, в нем трансформатор описывался как устройство для производства высокочастотных и высокопотенциальных токов. В этом аппарате использовались резонансные стоячие электромагнитные волны в двух катушках.

Первичная – включает в себя небольшое количество витков и служит рабочим элементом искрового контура, в котором также находится конденсатор. Вторичной обмоткой является прямая катушка, состоящая из большого количества витков обмотки. Если частота колебаний обоих контуров совпадает, то между концами катушки образуется высокое переменное напряжение. Этот эффект до настоящего времени используется в антеннах и усилителях.

При работе катушки возникают достаточно интересные вторичные эффекты, в том числе визуально различимые разряды четырёх типов:

  1. Стримеры, похожие на молнии, – разряды, состоящие из ионизированных частиц газа, стекающих на землю, но не уходящих в неё;
  2. Спарки – искровые разряды в виде молний, уходящих в землю, пучки ярких быстро меняющих цвет и направление искровых каналов;
  3. Дуговые разряды – возникает при высокой мощности трансформатора между ним и заземлённым предметом, который находится в непосредственной близости от устройства;
  4. Коронные – разряды в виде свечения ионизированного воздуха вокруг работающего трансформатора.

Нужно отметить, что большая часть световых эффектов возникает только при большой мощности работающего устройства. Обычным спутником высокочастотного трансформатора Теслы служат стримеры.

Трансформатор Тесла

Мини-катушка Теслы своими руками

Энтузиасты собирают такие катушки из-за интересных оптических и физических характеристик этого устройства. Так, при работе трансформатора возникает свечение стримеров, кроме того ощутимое магнитное поле вокруг устройства.

Для того чтобы собрать трансформатор малой мощности самостоятельно, понадобятся навыки работы с паяльником, инструментом и некоторые материалы:

  • резистор, 22 кОм;
  • транзистор типа 2N2222A или его аналог;
  • батарея типа «Крона»;
  • медный эмаль-провод сечением 0,5м², около 200 см;
  • медный эмаль-провод сечением 0,5 мм, длиной около 15 см;
  • ПВХ или другая трубка из непроводящего материала для намотки.

На трубку ПВХ нужно ровно, без перехлестов, намотать 800-1000 витков проволоки, это будет вторичный контур трансформатора. Для удобства намотки конец провода лучше зафиксировать липкой лентой. Сама катушка в вертикальном положении фиксируется на основании из текстолита или ламината.

На это же основание устанавливается коннектор от батареи типа «Крона» и выключатель. К среднему контакту транзистора, также зафиксированному на основании, припаивается нижний провод от вторичной обмотки катушки, туда же припаивается резистор. Первичная катушка наматывается из десятка витков второго провода, поверх вторичной.

Верхний провод первичной обмотки припаивается к свободному контакту резистора, нижний конец провода ² к правому контакту транзистора. После чего концы проводов соединяются с выключателем и элементом питания.

Самодельный трансформатор Тесла

Эта мини-катушка Тесла крайне маломощна – её поля хватит только на то, чтобы зажечь близко поднесённую лампу. Но в тоже время нужно отметить, что высокочастотные резонансные трансформаторы, особенно высокой мощности, являются достаточно опасными устройствами. Их работа может влиять как на незащищённые электроприборы, так и на состояние человека.

Законы электромагнитной индукции, исследованные Фарадеем и развитые Никола Теслой, по-прежнему нерушимы. Несмотря на флёр таинственности и загадочности, окружавший всю сознательную жизнь этого учёного, его опыты в большей степени привели к развитию физики и эволюции электросистем переменного тока.

Нужно отметить, что не будь Тесла столь настойчивым или уступи он Эдисону, сейчас на просторах мира работали бы не АЭС и ГЭС, а мини-электростанции, питавшие небольшие районы. Не нужно думаю напоминать, что дальняя передача постоянного тока крайне затруднена и требует большого сечения проводов.

Известен Тесла и участием в полумифическом Филадельфийском эксперименте, именно с его именем и исследованиями связывают исчезновение эсминца «Элдридж».

«Война токов», начатая в начале XX века между Эдисоном и Теслой, шла и после их смерти. Так, в некоторых европейских странах до 60-х годов использовался постоянный ток во внутренних сетях. Последний пользователь постоянного тока в США был отключён только в 2007 году. Нужно отметить, что именно благодаря этой борьбе появились поезда Вестингауза и казнь на электрическом стуле. Её пролоббировал Эдисон, чтобы показать опасность переменного электрического тока. Но, несмотря на опасность для человека, законы физики не обмануть, именно переменный ток обладает рядом преимуществ при передаче его на большие расстояния.

Что такое тесла? Это единица измерения электромагнитной индукции, получившее своё название в честь величайшего учёного-физика ХХ-века, посвятившего свою жизнь изучению явлений магнетизма.

Видео

Оцените статью:

elquanta.ru

Электромагнитная индукция ч.3. Н. Тесла и его загадки

Один из ранних патентов Николы Тесла описывает новый способ намотки катушек. Этот способ он назвал бифилярной намоткой, т.к. катушка мотается сразу двумя параллельными проводами и считал эту намотку очень важным изобретением:


«Бифилярная катушка — электромагнитная катушка, которая содержит две близко расположенных, параллельных обмотки.
Есть четыре типа бифилярно намотанных катушек:
1. параллельная намотка, последовательное соединение;
2. параллельная намотка, параллельное соединение;
3. встречно намотанная катушка, последовательное соединение;
4. встречно намотанная катушка, параллельное соединение.
Некоторые бифилярные катушки намотаны так, что ток в обеих обмотках течёт в одном и том же направлении. Магнитное поле, созданное одной обмоткой складывается с созданным другой, приводя к большему общему магнитному полю. В других — витки расположены так, чтобы ток протекал в противоположных направлениях. Поэтому магнитное поле, созданное одной обмоткой равно и направлено противоположно созданному другой, приводя к общему магнитному полю равному нулю. Это означает, что коэффициент самоиндукции катушки — ноль
».

На рисунке выше изображена катушка первого вида и в ней магнитные поля обмоток складываются. Тесла указывал на то, что магнитное поле такой катушки намного больше, чем у обычной.
Вот так выглядит катушка с нулевой самоиндукцией (второй вид):

Любому специалисту по одному её виду становится сразу понятно, что в такой катушке не может появиться индукционный ток, т.к. он будет направлен в обоих проводах в одну сторону и на концах проводов никакой разности потенциалов не будет. Такая катушка будет только греться, но никакой энергии не выдаст. Два оставшихся вида намотки – это частные случаи двух первых и особого интереса не представляют.

Т.к. безындукционная намотка слишком наглядна, то все известные мне изобретатели вечных двигателей сконцентрировались на первом виде намотки, дающем большое магнитное поле. Однако мне долго не давало покоя совершенно не понятное описание катушки в патенте. Вот этот текст:

«Я выяснил, что в каждой катушке существуют определённые взаимоотношения между её самоиндукцией и ёмкостью, что позволяет току данной частоты и потенциала проходить через неё с омическим сопротивлением (DL : здесь Тесла имеет в виду исчезновение реактивного сопротивления) или, другими словами, как если она работает без самоиндукции. Это происходит в результате взаимоотношений между характером тока и самоиндукцией и ёмкостью катушки, т.е. количество последнего достаточно для нейтрализации самоиндукции для данной частоты. Известно, что чем выше частота или разность потенциалов тока, тем меньше ёмкость требуется для нейтрализации самоиндукции, поэтому в любой катушке, особенно небольшой ёмкости, можно достичь поставленных целей, если добиться нужных условий

».

И в конце что-то вроде предупреждения:

«Применяя моё изобретение, специалисты в этой области должны хорошо понимать зависимость между понятиями ёмкость, самоиндукция, частота и разность потенциалов тока. Также как и понимать какая ёмкость достигается и какая намотка должна иметь место для каждого конкретного случая».

Действительно, у каждой катушки есть ещё и своя небольшая ёмкость, которая скорее создаёт дополнительные проблемы, чем помогает их решить. К тому же, никто не делает конденсаторы из провода. В общем, стало понятно только то, что патент серьёзно правили и не оставили в нём самой главной информации, до которой, без глубокого понимания процесса, дойти невозможно.

Возможно, что на этом всё и закончилось бы, но мне взбрело в голову намотать катушку первого вида, чтобы проверить, на сколько сильнее магнитное поле она создаст, по сравнению с обычным электромагнитом.

Я нашёл катушку от старого реле длиной 5 см и с сопротивлением обмотки 300 Ом. При подаче на неё постоянного напряжения в 12 В контакты немного искрили и к сердечнику притягивалась железная шайба. Не очень сильно, но наглядно. Ток в цепи был около 40 мА, что соответствует закону Ома.

Т.к. катушка Тесла рассчитана на переменный ток, не подразумевает размещение нескольких дисков из обмоток рядом, а намотка проводом имела бы очень низкое сопротивление и просто сгорела бы от постоянного напряжения, я решил увеличить площадь сечения провода и намотал около 40-50 витков фольгой из старого электролитического конденсатора (очень сложно было ровно мотать сразу два слоя фольги с бумажными изоляторами, поэтому витки не считал). Соединил я обмотки по первому виду. Получилась катушка такой же длины, в два раза толще и с суммарным сопротивлением 7 Ом. По закону Ома ток в такой катушке должен был быть чуть меньше 2 А и фольга при подключении если и не сгорит сразу, то может сильно нагреться.

Однако, меня ждал сюрприз. При подключении питания была чуть заметная искра, а железная шайба даже не шелохнулась. Я сначала решил, что сработала защита от короткого замыкания, но оказалось, что нет. Тогда я померял сопротивление катушки и просто не поверил прибору: оно постоянно менялось от 1-2 Ом до 700 Ом и полного разрыва цепи. Пришлось вскрывать изоляцию катушки и мерять сопротивление каждой обмотки отдельно. Тут всё было в полном порядке: 3 и 4 Ома. Однако сопротивление всей цепи так и прыгало дальше. Вот тут-то я и вспомнил про текст из патента и какие-то упоминания про увеличенную ёмкость такого вида катушек. Я померял ёмкость своей катушки и прибор показал ровно 30 мкФ! Это при том, что обе обмотки соединены вместе!

Тогда я подключил питание, что бы померять ток и оказалось, что ток через неё практически не проходит (нужно будет проситься к товарищу с осциллографом и более точными приборами). Железная шайба не притягивалась вообще и магнитного поля я не обнаружил. Это было странно хотя бы потому, что все пишут про значительное увеличение магнитного поля.

После этого, раз это наполовину конденсатор, я стал мерять напряжение на отключенной катушке. Тут возникла ещё одна загадка: я ожидал, что напряжение будет порядка нескольких вольт и постепенно падать, как на обычном конденсаторе, а оказалось, что оно тоже постоянно колеблется, причём в бОльшую сторону. Сразу после отключения питания я увидел на контактах 0.5 В и оно начало расти до 0.8 В. Когда катушка пролежала сутки на контактах всё равно было остаточное напряжение в 0.2 В, которое в ходе измерения достаточно быстро опять доросло до 0.8 В. Это не так много, но тут дело в том, что катушка никак не хочет разряжаться. Даже после короткого замыкания она довольно быстро набирает свои 0.8 В. Возможно, это наводка от радиоволн, но на обычной катушке от реле, у которой витков раз в 30 больше ничего такого не наблюдается. Буду разбираться. Зато про намотку бифилярной катушки лентой и её свойствах я нигде упоминаний не нашёл, так что возможно буду первооткрывателем 🙂

С другой стороны, это ведь элементарно! Если Тесла хотел создать катушку с большой ёмкостью, то он просто обязан был делать её из ленты, как и конденсаторы, а не из провода. К тому же, он постоянно писал, что его катушка позволяет накапливать в себе намного больше энергии. Именно накапливать. Почему об этом не сохранилось никакой информации? Получается, что он создал LC колебательный контур без отдельных конденсаторов. Всё в одном устройстве!

Теперь становится немного понятнее, каким образом эта энергия накапливалась в катушке: ток индукции был в магнитном поле, а ток самоиндукции накапливался в ёмкости между витками. Получается, что Тесла придумал, как зарядить конденсатор сразу от магнитного поля без преобразователей и потерь! На резонансной частоте реактивное сопротивление этой катушки должно падать до нуля, токи складываться, а не мешать друг другу и резко увеличиваться. А т.к. на этой частоте она не будет создавать помех другим катушкам индуктивности, то сможет служить источником энергии и трансформатор опять превратится в генератор.

Всё это буду проверять уже после отпуска, а в следующем посте расскажу про загадки генератора Фарадея.

xteoretegx.livejournal.com

Законы электромагнитной индукции Фарадея • Джеймс Трефил, энциклопедия «Двести законов мироздания»

После того как в начале XIX века было установлено, что электрические токи порождают магнитные поля (см. Открытие Эрстеда, Закон Био—Савара), ученые заподозрили, что должна наблюдаться и обратная закономерность: магнитные поля должны каким-то образом производить электрические эффекты. В 1822 году в своей записной книжке Майкл Фарадей записал, что должен найти способ «превратить магнетизм в электричество». На решение этой задачи у него ушло почти десять лет.

Не раз за эти годы он возвращался к этой проблеме, пока не придумал серию экспериментов, кажущихся крайне незамысловатым по современным меркам. На железную катушку в форме бублика, например, он с одной стороны намотал плотные витки длинного, заизолированного от железного сердечника проводника, подключаемые к сильной электрической батарее, а с другой — плотные витки электрического проводника, подключенного к гальванометру — прибору для обнаружения электрического тока. Железный сердечник был нужен для «поимки» силовых линий образующегося магнитного поля и передачи их внутрь контура второй обмотки.

Первые результаты пришли не сразу. Сначала, сколько Фарадей ни наблюдал за своей установкой, при протекании электрического тока по первичной обмотке тока во вторичной обмотке не возбуждалось. Могло показаться, что предположения Фарадея относительно «преобразования» электричества в магнетизм и обратно ошибочны. И тут на помощь пришел случай: обнаружилось, к полному удивлению Фарадея, что стрелка гальванометра в цепи вторичной обмотки скачкообразно отклоняется от нулевого положения лишь при подключении или отключении батареи. И тогда Фарадея посетило великое прозрение: электрическое поле возбуждается лишь при изменении магнитного поля. Самого по себе присутствия магнитного поля недостаточно. Сегодня эффект возникновения электрического поля при изменении магнитного физики называют электромагнитной индукцией.

Повторяя свои опыты и анализируя результаты, Фарадей вскоре пришел к выводу, что протекающий по контуру электрический заряд пропорционален изменению т. н. магнитного потока, проходящего через него. Представьте себе, что замкнутый электропроводящий контур положен на лист бумаги, через который проходят силовые линии магнитного поля. Магнитным потоком называется произведение площади контура на напряженность (условно говоря, число силовых линий) магнитного поля, проходящего через эту площадь перпендикулярно ей. В первоначальной формулировке закон электромагнитной индукции Фарадея гласил, что при изменении магнитного потока, проходящего через контур, по проводящему контуру протекает электрический заряд, пропорциональный изменению магнитного потока, который возбуждается без всякого внешнего источника питания типа электрической батареи. Не будучи до конца удовлетворенным формулировкой, в которой фигурировала столь трудноизмеримая величина, как электрический заряд, Фарадей вскоре объединил свой закон с законом Ома и получил формулу (иногда ее принято называть вторым законом электромагнитной индукции Фарадея) для определения электродвижущей силы, возникающей в результате изменения магнитного потока через контур.

Изменить магнитный поток через контур можно тремя способами:

  • изменить площадь контура;
  • изменить интенсивность магнитного поля;
  • изменить взаимную ориентацию магнитного поля и плоскости, в которой лежит контур.

Последний метод работает, поскольку при таком движении изменяется проекция магнитного поля на перпендикуляр к площади контура, хотя ни напряженность магнитного поля, ни площадь контура не меняются. Это очень важно с практической точки зрения, поскольку именно это явление лежит в основе действия любого электрогенератора. В самом простом варианте генератора проволочный контур вращается между полюсами сильного магнита. Поскольку в процессе вращения магнитный поток, проходящий через контур, постоянно меняется, по нему всё время протекает электрический ток. Согласно правилу Ленца, на протяжении одного полуоборота контура ток будет течь в одну сторону, а на протяжении следующего полуоборота — в другую. Собственно, по этому принципу и вырабатывается так хорошо нам знакомый переменный ток, который поступает в дома жителей всего мира по сетям энергоснабжения. И не важно, что частота его в Америке равна 60 герц, а в Европе — 50 герц; важен сам принцип его получения. А тот факт, что американские генераторы совершают 60 оборотов в секунду, а европейские — 50 оборотов в секунду, — это уже дань исторической традиции.

Электрогенераторы играли, играют и будут играть важнейшую роль в развитии нашей технологической цивилизации, поскольку позволяют получать энергию в одном месте, а использовать ее в другом. Паровая машина, например, может преобразовывать энергию сгорания угля в полезную работу, но использовать эту энергию можно только там, где установлены угольная топка и паровой котел. Электростанция же может размещаться весьма далеко от потребителей электроэнергии — и, тем не менее, снабжать ею заводы, дома и т. п.

Рассказывают (скорее всего, это всего лишь красивая сказка), будто Фарадей, демонстрировал прототип электрогенератора Джону Пилу (John Peel), Канцлеру казначейства Великобритании, и тот спросил ученого: «Хорошо, мистер Фарадей, всё это очень интересно, а какой от всего этого толк?»

«Какой толк? — якобы удивился Фарадей. — Да вы знаете, сэр, сколько налогов в казну эта штука со временем будет приносить?!»

См. также:

elementy.ru

Закон электромагнитной индукции: научный путь и исследования

Закон электромагнитной индукции – это формула, поясняющая образование ЭДС в замкнутом контуре проводника при изменениях напряжённости магнитного поля. Постулат объясняет работу трансформаторов, дросселей и прочих изделий, обеспечивающих сегодня развитие техники.

Формула образования ЭДС

История Майкла Фарадея

Майкла Фарадея забрали из школы вместе со старшим братом, послужил поводом – дефект речи. Первооткрыватель электромагнитной индукции картавил, раздражая учительницу. Та дала денег, дабы купили палку и высекли потенциального клиента логопеда. Причём старшему брату Майкла.

Будущий светило науки был поистине любимцем судьбы. На протяжённости жизненного пути он, при должной настойчивости, находил помощь. Брат с презрением вернул монету, сообщив об инциденте матери. Семья не считалась богатой, и отец, талантливый ремесленник, с трудом сводил концы с концами. Братья рано стали искать работу: семья жила на милостыню с 1801 года, Майклу в ту пору шёл десятый год.

С тринадцати Фарадей поступает в книжную лавку разносчиком газет. Через весь город едва-едва успевает по адресам на противоположных концах Лондона. Ввиду прилежности хозяин Рибо дарует Фарадею место ученика переплётчика на семь лет бесплатно. В давнюю пору человек с улицы платил мастеру за процесс приобретения ремесла. Как и Георгу Ому умение механика, Фарадею в будущем процесс переплётного дела пригодился в полной мере. Большую роль сыграл факт, что Майкл скрупулёзно читал книги, попадающие к нему в работу.

Майкл Фарадей

Фарадей пишет, что одинаково охотно верил трактату миссис Марсет (Беседы о химии) и сказкам Тысячи и одной ночи. Желание стать учёным сыграло в этом деле важную роль. Фарадей избирает два направления: электричество и химию. В первом случае основным источником знаний служит Британская энциклопедия. Пытливый ум требует подтверждения написанного, юный переплётчик постоянно проверяет знания на практике. Фарадей становится опытным экспериментатором, что сыграет ведущую роль при исследовании электромагнитной индукции.

Напомним, что речь идёт об ученике без собственного дохода. Старший брат и отец посильно оказывали помощь. Начиная с химических реактивов и заканчивая сборкой электростатического генератора: для опытов нужен источник энергии. Одновременно Фарадей умудряется посещать платные лекции естествознания и скрупулёзно заносит знания в блокнот. Потом переплетает заметки, пользуясь приобретёнными навыками. Срок ученичества заканчивается в 1812 году, Фарадей начинает искать работу. Новый хозяин не столь покладист, и, несмотря на перспективу сделаться наследником дела, Майкл на пути к открытию электромагнитной индукции.

Научный путь Фарадея

В 1813 году судьба улыбается учёному, давшему миру представление об электромагнитной индукции: удаётся попасть на место секретаря к сэру Хампфри Дэви, недолгий период знакомства в будущем сыграет роль. Фарадею невыносимо исполнять долее обязанности переплётчика, он пишет письмо Джозефу Бэнксу, тогдашнему президенту Королевского научного общества. О характере деятельности организации расскажет факт: Фарадей получил место, называемое старший прислужник: помогает лекторам, вытирает пыль с оборудования, следит за транспортировкой. Джозеф Бэнкс игнорирует послание, Майкл не унывает и пишет Дэви. Ведь прочих научных организаций нет в Англии!

Хампфри Дэви

Дэви относится с большим вниманием, поскольку лично знаком с Майклом. Не будучи одарён от природы умением говорить – вспомним про школьный опыт – и излагать мысли письменно, Фарадей берет специальные уроки для развития необходимых навыков. Опыты тщательно систематизирует в блокноте, мысли излагает в кружке друзей и единомышленников. К моменту знакомства с сэром Хампфри Дэви достигает недюжинного мастерства, тот ходатайствует о принятии новоиспечённого учёного на вышеупомянутую должность. Фарадей рад, а изначально фигурировала идея назначить будущего гения мыть посуду…

По воле рока Майкл вынужден слушать лекции на разные темы. Помощь профессорам требовалась лишь периодически, в остальном допускалось находиться в аудитории и слушать. Учитывая, сколько стоит образование в Гарварде, это стало неплохим досугом. Через полгода блестящей работы (октябрь 1813 года) Дэви приглашает Фарадея в путешествие по Европе, война окончена, нужно оглядеться. Это стало хорошей школой первооткрывателю электромагнитной индукции.

По возвращении в Англию (1816 год), Фарадей получает звание лаборанта и публикует первую работу по исследованию известняка.

Исследования электромагнетизма

Явление электромагнитной индукции заключается в наведении ЭДС в проводнике под действием изменяющегося магнитного поля. Сегодня на этом принципе работают приборы, начиная трансформаторами и заканчивая варочными панелями. Первенство в области отдано Гансу Эрстеду, 21 апреля 1820 года заметившему действие замкнутой цепи на стрелку компаса. Подобные наблюдения публиковались в виде заметок Джованни Доменико Романьози в 1802 году.

Джованни Доменико Романьози

Заслуга датского учёного в привлечении к делу многих видных учёных. Итак, замечено, что стрелка отклоняется проводником с током, и осенью упомянутого года появился на свет первый гальванометр. Измерительный прибор на ниве электричества стал большим подспорьем многим. Попутно высказывались различные точки зрения, в частности, Волластон огласил, что неплохо заставить проводник с током вращаться непрерывно под действием магнита. В 20-е годы XIX века вокруг указанного вопроса царила эйфория, до этого магнетизм и электричество считались независимыми явлениями.

Оенью 1821 года задумку воплотил в жизнь Майкл Фарадей. Утверждают, что тогда на свет появился первый электрический двигатель. 12 сентября 1821 года в письме Гаспару де ла Риву Фарадей пишет:

«Я выяснил, что притяжения и отталкивания магнитной стрелки проводом с током — детская забава. Некая сила станет вращать непрерывно магнит под действием электрического тока. Я построил теоретические выкладки и сумел реализовать на практике».

Письмо к де ла Риву не стало случайностью. По мере становления на научном поприще Фарадей обрёл немало сторонников и единственного непримиримого противника… сэра Хампфри Дэви. Экспериментальная установка объявлена плагиатом идеи Волластона. Примерная конструкция:

  1. Серебряная чаша заполнена ртутью. Жидкий металл обладает хорошей электропроводностью и служит подвижным контактом.
  2. На дне чаши находится лепёшка воска, куда одним полюсом воткнут стержневой магнит. Второй возвышается над поверхностью ртути.
  3. С высоты свисает провод, подключённый к источнику. Конец его погружен в ртуть. Второй провод — возле края чаши.
  4. Если пропускать через замкнутую цепь постоянный электрический ток, провод начинает описывать по ртути круги. Центром вращения становится постоянный магнит.

Электромагнетизм

Конструкцию называют первым в мире электрическим двигателем. Но эффект электромагнитной индукции ещё не проявляется. Налицо взаимодействие двух полей, не более. Фарадей, кстати, не остановился, и сделал чашу, где провод неподвижный, а магнит двигается (образуя поверхность вращения – конус). Доказал, что нет принципиальной разницы между источниками поля. Потому индукция называется электромагнитной.

Немедленно Фарадея обвинили в плагиате и травили несколько месяцев, о чем он с горечью писал доверенным друзьям. В декабре 1821 года состоялась беседа с Волластоном, казалось, инцидент исчерпан, но… чуть позже группа учёных возобновила нападки, главой оппозиции стал сэр Хампфри Дэви. Смысл основных претензий заключался в противостоянии идее принятия Фарадея в члены Королевского общества. Это тяжким грузом давило на будущего открывателя закона электромагнитной индукции.

Открытие закона электромагнитной индукции

На время Фарадей, казалось, оставил идею исследований на ниве электричества. Сэр Хампфри Дэви был единственным, кто бросил шар против кандидатуры Майкла. Возможно, бывший ученик не хотел расстраивать покровителя, бывшего на тот момент президентом общества. Но постоянно терзала мысль о единстве природных процессов: если электричество удалось превратить в магнетизм, нужно попробовать сделать обратное.

Эта идея зародилась — по некоторым сведениям — в 1822 году, и Фарадей постоянно носил с собой кусок железняка, напоминавшего, служившего «узелком на память». С 1825 года, являясь полноправным членом Королевского общества, Майкл получает должность начальника лаборатории и немедленно совершает нововведения. Персонал теперь раз в неделю собирается на лекции с наглядными демонстрациями приборов. Постепенно вход становится открытым, даже дети получают возможность опробовать новое. Эта традиция положила начало знаменитым пятничным вечерам.

Целых пять лет занимался Фарадей оптическим стеклом, группа не достигла больших успехов, но практические результаты имелись. Произошло ключевое событие – обрывается жизнь Хампфри Дэви, постоянно противившегося опытам с электричеством. Фарадей отклоняет предложение о новом пятилетнем контракте и начинает теперь уже в открытую исследования, которые привели прямиком к магнитной индукции. Согласно литературе серия длилась 10 дней, неравномерно раскиданных в период с 29 августа по 4 ноября 1831 года. Фарадей описывает собственную лабораторную установку:

Из мягкого (с сильными магнитными свойствами) железа круглого сечения диаметром 7/8 дюйма я изготовил кольцо с внешним радиусом 3 дюйма. Фактически получился сердечник. Три первичные обмотки отделялись друг от друга хлопчатобумажной тканью и портняжным шнуром, чтобы удавалось объединить в одну или употреблять раздельно. Длина медного провода в каждой составляет 24 фута. Качество изоляции проверено при помощи элементов питания. Вторичная обмотка состояла из двух сегментов, по 60 футов длиной каждый, отстояла от первичной на расстояние.

От источника (предположительно элемент Волластона), имевшего в составе 10 пластин, площадью по 4 квадратных дюйма каждая, подавалось питание на первичную обмотку. Концы вторичной закорочены куском провода, в трёх футах от кольца вдоль цепи размещалась стрелка компаса. При замыкании источника питания намагниченная игла немедленно приходила в движение, и через интервал возвращалась на первоначальное место. Очевидно, что первичная обмотка вызывает отклик во вторичной. Сейчас бы сказали, что магнитное поле распространяется по сердечнику и наводит ЭДС на выходе трансформатора.

При обрыве питания эффект повторялся. Возникает паразитная противо-ЭДС, с которой боролся Никола Тесла, создавая спиралевидные катушки. На следующий день (30 августа) Фарадей анализирует результат опытов и пытается сопоставить увиденное с уже известными науке фактами. На ум приходит опыт Араго 1822 года, показавшего взаимосвязь вращения магнитной стрелки и медного диска. Читатели уже догадались, что игла взаимодействовала с полем индукционных токов. Так был открыт закон электромагнитной индукции.

vashtehnik.ru

Т. Закон электромагнитной индукции — PhysBook

ЭДС индукции. Закон электромагнитной индукции

Выше рассмотренные опыты показали, что в замкнутом контуре возникает индукционный ток при изменении магнитного потока, пронизывающего поверхность, ограниченную контуром. Как известно, ток в проводнике возникает в том случае, если на свободные заряды проводника действуют сторонние силы. Работу этих сил при перемещении единичного заряда вдоль замкнутого проводника называют электродвижущей силой. Следовательно, при изменении магнитного потока через поверхность, ограниченную контуром, в нем появляются сторонние силы (природу их выясним ниже: ЭДС индукции в движущихся проводниках), действие которых характеризуется ЭДС, называемой ЭДС индукции.

Как показывает опыт, значение индукционного тока (а значит, и \(~\varepsilon_i\)) не зависит от причины изменения магнитного потока (изменяется ли площадь, ограниченная контуром, или его ориентация в пространстве, изменяется ли индукция магнитного поля при перемещении его источников или за счет изменения среды и т.д.). Существенное значение имеет лишь скорость изменения магнитного потока \(~\frac {\Delta \Phi}{\Delta t}\) (так, стрелка гальванометра в опытах Фарадея отклоняется тем больше, чем быстрее вдвигается магнит в катушку).

\(~ \mathcal h \varepsilon_i \mathcal i = -\frac {\Delta \Phi}{\Delta t}. \qquad (1)\)

Эта формула выражает закон Фарадея для электромагнитной индукции:

среднее значение ЭДС индукции в проводящем контуре пропорционально скорости изменения магнитного потока через поверхность, ограничен ную контуром. Мгновенное значение ЭДС индукции равно взятой с противоположным знаком первой производной от магнитного потока по времени, т.е. \(~\mathcal h \varepsilon_i \mathcal i = {\Phi}'(t)\).

Знак "-" учитывает правило Ленца, согласно которому при увеличении магнитного потока \(~(\frac {\Delta \Phi}{\Delta t} > 0)\) ЭДС индукции отрицательная \(~(\varepsilon_i < 0)\) и, наоборот, при уменьшении магнитного потока \(~(\frac {\Delta \Phi}{\Delta t} < 0)\) ЭДС индукции положительная \(~(\varepsilon_i > 0)\).

Сила индукционного тока в замкнутом контуре рассчитывается по закону Ома\[~I_i = \frac {\varepsilon_i}{R},\] где R — сопротивление контура.

Индукционный ток возникает не только в линейных проводниках, но и в массивных сплошных проводниках, помещенных в переменное магнитное поле. В соответствии с законом электромагнитной индукции любые изменения магнитного потока, пронизывающего проводящее тело, сопровождаются возникновением в нем индукционных токов. Эти токи оказываются замкнутыми в толще проводника и поэтому называются вихревыми (а также токами Фуко). Токи Фуко, как и индукционные токи в линейных проводниках, подчиняются правилу Ленца: их магнитное поле направлено так, чтобы противодействовать изменению магнитного потока, индуцирующего вихревые токи. Токи Фуко можно обнаружить на опыте с маятником (проводящей пластиной), колеблющемся в зазоре между полюсами электромагнита. До включения маятник совершает практически незатухающие колебания. При пропускании тока через катушку электромагнита маятник испытывает сильное торможение и очень быстро останавливается. Торможение маятника объясняется действием магнитного поля на индукционные токи, возникающие в пластине при ее движении в магнитном поле. Если в пластине сделать разрезы, то вихревые токи ослабляются и торможение почти отсутствует. Этот факт торможения используется для успокоения подвижных частей различных приборов.

Токи Фуко вызывают нагревание проводников (якоря генераторов и сердечников трансформаторов), выделяемая токами Фуко теплота используется в индукционных металлургических печах и в других случаях.

По закону Фарадея (1) определяется ЭДС индукции, возникающая и в движущемся проводнике, и в неподвижном (см. опыты, описанные в разделе Электромагнитная индукция). Но механизм происхождения ЭДС индукции в этих случаях различен.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 347-348.

www.physbook.ru