Какими буквами обозначаются фаза и ноль: Обозначение фазы и нуля L и N в электрике

Содержание

Обозначение фазы и нуля L и N в электрике

В процессе самостоятельной установки и подключения электрооборудования (этом могут быть различные светильники, вентиляция, электроплитка и т.п.) можно заметить, что коммутационные клеммы обозначены буквами L, N, PE. Особое значение здесь имеет маркировка L и N. Кроме обозначения проводов в электрике по буквам, их помещают в изоляцию различного цвета.

Это значительно упрощает процедуру определения, где находится фаза, земля или нулевой провод. Чтобы устанавливаемый прибор смог работать в нормальном режиме, каждый из этих проводов должен быть подключен на соответствующую клемму.

Обозначение проводов в электрике по буквам

Электрические коммуникации в бытовой и промышленной сфере организовываются посредством изолированных кабелей, внутри которых находятся проводящие жилы. Они отличаются друг от друга цветом изоляции и маркировкой. Обозначение l и n в электрике дает возможность на порядок ускорить реализацию монтажных и ремонтных мероприятий.

Нанесение данной маркировки регулирует специальный ГОСТ Р 50462: это относится к тем электроустановкам, где используется напряжение до 1000 В.

Как правило, они комплектуются глухозаземленной нейтралью. Зачастую электрическое оборудование данного типа имеют жилые, административные и хозяйственные объекты. Во время монтажа электрических сетей в зданиях этого типа необходимо хорошо разбираться в цветовых и буквенных указаниях.

Обозначение фазы – L

Сеть переменного тока включает в себя провода, находящиеся под напряжением. Правильное их название – «фазные». Это слово имеет английские корни, и переводится как «линия» или «активный провод». Фазные жилы несут особенную опасность для здоровья человека и имущества. Для безопасной эксплуатации их покрывают надежной изоляцией.

Использование оголенных проводов под напряжением чревато следующими последствиями:

  1. 1. Поражение током людей. Это могут быть ожоги, травмы и даже смерть.
  2. 2. Возникновение пожаров.
  3. 3. Порча оборудования.

При обозначении проводов в электрике фазные жилы маркируются буквой «L». Это сокращение английского термина «Line», или «линия» (другое название фазных проводов).

Есть и другие версии происхождения этой маркировки. Некоторые специалисты считают, что прообразом стали слова «Lead» (подводящая жила) и Live (указание на напряжение). Подобная маркировка используется также для указания на зажимы и клеммы, на которые должны коммутироваться линейные провода. К примеру, в трехфазных сетях каждая из линий маркируется еще и соответствующей цифрой (L1, L2 и L3).

Действующие отечественные нормативы, регулирующие обозначение фазы и нуля в электрике (ГОСТ Р 50462-2009), предписывают помещать линейные жилы в коричневую или черную изоляцию. Хотя на практике фазные провода могут быть белыми, розовыми, серыми и т.п. В таком случае все зависит от производителя и изолирующего материала.

Обозначение нуля – N

Для маркировки нейтральной или нулевой рабочей жилы сети используют букву «N». Это сокращение термина neutral (в переводе – нейтральный). Так во всем мире принято называть нулевой проводник. У нас в стране в основном используют слово «Ноль».

Скорее всего, за основу здесь взято слово Null. Буква «N» в схеме указывает на контакты или клеммы, предназначенной для коммутации нулевой жилы. Подобное обозначение принято и для однофазных, и для трехфазных схем. В качестве цветового обозначения нулевого провода применяют синюю или бело-синюю (бело-голубую) изоляцию.

Обозначение заземления – PE

Кроме обозначения фазы и нуля, в электрике также применяется специальное буквенное указание PE (Protective Earthing) для провода заземления. Как правило, они всегда входят в состав кабеля, наряду с нулевыми и фазными жилами. Подобным образом маркируются также контакты и зажимы, предназначенные для коммутации с заземляющим нулевым проводом.

Для удобства монтажа жилы для заземления помещены в желто-зеленую изоляцию. Домашний мастер должен уяснить, что эти цвета всегда указывают только на заземляющие провода. Для обозначения фазы и нуля в электрике желтый и зеленый цвет никогда не используется.

Как показывает практика, при организации электрических сетей в зданиях жилого сектора иногда допускаются нарушения общепринятых нормативов использования цвета изоляции и соответствующей буквенно-цифровой маркировки. В таком случае не всегда достаточно обладать умением расшифровывать обозначения L, N или РЕ.

Чтобы подключение электрооборудования было действительно безопасным, необходимо проверять соответствие маркировки реальному положению вещей. Для этого используют специальные приборы (тестеры) или подручные приспособления. При отсутствии опыта подобных работ для собственной безопасности лучше пригласить опытного электрика с соответствующим допуском.

Обозначение l и n в электрике

Обозначение фазы и нуля в электрике введено для того, чтобы электрические сети были безопасными и удобными в использовании. Для этого используется специальная буквенная маркировка (l и n) и изоляция соответствующего цвета. Также могут встречаться жилы с маркировкой РЕ желто-зеленого цвета: таким образом обозначены заземляющие провода.

Кроме того, эти же буквенные обозначения применяются на соединительных контактах и клеммах. Все, что потребуется сделать во время установки электроприбора – подвести каждый из проводов на клемму. Для перестраховки каждый из проводов желательно проверить тестером.

На фото ниже хороший пример как обозначаются L и N в электрике на оборудовании. В частности на фото промаркированы клеммы УЗМ (устройства защиты многофункциональное) для правильного подключения проводов.

Похожие материалы на сайте:

Понравилась статья – поделись с друзьями!

 

на схемах и цветовая маркировка

Монтажные работы часто приводят к появлению большого числа проводов. Как в ходе работ, так и после их завершения всегда появляется потребность в идентификации назначения проводников. Каждое соединение использует в зависимости от своей спецификации либо два, либо три проводника. Наиболее простым способом идентификации проводов и жил кабеля является окрашивание их изоляции в определенный цвет. Далее в статье мы расскажем о том,

  • как обозначается фаза и ноль способом присвоения им определенных цветов;
  • что обозначают буквы L, N, PE в электрике по-английски и какое соответствие их русскоязычным определениям,

а также другую информацию на эту тему.

Цветовая идентификация существенно уменьшает сроки выполнения ремонтных и монтажных работ и позволяет привлечь персонал с более низкой квалификацией. Запомнив несколько цветов, которыми обозначены проводники, любой домохозяин сможет правильно присоединить их к розеткам и выключателям в своей квартире.

Заземляющие проводники (заземлители)

Самым распространенным цветовым обозначением изоляции заземлителей являются комбинации желтого и зеленого цветов. Желто-зеленая раскраска изоляции имеет вид контрастных продольных полос. Пример заземлителя показан далее на изображении.

Желто-зеленая раскраска заземлителя

Однако изредка можно встретить либо полностью желтый, либо светло-зеленый цвет изоляции заземлителей. При этом на изоляции могут быть нанесены буквы РЕ. В некоторых марках проводов их желтый с зеленым окрас по всей длине вблизи концов с клеммами сочетается с оплеткой синего цвета. Это значит то, что нейтраль и заземление в этом проводнике совмещаются.

Для того чтобы при монтаже и также после него хорошо различать заземление и зануление, для изоляции проводников применяются разные цвета. Зануление выполняется проводами и жилами синего цвета светлых оттенков, подключаемыми к шине, обозначенной буквой N. Все остальные проводники с изоляцией такого же синего цвета также должны быть присоединены к этой нулевой шине. Они не должны присоединяться к контактам коммутаторов. Если используются розетки с клеммой, обозначенной буквой N, и при этом в наличии нулевая шина, между ними обязательно должен быть провод светло-синего цвета, соответственно присоединенный к ним обеим.

Фазный проводник, его определение по цвету или иначе

Фаза всегда монтируется проводами, изоляция которых окрашена в любые цвета, но не синий или желтый с зеленым: только зеленый или только желтый. Фазный проводник всегда соединяется с контактами коммутаторов. Если при монтаже в наличии розетки, в которых есть клемма, маркированная буквой L, она соединяется с проводником в изоляции черного цвета. Но бывает так, что монтаж выполнен без учета цветовой маркировки проводников фазы, нуля и заземления.

В таком случае для выяснения принадлежности проводников потребуется индикаторная отвертка и тестер (мультиметр). По свечению индикатора отвертки, которой прикасаются к токопроводящей жиле, определяется фазный провод — индикатор светится. Прикосновение к жиле заземления или зануления не вызывает свечение индикаторной отвертки. Чтобы правильно определить зануление и заземление, надо измерить напряжение, используя мультиметр.

Показания мультиметра, щупы которого присоединены к жилам фазного и нулевого провода, будут больше, чем в случае прикосновения щупами к жилам фазного провода и заземления.

Поскольку фазный провод перед этим однозначно определяется индикаторной отверткой, мультиметр позволяет завершить правильное определение назначения всех трех проводников.

Буквенные обозначения, нанесенные на изоляцию проводов, не имеют отношения к назначению провода. Основные буквенные обозначения, которые присутствуют на проводах, а также их содержание, показаны ниже.

Обозначения

Принятые в нашей стране цвета для указания назначения проводов могут отличаться от аналогичных цветов изоляции проводов других стран. Такие же цвета проводов используются в

  • Беларуси,
  • Гонконге,
  • ЕС,
  • Казахстане,
  • КНР,
  • Сингапуре,
  • Украине.

Более полное представление о цветовом обозначении проводов в разных странах дает изображение, показанное далее.

Виды обозначений в разных странах

Цветовые обозначения проводов в разных странах

В нашей стране цветовая маркировка L, N в электрике задается стандартом ГОСТ Р 50462 – 2009. Буквы L и N наносятся либо непосредственно на клеммы, либо на корпус оборудования вблизи клемм, например так, как показано на изображении ниже.   

Буквы L и N на корпусе

Этими буквами обозначают по-английски нейтраль (N), и линию (L — «line»). Это означает «фаза» на английском языке. Но поскольку одно слово может принимать разные значения в зависимости от смысла предложения, для буквы L можно применить такие понятия, как жила (lead) или «под напряжением» (live). А N по-английски можно трактовать как №null» — ноль. Т.е. на схемах или приборах эта буква означает зануление. Следовательно, эти две буквы — не что иное как обозначения фазы и нуля по-английски.

Также из английского языка взято обозначение проводников PE (protective earth) — защитное заземление (т.е. земля). Эти буквенные обозначения можно встретить как на импортном оборудовании, маркировка которого выполнена латиницей, так и в его документации, где обозначение фазы и нулевого провода сделано по-английски. Российские стандарты также предписывают использование этих буквенных обозначений.

Поскольку в промышленности существуют еще и электрические сети, и цепи постоянного тока, для них также актуально цветовое обозначение проводников. Действующие стандарты предписывают шинам со знаком плюс, как и всем прочим проводникам и жилам кабелей положительного потенциала, красный цвет. Минус обозначается синим цветом. В результате такой окраски сразу хорошо заметно, где какой потенциал.

Чтобы читателям запомнились цветовые и буквенные обозначения, в заключение еще раз перечислим их вместе:

  • фаза обозначается буквой L и не может быть по цвету желтой, зеленой или синей.
Цвета проводников фазы
  • В занулении N, заземлении PE и совмещенном проводнике PEN используются желтый, зеленый и синий цвета.
Цвета защитных проводников
  • На постоянном токе для проводников и шин применяются красный и синий цвета.
Расшифровка цветов

Цвета шин и проводов на постоянном токе

  • Не будет лишним показать цветовое обозначение шин и проводов для трех фаз:
Цветовые обозначения фазы

 

Похожие статьи:

что значат эти буквы, какой буквой обозначается заземление

На чтение 8 мин Просмотров 22. 7к. Опубликовано Обновлено

При самостоятельном подключении электрического оборудования – светильников, вентиляции, автомата пользователи могут обнаружить буквенные обозначения клемм. L, N в электрике – это фаза и земля, к которым проводят соответствующие кабели.

Буквенная маркировка проводов

Стандарты буквенной и цветовой маркировки проводов

Для бытовых и промышленных электролиний применяются изолированные провода с внутренними токопроводящими жилами. Изделия отличаются в зависимости от цвета изоляционного покрытия и маркировки. Обозначение фазы и нуля в электрике ускоряет ремонтные и монтажные работы.

Маркировка кабелей в электрических установках под напряжением до 1000 В регулируется ГОСТ Р 50462-2009:

  • в п. 6. 2.1 указывается, что нулевой проводник маркируется как N;
  • пункт 6.2.2. гласит, что провод защиты с заземлением обозначается PE;
  • в п. 6.2.12 сказано, что в электрике L является фазой.

Понимание маркировки упрощает монтажные работы в хозяйственных, жилых и административных зданиях.

L – обозначение фазы

Обозначение L и N в электрике

В сети переменного тока под напряжением находится фазный провод. В переводе с английского слово Line имеет значение активный проводник, линия, поэтому маркируется буквой L. Фазные проводники обязательно покрываются цветной изоляцией, поскольку, находясь в оголенном состоянии, могут стать причиной ожогов, травм человека, возгорания или выхода из строя различного оборудования.

N – буквенный символ нуля

Знак нулевого или нейтрального рабочего кабеля – N, от сокращения терминов neutral или Null. При составлении схемы так маркируются клеммы коммутации нуля в однофазной или трехфазной сети.

Слово «ноль» используется только на территории стран СНГ, во всем мире жила называется нейтраль.

PE – индекс заземления

Маркировка заземления

Если проводка заземлена, применяется буквенный маркер PE. С английского значение Protective Earthing переводится как провод заземления. Аналогично будут обозначаться зажимы и контакты для коммутации с заземляющим нулем.

Расцветка изоляционного покрытия проводников

Обозначать по цветам кабели заземления, фазы и нуля необходимо в соответствии с требованиями ПУЭ. В документе установлены различия расцветки для заземления в электрощитке, а также для нуля и фазы. Понимание цветового обозначения изоляции исключает необходимость расшифровки буквенных маркеров.

Цвет жилы заземления

На территории РФ с 1 января 2011 года действует европейский стандарт МЭК 60446:2007. В нем отмечено, что заземление имеет только желто-зеленую изоляцию. Если составляется электросхема, земля должна обозначаться как РЕ.

Жила заземления есть только в кабелях от 3-х жил.

В проводниках PEN, используемых в старых постройках, совмещены жилы земли и нуля. Изоляционное покрытие в данном случае имеет синий цвет заземления и желто-зеленые кембрики на точках соединения и концах провода. В некоторых случаях использовалась обратная маркировка – зануление желто-зеленого цвета с синими наконечниками.

Жилы земли и нуля PEN-кабелей тоньше, чем фазные.

Организация защитного заземления – обязательное условие создания электросети в жилом и промышленном строении. Его необходимость указана в ПУЭ и ГОСТ 18714-81. Стандарты гласят, что нулевое заземление должно иметь наименьший показатель сопротивления. Чтобы не запутаться, используют цветовую разметку кабелей.

Цветовое обозначение нулевых рабочих контактов

Цвет проводов в электропроводке

Чтобы не перепутать, где фаза, а где ноль, вместо букв L и N ориентируются на цвета кабелей. Электрические стандарты отмечают, что нейтраль бывает синего, голубого, сине-белого оттенка вне зависимости от количества жил.

Обозначить ноль можно латинской литерой N, который на схеме читается как минус. Причина прочтения – участие нуля в замыкании электроцепи.

Расцветка фазного провода

Фаза – это токоведущая линия, которая при неосторожном касании может привести к поражению током. У мастеров-новичков часто возникают сложности с поиском кабеля. Обозначается фаза черным, коричневым, кремовым, красным, оранжевым, розовым, фиолетовым, серым и белым оттенком.

Буквенный индекс фазы – L. Он используется там, где провода не размечены цветом. При подключении кабеля к нескольким фазам рядом с литерой L ставится порядковый номер или латинские буквы А, В, С. Фазу также часто маркируют как плюс.

Фазный провод не может быть синим, голубым, зеленым или желтым.

Зачем использовать цветовую маркировку

Определить L и N в электрике можно при помощи индикаторной отвертки. Понадобится прикоснуться кончиком к части изделия без изоляционного покрытия. Свечение индикатора свидетельствует о наличии фазы. Если светодиод не загорелся, жила нулевая.

Цветовое обозначение сокращает время на поиски нужного провода, устранение неисправности. Знание цветов проводников также исключает риски токового поражения.

Нюансы ручной цветовой разметки

Цветовая маркировка проводов с помощью кембрика

Ручная разметка применяется в момент использования проводов одинакового цвета в домах старой застройки. Перед началом работ составляется схема с цветовыми значениями проводников. В процессе укладки помечать токоведущие жилы можно:

  • стандартными кембриками;
  • кембриками с термоусадкой;
  • изоляционной лентой.

Правила допускают использование специальных наборов для маркировки. Точки установки маркеров для обозначения нуля и фазы указаны в ПУЭ и ГОСТе. Это концы провода и места его присоединения к шине.

Специфика разметки двухжильного провода

Термоусадочная трубка для проводов

Если подключение кабеля к сети уже сделано, можно использовать индикаторную отвертку. Сложность использования инструмента заключается в невозможности определения нескольких фаз. Их понадобится прозванивать мультиметром. Для предотвращения путаницы можно пометить электрический проводник цветом:

  • выбрать трубки с термоусадкой или изоленты для обозначения нуля и фазы;
  • работать с проводниками не по всей длине, а только на местах соединений и стыков.

Количество цветов определяется схемой. Главное при ее создании – не запутаться, не использовать желтые, зеленые или синие маркеры для фазы. Ее допускается размечать красным или оранжевым цветом.

Разметка трехжильного провода

При помощи мультиметра можно определить расположение фазы, ноля, и заземления

Для поиска фазы, заземления и нуля в трехжильном проводе целесообразно применять мультиметр. Его ставят на режим переменного напряжения и аккуратно щупами касаются фазы, потом – оставшихся жил. Показатели тестера следует записать и сравнить. В комбинации «фаза-земля» напряжение будет меньшим, чем в комбинации «фаза-ноль».

После уточнения линий можно делать маркировку. Понять, фаза – L или N, поможет соответствующая расцветка. У нуля она будет голубой или синей, у плюса – любой другой.

Порядок разметки пятипроводной системы

Электропроводка с трехфазной сети выполняется только пятижильным кабелем. Три проводника будут фазным, один – нейтральным, один – защитным заземлением. Цветовая маркировка применяется согласно нормативным требованиям. Для защиты используется желто-зеленая оплетка, для нуля – синяя или голубая, для фазы – из перечня разрешенных оттенков.

Как маркировать совмещенные провода

Для упрощения процесса монтажа проводки используются кабели с двумя или четырьмя жилами. Линия защиты тут соединяется с нейтралью. Буквенный индекс провода – PEN, где PE обозначает заземляющий, а N – нулевой проводник.

Согласно ГОСТу, используется особая цветовая маркировка. По длине совмещенный кабель будет желто-зеленым, а кончики и точки соединения – синими.

Выделяйте основные точки проблемных мест кембриками или изолентой.

Расцветка проводки как способ ускорения монтажа

Правильная расцветка проводки ускоряет монтаж электропроводки

До начала действия ГОСТ Р 50462-2009 кабели маркировались белым или черным цветом. Определение фазы и нуля производилось при расключении контролькой в момент подачи питания.

Использование цветовых маркеров упрощает ремонтные работы, обеспечивает их безопасность и удобство. Ориентируясь по оттенку кабелей, мастер не потратит много времени, чтобы провести электричество в дом или квартиру.

Рассмотреть значение цветовой маркировки можно на примере светильника. Если меняется лампа, а ноль и фаза перепутаны, имеются риски травм или летального исхода от поражения током. Когда в электрике обозначение L и N выполнено по цвету, фаза выйдет на выключатель, а ноль – на источник света. Напряжение нейтрализуется, и можно будет касаться даже включенной лампочки.

Требования к расцветке проводки при монтаже

Расключение распредкоробки

От распредкороба на выключатель протягивается медный провод с одной или двумя жилами. Количество жил зависит от количества клавиш прибора. Разрываться должна фаза, а не ноль. В процессе работы допускается использовать для запитки проводник белого цвета, делая пометку на схеме.

Розетка подключается с учетом полярности. Рабочий ноль будет слева, фаза – с правой стороны. Заземление располагается посередине устройства и зажимается клеммой.

При наличии двух кабелей одинаковой расцветки можно найти фазу и нейтраль при помощи контрольки, индикаторной отвертки, мультиметра.

На электросхеме стоит указывать, что означает L и N, но в электрике их используется несколько. На однолинейной отображена силовая часть – тип питания, количество фаз на потребителя. Здесь целесообразно начертить одну засечку на однофазной сети, три – на трехфазной и указать провода цветом. Коммутационное и защитное оборудование помечается специальными символами.

Правильная маркировка и цветовая разметка проводов обеспечивает качество монтажа и обслуживания линии. Нанесение обозначений согласно международным требованиям позволяет электрикам и домашним мастерам сориентироваться в схеме.

Какими буквами обозначается фаза и ноль

Особенности обозначение фазы и нуля

Для того чтобы самостоятельно выполнить установку и подключение различных видов электрооборудования: светильников, розеток, автоматов, электроплит, бойлеров и других, нужно понимать обозначение фазы и нуля для коммутации: L (фаза), N (ноль), PE (заземление). Государственными стандартами и нормами электрической безопасности установлены правила обозначения, что упрощает определение функционального назначения жил при монтаже, чтобы подключаемое устройство смогло правильно функционировать.

Обозначение фазы и ноля

Для безопасной организации электроснабжения в жилищном и промышленном секторах соединение электросхем выполняется изолированными кабелями с внутренними жилами, различающимися между собой буквенной и цветовой маркировкой изоляционного покрытия. Маркировка L в электрике помогает монтажникам быстрее и без ошибок выполнить ремонтно-сборочные операции. Электроустановки напряжением до 1000 В относятся к бытовой сфере эксплуатации, правила обозначения электропроводов регламентируются ГОСТ Р 50462/2009. Перед проведением любых работ на электрооборудовании надо знать, как обозначается фаза и ноль на схеме.

Обозначение фазы (L) определяет жилу переменной сети под напряжением. Английское слово «фаза» — переводится как «активный провод». Фазные линии обладают повышенной опасностью для людей и домашнего имущества, поэтому, чтобы обеспечить безопасную эксплуатацию электрооборудования, их закрывают изоляцией разного цвета. Обозначаться провода должны для правильного коммутирования с требуемыми зажимами/клеммами. В случае подключения трехфазных сетей предусмотрена цифровая маркировка L1/ L2/ L3.

N обозначение получено от сокращения английского слова «neutral» — нейтральный. Именно так в мире маркируют ноль-провод. Хотя многие мастера считают, что буквенное обозначение его взято от английского «Null» — нуль.

Цветовое и буквенное обозначение

Перед началом монтажных работ электрик должен уточнить обозначения L и N в электрических схемах и обязательно их придерживаться. Государственными нормами в электротехнике установлены обозначения фаза/ноль по ГОСТу Р 50462/2009, обязывающему производителей помещать L-жилы в изоляцию, окрашенную в коричневый или черный цвет, PE-жилы в желто-зеленый. Для N-провода применяют стандартный цвет — сине-голубой либо синее основание с белой полоской.

Электрическая маркировка наносится независимо от числа жил в пучке. PE- и L-жила могут также отличаться толщиной, первая тоньше, особенно в кабелях, используемых для питания переносного электрооборудования. Специалисты рекомендуют применять одинаковый цвет жил, когда нужно выполнить ответвление одной фазы от 3-фазной. Производители могут применять разнообразную цветную маркировку жил для фазной коммутации по схеме, при этом существует запрет на смежные цвета синему, зеленому и желтому.

Обозначение фазы и нуля на английском было принято стандартами ЕС и присутствует на всех европейских электроприборах. В 2004 году были внесены изменения в цветовую идентификации проводников как часть поправки стандартов ЕС No 2: 2004 к BS 7671: 2001. В однофазных установках используются традиционные цвета красного и черного для фазы, а нейтральные проводники заменяются цветами коричневого и синего (Правило 514-03-01). Защитные проводники остаются зелеными и желтыми.

Важно! Все устройства после 31 марта 2004 года и до 1 апреля 2006 года могут быть установлены в соответствии с Поправкой No 2: 2004 или Поправкой No 1: 2002, другими словами, они могут использовать гармонизированные цвета или старые цвета, но не оба.

Обозначение плюса и минуса

Используемые стандарты будут различаться в зависимости от того, в какой стране выполняется проводка, типа электричества и других факторов. Изучение различных вариантов, которые могут использоваться в данной ситуации, имеет важное значение для безопасности на рабочем месте.

При подключении к источнику постоянного тока обычно используются 2 либо 3 провода. Окраска выглядит следующим образом:

  • Красный — «+» плюс провод;
  • Черный — «-» минус провод;
  • Белый или серый — заземляющий провод.

Обратите внимание! Надежная и разборчивая маркировка должна быть обеспечена на границе раздела, где существуют новые и старые версии цветового кода для фиксированной электропроводки. Предупреждающее уведомление также должно быть заметно на соответствующем распределительном щите, управляющем цепью.

Проверка фазы ноля

Не все производители выполняют требования по маркировке сетей, кроме того, в старых кабелях «советских времен» она вообще отсутствует, что не позволяет предварительно уточнить назначение жил. Для того чтобы в этом случает правильно установить электрооборудование, например, розетку, обозначение уточняют приборным методом и в местах соединения маркируют ручным способом термоусадочной трубкой.

При выполнении работ по проверке фаза/нуль нужно принять меры безопасности, не рекомендуется проводить эти работы персоналу, не обученному правилам безопасной эксплуатации электроустановок, поскольку при несоблюдении их человек может быть смертельно травмирован электротоком, в этом случае лучше пригласить квалифицированного электрика. Мультиметр может проверять напряжение, сопротивление и ток. Это омметр, вольтметр и амперметр в одном приборе.

Подготовка электрического мультиметра к измерениям:

  1. Устанавливают True RMS на значение «AC» или «V» с волнистой линией, выбирают приблизительное напряжение, которое нужно проверить.
  2. Вставляют черный зонд в общий (COM) порт измерителя, а красный — в тестовый порт.
  3. При проведении испытаний убеждаются, что руки не будут соприкасаться с электрической цепью под напряжением или металлическим датчиком. Нужно прикасаться только к пластиковым или изолированным ручкам зонда.

Шаблон тестирования 3-х фазной сети:

  1. Помещают черный зонд в фазу 1, а красный зонд в фазу 2. Считывают и записывают напряжение между фазами 1 и 2.
  2. Затем оставляют черный зонд на фазе 1 и перемещают красный на фазу 3, также фиксируют напряжение между фазами 1 и 3.
  3. Помещают черный зонд на фазу 2, а красный зонд на фазу 3, контролируют напряжение между фазами 2 и 3.
  4. Усредняют все три ветви, сложив общее суммарное напряжение и разделив на три, находят рабочее напряжение.
  5. Убеждаются, что все трехфазные напряжения находятся в пределах 3%.

Дополнительная информация. С помощью мультиметра возможно определить фазу в домашней однофазной сети. Диапазон измерения — выше 220 В. Щуп нужно подключить к гнезду «V», им поочерёдно прикасаются к проводам. Когда на приборе появится 8-15 В — это будет означать, что есть фаза, а ноль на шкале это нулевой провод, поскольку в нем отсутствует нагрузка.

Можно отметить, что в современных сложных схемах электроснабжения невозможно обеспечить надежность и безопасность энергосистемы в целом без применения стандартизации цветового и буквенного обозначения кабелей, которая служит единственным источником для идентификации в распределительных цепях постоянного и переменного тока.

Обозначение фазы и нуля в электрике

В процессе самостоятельной установки и подключения электрооборудования (этом могут быть различные светильники, вентиляция, электроплитка и т.п.) можно заметить, что коммутационные клеммы обозначены буквами L, N, PE. Особое значение здесь имеет маркировка L и N. Кроме обозначения проводов в электрике по буквам, их помещают в изоляцию различного цвета.

Это значительно упрощает процедуру определения, где находится фаза, земля или нулевой провод. Чтобы устанавливаемый прибор смог работать в нормальном режиме, каждый из этих проводов должен быть подключен на соответствующую клемму.

Обозначение проводов в электрике по буквам

Электрические коммуникации в бытовой и промышленной сфере организовываются посредством изолированных кабелей, внутри которых находятся проводящие жилы. Они отличаются друг от друга цветом изоляции и маркировкой. Обозначение l и n в электрике дает возможность на порядок ускорить реализацию монтажных и ремонтных мероприятий.

Нанесение данной маркировки регулирует специальный ГОСТ Р 50462: это относится к тем электроустановкам, где используется напряжение до 1000 В.

Как правило, они комплектуются глухозаземленной нейтралью. Зачастую электрическое оборудование данного типа имеют жилые, административные и хозяйственные объекты. Во время монтажа электрических сетей в зданиях этого типа необходимо хорошо разбираться в цветовых и буквенных указаниях.

Обозначение фазы (L)

Сеть переменного тока включает в себя провода, находящиеся под напряжением. Правильное их название – « фазные ». Это слово имеет английские корни, и переводится как «линия» или «активный провод». Фазные жилы несут особенную опасность для здоровья человека и имущества. Для безопасной эксплуатации их покрывают надежной изоляцией.

Использование оголенных проводов под напряжением чревато следующими последствиями:

  1. 1. Поражение током людей. Это могут быть ожоги, травмы и даже смерть.
  2. 2. Возникновение пожаров.
  3. 3. Порча оборудования.

При обозначении проводов в электрике фазные жилы маркируются буквой «L». Это сокращение английского термина « Line », или « линия » (другое название фазных проводов).

Есть и другие версии происхождения этой маркировки. Некоторые специалисты считают, что прообразом стали слова «Lead» (подводящая жила) и Live (указание на напряжение). Подобная маркировка используется также для указания на зажимы и клеммы, на которые должны коммутироваться линейные провода. К примеру, в трехфазных сетях каждая из линий маркируется еще и соответствующей цифрой (L1, L2 и L3).

Действующие отечественные нормативы, регулирующие обозначение фазы и нуля в электрике (ГОСТ Р 50462-2009), предписывают помещать линейные жилы в коричневую или черную изоляцию. Хотя на практике фазные провода могут быть белыми, розовыми, серыми и т.п. В таком случае все зависит от производителя и изолирующего материала.

Обозначение нуля (N)

Для маркировки нейтральной или нулевой рабочей жилы сети используют букву «N» . Это сокращение термина neutral (в переводе – нейтральный). Так во всем мире принято называть нулевой проводник. У нас в стране в основном используют слово «Ноль».

Скорее всего, за основу здесь взято слово Null. Буква «N» в схеме указывает на контакты или клеммы, предназначенной для коммутации нулевой жилы. Подобное обозначение принято и для однофазных, и для трехфазных схем. В качестве цветового обозначения нулевого провода применяют синюю или бело-синюю (бело-голубую) изоляцию.

Обозначение заземления (PE)

Кроме обозначения фазы и нуля, в электрике также применяется специальное буквенное указание PE (Protective Earthing) для провода заземления. Как правило, они всегда входят в состав кабеля, наряду с нулевыми и фазными жилами. Подобным образом маркируются также контакты и зажимы, предназначенные для коммутации с заземляющим нулевым проводом.

Для удобства монтажа жилы для заземления помещены в желто-зеленую изоляцию. Домашний мастер должен уяснить, что эти цвета всегда указывают только на заземляющие провода. Для обозначения фазы и нуля в электрике желтый и зеленый цвет никогда не используется.

Как показывает практика, при организации электрических сетей в зданиях жилого сектора иногда допускаются нарушения общепринятых нормативов использования цвета изоляции и соответствующей буквенно-цифровой маркировки. В таком случае не всегда достаточно обладать умением расшифровывать обозначения L, N или РЕ.

Чтобы подключение электрооборудования было действительно безопасным, необходимо проверять соответствие маркировки реальному положению вещей. Для этого используют специальные приборы (тестеры) или подручные приспособления. При отсутствии опыта подобных работ для собственной безопасности лучше пригласить опытного электрика с соответствующим допуском.

Обозначение l и n в электрике

Обозначение фазы и нуля в электрике введено для того, чтобы электрические сети были безопасными и удобными в использовании. Для этого используется специальная буквенная маркировка (l и n) и изоляция соответствующего цвета. Также могут встречаться жилы с маркировкой РЕ желто-зеленого цвета: таким образом обозначены заземляющие провода.

Кроме того, эти же буквенные обозначения применяются на соединительных контактах и клеммах. Все, что потребуется сделать во время установки электроприбора – подвести каждый из проводов на клемму. Для перестраховки каждый из проводов желательно проверить тестером.

На фото ниже хороший пример как обозначаются L и N в электрике на оборудовании. В частности на фото промаркированы клеммы УЗМ (устройства защиты многофункциональное) для правильного подключения проводов.

Обозначения фазы и нуля в электрике

Монтажные работы часто приводят к появлению большого числа проводов. Как в ходе работ, так и после их завершения всегда появляется потребность в идентификации назначения проводников. Каждое соединение использует в зависимости от своей спецификации либо два, либо три проводника. Наиболее простым способом идентификации проводов и жил кабеля является окрашивание их изоляции в определенный цвет. Далее в статье мы расскажем о том,

  • как обозначается фаза и ноль способом присвоения им определенных цветов;
  • что обозначают буквы L, N, PE в электрике по-английски и какое соответствие их русскоязычным определениям,

а также другую информацию на эту тему.

Цветовая идентификация существенно уменьшает сроки выполнения ремонтных и монтажных работ и позволяет привлечь персонал с более низкой квалификацией. Запомнив несколько цветов, которыми обозначены проводники, любой домохозяин сможет правильно присоединить их к розеткам и выключателям в своей квартире.

Заземляющие проводники (заземлители)

Самым распространенным цветовым обозначением изоляции заземлителей являются комбинации желтого и зеленого цветов. Желто-зеленая раскраска изоляции имеет вид контрастных продольных полос. Пример заземлителя показан далее на изображении.

Однако изредка можно встретить либо полностью желтый, либо светло-зеленый цвет изоляции заземлителей. При этом на изоляции могут быть нанесены буквы РЕ. В некоторых марках проводов их желтый с зеленым окрас по всей длине вблизи концов с клеммами сочетается с оплеткой синего цвета. Это значит то, что нейтраль и заземление в этом проводнике совмещаются.

Для того чтобы при монтаже и также после него хорошо различать заземление и зануление, для изоляции проводников применяются разные цвета. Зануление выполняется проводами и жилами синего цвета светлых оттенков, подключаемыми к шине, обозначенной буквой N. Все остальные проводники с изоляцией такого же синего цвета также должны быть присоединены к этой нулевой шине. Они не должны присоединяться к контактам коммутаторов. Если используются розетки с клеммой, обозначенной буквой N, и при этом в наличии нулевая шина, между ними обязательно должен быть провод светло-синего цвета, соответственно присоединенный к ним обеим.

Фазный проводник, его определение по цвету или иначе

Фаза всегда монтируется проводами, изоляция которых окрашена в любые цвета, но не синий или желтый с зеленым: только зеленый или только желтый. Фазный проводник всегда соединяется с контактами коммутаторов. Если при монтаже в наличии розетки, в которых есть клемма, маркированная буквой L, она соединяется с проводником в изоляции черного цвета. Но бывает так, что монтаж выполнен без учета цветовой маркировки проводников фазы, нуля и заземления.

В таком случае для выяснения принадлежности проводников потребуется индикаторная отвертка и тестер (мультиметр). По свечению индикатора отвертки, которой прикасаются к токопроводящей жиле, определяется фазный провод — индикатор светится. Прикосновение к жиле заземления или зануления не вызывает свечение индикаторной отвертки. Чтобы правильно определить зануление и заземление, надо измерить напряжение, используя мультиметр. Показания мультиметра, щупы которого присоединены к жилам фазного и нулевого провода, будут больше, чем в случае прикосновения щупами к жилам фазного провода и заземления.

Поскольку фазный провод перед этим однозначно определяется индикаторной отверткой, мультиметр позволяет завершить правильное определение назначения всех трех проводников.

Буквенные обозначения, нанесенные на изоляцию проводов, не имеют отношения к назначению провода. Основные буквенные обозначения, которые присутствуют на проводах, а также их содержание, показаны ниже.

Принятые в нашей стране цвета для указания назначения проводов могут отличаться от аналогичных цветов изоляции проводов других стран. Такие же цвета проводов используются в

Более полное представление о цветовом обозначении проводов в разных странах дает изображение, показанное далее.

Цветовые обозначения проводов в разных странах

В нашей стране цветовая маркировка L, N в электрике задается стандартом ГОСТ Р 50462 – 2009. Буквы L и N наносятся либо непосредственно на клеммы, либо на корпус оборудования вблизи клемм, например так, как показано на изображении ниже.

Этими буквами обозначают по-английски нейтраль (N), и линию (L — «line»). Это означает «фаза» на английском языке. Но поскольку одно слово может принимать разные значения в зависимости от смысла предложения, для буквы L можно применить такие понятия, как жила (lead) или «под напряжением» (live). А N по-английски можно трактовать как №null» — ноль. Т.е. на схемах или приборах эта буква означает зануление. Следовательно, эти две буквы — не что иное как обозначения фазы и нуля по-английски.

Также из английского языка взято обозначение проводников PE (protective earth) — защитное заземление (т.е. земля). Эти буквенные обозначения можно встретить как на импортном оборудовании, маркировка которого выполнена латиницей, так и в его документации, где обозначение фазы и нулевого провода сделано по-английски. Российские стандарты также предписывают использование этих буквенных обозначений.

Поскольку в промышленности существуют еще и электрические сети, и цепи постоянного тока, для них также актуально цветовое обозначение проводников. Действующие стандарты предписывают шинам со знаком плюс, как и всем прочим проводникам и жилам кабелей положительного потенциала, красный цвет. Минус обозначается синим цветом. В результате такой окраски сразу хорошо заметно, где какой потенциал.

Чтобы читателям запомнились цветовые и буквенные обозначения, в заключение еще раз перечислим их вместе:

  • фаза обозначается буквой L и не может быть по цвету желтой, зеленой или синей.

Цвета шин и проводов на постоянном токе

  • Не будет лишним показать цветовое обозначение шин и проводов для трех фаз:

{SOURCE}

проводы n и l на схемах электропроводки, цветовая маркировка

Для монтажа или ремонта электрической сети требуется принципиальная схема. Несведущему человеку сложно понять смысл условных обозначений, которыми насыщен план подключения оборудования. Разобраться в предназначении проводов поможет обозначение фазы и нуля на английском языке.

Назначение проводов в разводке

От источника питания к потребителю электричество передаётся по многожильным проводам. Приборы и механизмы обеспечиваются энергией посредством не менее трёх линий. По кабелям фазы и нуля подаётся напряжение. Заземляющая жила защищает человека от поражения электрическим током.

Каждая линия на монтажных схемах обозначается определённым образом. Кабели, отмеченные буквами n и l, в электрике предназначены для передачи тока. «Земля» отмечается аббревиатурой PE, которая расшифровывается как Protective Earth и переводится как «защитное заземление».

Провода, предназначенные для фазы, нуля и заземления, обладают специфической окраской и маркировкой.

Различие во внешнем виде облегчает сборку сети и предотвращает ошибки электрика, приводящие к несчастному случаю или поломке прибора.

Фазовая линия

Работу сети переменного тока формируют два компонента — рабочая фаза и нулевая составляющая. Рабочая фаза, или просто фаза, является основным проводом в многожильном кабеле. По этой линии на прибор поступает электрическая энергия.

В электротехнической документации фазовый канал обозначается латинской буквой L. Допускается употребление строчной литеры l. Условному сокращению профессионалы придают разные значения. Предпочтительными вариантами считаются Lead, Live или Line. С английского языка слова переводятся соответственно как «подводящий провод», «напряжение» или «линия».

Если в цепи предусмотрено использование нескольких фазовых кабелей, то к букве добавляется номер фазы. По европейским стандартам, не допускающим изменения колеровки, фазовые провода окрашены в конкретные цвета:

  • L 1 — коричневый.
  • L 2 — чёрный.
  • L 3 — серый.

В бытовой проводке на 220 вольт используются 3 линии, предназначенные для присоединения нуля, заземления и напряжения. Поэтому единственная фазовая шина покрыта изоляцией коричневого цвета. Использование кабелей другого колера считается грубым нарушением технологических норм.

Обозначение нуля

В цепи переменного тока нулевая линия необходима для создания замкнутого контура падения напряжения на контактах электрического прибора. Вместе с рабочей фазой «нуль» является основным компонентом сети.

На принципиальных схемах нулевая фаза обозначается буквами латинского алфавита N или n. Сокращённое обозначение подразумевает понятия Null или Neutral. Словари дают переводы «Нуль» и «Нейтраль».

В зависимости от гибкости кабеля, окраска нейтрального проводника представлена вариантами синего цвета. Жёсткая одножильная шина имеет насыщенный оттенок ультрамарина. Изолирующий слой многожильного провода окрашен в светло-голубой колер.

Самодеятельные мастера иногда соединяют нейтраль и заземление, ошибочно считая, что это одно и то же. Опасное заблуждение приводит к печальным последствиям. Нулевая фаза и земельная шина выполняют отличные друг от друга функции.

Различается и окраска. Защитный провод имеет жёлто-зелёный цвет. Подключение шин различного назначения в одну линию категорически запрещено техникой безопасности.

Меры предосторожности

Правильная электропроводка выполняется по регламенту IEC 60445, принятому законодательством Европы в 2010 году. Нормы российского ГОСТа 50462−2009, которые соответствуют международным правилам, указывают цвет проводов «фаза», «ноль» и «земля».

Иногда электрикам приходится работать с сетями, которые смонтированы много лет назад, а план разводки утерян. Отсутствие принципиальной схемы делает бесполезным знание того, как обозначаются ноль и фаза. Задача электрика усложнится, если в цепи использованы провода с цветом изоляции, которая не соответствует ГОСТу.

До начала работ монтажник обязан определить назначение каждой линии с помощью контрольной лампы, индикаторной отвёртки или мультиметра. При прозванивании электрических цепей необходимо соблюдение элементарных правил техники безопасности:

  • манипуляции с индикаторной отвёрткой выполняются одной рукой;
  • свободной рукой нельзя прикасаться к металлическим конструкциям или стенам;
  • работа проводится в присутствии квалифицированного ассистента.

Выяснив, какой провод для чего предназначен, опытный специалист маркирует линии. Для этого используются специальные бирки на клеевой основе или полихлорвиниловые насадки. На поверхность маркировочного материала наносятся условные обозначения на английском языке — n, l или PE. Только после окончания определительных работ приступают к монтажу или ремонту электрического оборудования.

Понимание того, какой смысл имеют на схеме латинские буквы l и n, помогает электрику проводить монтаж и ремонт сети быстрее и качественнее. Кроме того, буквенное обозначение фазы и нуля на схеме, а также цветовая маркировка чётко определяют назначение провода, с которым работает мастер. Это предотвращает несчастные случаи на рабочем месте.

Цвета проводов в электрике: фаза, ноль, земля

Тот кто хоть раз имел дело с проводами и электрикой обратил внимание, что проводники всегда имеют различный цвет изоляции. Сделано это не просто так. Цвета проводов в электрике призваны сделать проще распознавание фазы, нулевого провода и заземления. Все они имеют определенную окраску и при работе легко различаются. О том, каков цвет проводов фаза, ноль, земля и пойдет речь дальше. 

Содержание статьи

Как окрашиваются провода фазы

При работе с проводкой наибольшую опасность представляют фазные провода. Прикосновение к фазе, при определенных обстоятельствах, может стать летальным, потому, наверное, для них выбраны яркие цвета. Вообще, цвета проводов в электрике позволяют быстрее определить которые из пучка проводов наиболее опасны и работать с ними очень аккуратно.

Расцветка фазных проводов

Чаще всего фазные проводники бывают красного или черного цвета, но встречается и другая окраска: коричневый, сиреневый, оранжевый, розовый, фиолетовый, белый, серый. Вот во все эти цвета может быть окрашены фазы. С ними проще будет разобраться, если исключить нулевой провод и землю.

На схемах фазные провода обозначаются латинской (английской) буквой L. При наличии нескольких фаз, к букве добавляют численное обозначение: L1, L2, L3 для трехфазной сети 380 В. В другой версии первая фаза обозначается буквой A, вторая —  B, третья — C.

Цвет провода заземления

По современным стандартам, проводник заземления имеет желто-зеленый цвет. Выглядит это обычно как желтая изоляция с одной или двумя продольными ярко-зелеными полосами. Но встречаются также окраска из поперечных желто-зеленых полос.

Такого цвета могут быть заземление

В некоторых случаях, в кабеле могут быть только желтые или ярко-зеленые проводники. В таком случае «земля» имеет именно такой цвет. Такими же цветами она отображается на схемах — чаще ярко-зеленым, но может быть и желтым. Подписывается на схемах или на аппаратуре «земля» латинскими (английскими) буквами PE. Так же маркируются и контакты, к которым «земляной» провод надо подключать.

Иногда профессионалы называют заземляющий провод «нулевой защитный», но не путайте. Это именно земляной, а защитный он потому, что снижает риск поражения током.

Какого цвета нулевой провод

Ноль или нейтраль имеет синий или голубой цвет, иногда — синий с белой полосой. Другие цвета в электрике для обозначения нуля не используются. Таким он будет в любом кабеле: трехжильном, пятижильном или с большим количеством проводников.

Какого цвета нулевой провод? Синий или голубой

Синим цветом обычно рисуют «ноль» на схемах, а подписывают латинской буквой N. Специалисты называют его рабочим нулем, так как он, в отличие от заземления, участвует в образовании цепи электропитания. При прочтении схемы его часто определяют как «минус», в то время как фаза считается «плюсом».

Как проверить правильность маркировки и расключения

Цвета проводов в электрике призваны ускорить идентификацию проводников, но полагаться только на цвета опасно — их могли подключить неправильно. Потому, перед началом работ, стоит удостовериться в том, правильно ли вы определили их принадлежность.

Берем мультиметр и/или индикаторную отвертку. С отверткой работать просто: при прикосновении к фазе загорается светодиод, вмонтированный в корпус. Так что определить фазные проводники будет легко. Если кабель двухжильный, проблем нет — второй проводник это ноль. Но если провод трехжильный, понадобиться мультиметр или тестер —  с их помощью определим какой из оставшихся двух фазный, какой — нулевой.

Определение фазного провода при помощи индикаторной отвертки

На приборе переключатель выставляем так, чтобы выбранной была шакала более 220 В. Затем берем два щупа, держим их за пластиковые ручки, аккуратно дотрагиваемся металлическим стержнем одного щупа к найденному фазному проводу, вторым — к предполагаемому нулю. На экране должно высветиться 220 В или текущее напряжение. По факту оно может быть значительно ниже — это наши реалии.

Если высветилось 220 В или чуть больше — это ноль, а другой провод — предположительно «земля». Если значение меньше, продолжаем проверку. Одним щупом снова прикасаемся к фазе, вторым — к предполагаемому заземлению. Если показания прибора ниже чем при первом измерении, перед вами «земля» и она должна быть зеленого цвета. Если показания оказались выше, значит где-то напутали при и перед вами «ноль». В такой ситуации есть два варианта: искать где именно неправильно подключили провода (предпочтительнее) или просто двигаться дальше, запомнив или отметив существующее положение.

Итак, запомните, что при прозвонке пары «фаза-ноль» показания мультиметра всегда выше, чем при прозвонке пары «фаза-земля».

И, в завершение, позвольте совет: при прокладке проводки и соединении проводов соединяйте всегда проводники одного цвета, не путайте их. Это может привести к плачевным результатам — в лучшем случае к выходу аппаратуры из строя, но могут быть травмы и пожары.

Расцветки проводки в Америке, Западной Европе. Частный электрик москвич

 

Какие цветовые коды оболочки проводов используются для обозначения в западных странах при монтаже электропроводки

 

Кабели, провода, вся электропроводка, с помощью которой производится электромонтажные работы в доме, квартире в электрощите, при монтаже электроаппаратов имеет цветовую маркировку. Цветовая маркировка электропроводки при распределении переменного и постоянного тока какой-либо ветви цепи обязательно имеет цветовую маркировку.

В некоторых странах все цвета проводов указаны в нормативно-правовых документах, в некоторых странах есть лишь некоторые рекомендации по цвету проводов для электромонтажа. Посмотрим, какие правила цветовой маркировки проводки, то есть цвета изоляции провода, существуют на Западе.

В Европе большинство стран придерживается правил МЭК, Международной Электротехнической комиссии. Мы будем рассматривать те правила, которые используются для расцветки электропроводки переменного тока.

Рассмотрим новые и старые цветовые коды. Старая кодировка не полностью учитывала точное обозначение фаз. Электромонтажные работы сейчас выполняются с учетом новых правил цветовой кодировки, а это более понятно и удобно при электромонтаже.

Кстати, в Европе провод защитного заземления везде обозначается как зеленый с желтой полосой. Цветовые коды электропроводки МЭК, применяемые в большинстве стран Европы:

Функция провода

Буквенное обозначение

Цвет МЭК

Цвет, старый МЭК

Защитное заземление

РЕ

Зеленый с желтой полосой

Зеленый с желтой полосой

Нейтральный, ноль

N

Синий

Синий

Одиночная фаза

L

Коричневый

Коричневый или черный

Линия 1(3 фазы)

L1

Коричневый

Коричневый или черный

Линия 2 (3 фазы)

L2

Черный

Коричневый или черный

Линия 3 (3 фазы)

L3

Серый

Коричневый или черный

 

Так обозначаются цвета электропроводки в Европе. Если производится монтаж электропроводки в доме с трехфазным напряжением, то по цвету провода можно понять какую функцию выполняет провод, какая это фаза или это ноль.

А вот в США цветовая маркировка электропроводки отличается. Там есть маркировка Национального Электрического кода. Провод заземления в Америке или медный оголенный, без изоляции, или зеленый, или зеленый с желтой полосой. Цвета провода черный, красный и синий используются для электропроводки с трехфазным переменным напряжением 120 вольт. Цветовой код коричневый, оранжевый и желтый используется для электропроводки с более высоким переменным напряжением.

Вот цветовые коды электропроводки переменного тока, используемые в США:

Функция провода

Буквенное обозначение

Цвет для 120В

Цвет альтернативный

Защитное заземление

PE

Оголенный медный, зеленый, зелено-желтый, белый

Зеленый

Нейтральный, ноль

N

Белый

Серый

Линия, одиночная фаза

L

Красный или черный

 

Линия (3 фазы)

L1

Черный

Коричневый

Линия (3 фазы)

L2

Красный

Оранжевый

Линия (З фазы)

L3

Синий

Желтый

 

Так что в Штатах ноль в розетке – белый провод, что для нашей российской электропроводки в доме не характерно.

Если вам нужно сделать качественный монтаж электропроводки в доме или квартире, звоните. Я делаем надежную электропроводку.

10.4 Фазовые диаграммы – Химия

Цели обучения

К концу этого раздела вы сможете:

  • Объясните построение и использование типовой фазовой диаграммы
  • Используйте фазовые диаграммы для определения стабильных фаз при заданных температурах и давлениях и для описания фазовых переходов, возникающих в результате изменения этих свойств
  • Описать сверхкритическую жидкую фазу вещества

В предыдущем модуле было описано изменение равновесного давления пара жидкости в зависимости от температуры.Учитывая определение точки кипения, графики зависимости давления пара от температуры показывают, как точка кипения жидкости изменяется с давлением. Также было описано использование кривых нагрева и охлаждения для определения точки плавления (или замерзания) вещества. Выполнение таких измерений в широком диапазоне давлений дает данные, которые могут быть представлены графически в виде фазовой диаграммы. Фазовая диаграмма объединяет графики зависимости давления от температуры для равновесия фазового перехода жидкость-газ, твердое тело-жидкость и твердое тело-газ для вещества.Эти диаграммы показывают физические состояния, которые существуют при определенных условиях давления и температуры, а также обеспечивают зависимость от давления температур фазовых переходов (точки плавления, точки сублимации, точки кипения). Типичная фазовая диаграмма чистого вещества показана на рисунке 1.

Рис. 1. Физическое состояние вещества и температуры его фазовых переходов графически представлены на фазовой диаграмме.

Чтобы проиллюстрировать полезность этих графиков, рассмотрим фазовую диаграмму для воды, показанную на рисунке 2.

Рис. 2. Оси давления и температуры на этой фазовой диаграмме воды приведены не в постоянном масштабе, чтобы проиллюстрировать несколько важных свойств.

Мы можем использовать фазовую диаграмму для определения физического состояния образца воды при определенных условиях давления и температуры. Например, давление 50 кПа и температура -10 ° C соответствуют области диаграммы, обозначенной «лед». В этих условиях вода существует только в твердом виде (лед).Области «воды» соответствуют давление 50 кПа и температура 50 ° C – здесь вода существует только в виде жидкости. При 25 кПа и 200 ° C вода существует только в газообразном состоянии. Обратите внимание, что на фазовой диаграмме H 2 O оси давления и температуры не приведены в постоянном масштабе, чтобы можно было проиллюстрировать некоторые важные особенности, как описано здесь.

Кривая BC на рисунке 2 представляет собой график зависимости давления пара от температуры, как описано в предыдущем модуле этой главы.Эта кривая «жидкость-пар» разделяет жидкую и газообразную области на фазовой диаграмме и обеспечивает точку кипения воды при любом давлении. Например, при 1 атм температура кипения составляет 100 ° C. Обратите внимание, что кривая жидкость-пар заканчивается при температуре 374 ° C и давлении 218 атм, что указывает на то, что вода не может существовать как жидкость выше этой температуры, независимо от давления. По физическим свойствам вода в этих условиях занимает промежуточное положение между ее жидкой и газообразной фазами.Это уникальное состояние вещества называется сверхкритической жидкостью, и эта тема будет описана в следующем разделе этого модуля.

Кривая твердое тело-пар, обозначенная AB на рисунке 2, показывает температуры и давления, при которых лед и водяной пар находятся в равновесии. Эти пары данных температуры и давления соответствуют точкам сублимации или осаждения воды. Если бы мы могли увеличить масштаб линии твердое тело – газ на рисунке 2, мы бы увидели, что лед имеет давление пара около 0,20 кПа при -10 ° C.Таким образом, если мы поместим замороженный образец в вакуум с давлением менее 0,20 кПа, лед возгонится. Это основа для процесса «сублимационной сушки», часто используемого для консервирования пищевых продуктов, таких как мороженое, показанное на Рисунке 3.

Рис. 3. Лиофилизированные продукты, такие как это мороженое, обезвоживаются путем сублимации при давлениях ниже тройной точки для воды. (кредит: ʺlwaoʺ / Flickr)

Кривая твердое тело-жидкость, обозначенная BD, показывает температуру и давление, при которых лед и жидкая вода находятся в равновесии, представляя точки плавления / замерзания воды.Обратите внимание, что эта кривая имеет небольшой отрицательный наклон (сильно преувеличенный для ясности), что указывает на то, что температура плавления воды немного снижается с увеличением давления. Вода – необычное вещество в этом отношении, поскольку большинство веществ демонстрируют повышение температуры плавления с увеличением давления. Такое поведение частично отвечает за движение ледников, как показано на рисунке 4. Дно ледника испытывает огромное давление из-за своего веса, которое может растопить часть льда, образуя слой жидкой воды, на котором ледник может легче скользить.

Рис. 4. Огромное давление под ледниками приводит к частичному таянию, в результате чего образуется слой воды, обеспечивающий смазку, способствующую движению ледников. На этом спутниковом снимке показан приближающийся край ледника Перито-Морено в Аргентине. (предоставлено NASA)

Точка пересечения всех трех кривых обозначена буквой B на рисунке 2. При давлении и температуре, представленных этой точкой, все три фазы воды сосуществуют в равновесии. Эта пара данных температура-давление называется тройной точкой .При давлениях ниже тройной точки вода не может существовать в виде жидкости независимо от температуры.

Пример 1

Определение состояния воды
Используя фазовую диаграмму для воды, приведенную на рисунке 2, определите состояние воды при следующих температурах и давлениях:

(а) −10 ° C и 50 кПа

(б) 25 ° C и 90 кПа

(c) 50 ° C и 40 кПа

(d) 80 ° C и 5 кПа

(e) −10 ° C и 0,3 кПа

(f) 50 ° C и 0.3 кПа

Раствор
Используя фазовую диаграмму для воды, мы можем определить, что состояние воды при каждой заданной температуре и давлении следующее: (а) твердое; (б) жидкость; (c) жидкость; (г) газ; (д) твердые; (е) газ.

Проверьте свои знания
Какие фазовые изменения могут претерпевать вода при изменении температуры, если давление поддерживается на уровне 0,3 кПа? Если давление удерживается на уровне 50 кПа?

Ответ:

При 0,3 кПа: [латекс] \ text {s} \; {\ longrightarrow} \; \ text {g} [/ latex] при –58 ° C.При 50 кПа: [латекс] \ text {s} \; {\ longrightarrow} \; \ text {l} [/ latex] при 0 ° C, [латекс] \ text {l} \; {\ longrightarrow} \; \ text {g} [/ latex] при 78 ° C

Рассмотрим фазовую диаграмму для диоксида углерода, показанную на рисунке 5, в качестве другого примера. Кривая твердое тело-жидкость имеет положительный наклон, указывая на то, что температура плавления CO 2 увеличивается с давлением, как и для большинства веществ (вода является заметным исключением, как описано ранее). Обратите внимание, что тройная точка намного выше 1 атм, что указывает на то, что диоксид углерода не может существовать в виде жидкости в условиях атмосферного давления.Вместо этого охлаждение газообразного диоксида углерода до 1 атм приводит к его осаждению в твердом состоянии. Точно так же твердый диоксид углерода не плавится при давлении 1 атм, а вместо этого сублимируется с образованием газообразного CO 2 . Наконец, обратите внимание, что критическая точка для углекислого газа наблюдается при относительно умеренных температуре и давлении по сравнению с водой.

Рис. 5. Оси давления и температуры на этой фазовой диаграмме диоксида углерода не приведены в постоянном масштабе, чтобы проиллюстрировать несколько важных свойств.

Пример 2

Определение состояния диоксида углерода
Используя фазовую диаграмму для диоксида углерода, показанную на рисунке 5, определите состояние CO 2 при следующих температурах и давлениях:

(а) −30 ° C и 2000 кПа

(б) −60 ° C и 1000 кПа

(c) −60 ° C и 100 кПа

(d) 20 ° C и 1500 кПа

(e) 0 ° C и 100 кПа

(f) 20 ° C и 100 кПа

Раствор
Используя приведенную фазовую диаграмму для диоксида углерода, мы можем определить, что состояние CO 2 при каждой заданной температуре и давлении следующее: (a) жидкость; (б) твердые; (c) газ; (г) жидкость; е) газ; (е) газ.

Проверьте свои знания
Определите фазовые изменения, которым углекислый газ претерпевает при изменении его температуры, тем самым поддерживая постоянное давление на уровне 1500 кПа? При 500 кПа? При каких примерных температурах происходят эти фазовые переходы?

Ответ:

при 1500 кПа: [латекс] \ text {s} \; {\ longrightarrow} \; \ text {l} [/ latex] при -45 ° C, [латекс] \ text {l} \; {\ longrightarrow} \; \ text {g} [/ latex] при –10 ° C;

при 500 кПа: [латекс] \ text {s} \; {\ longrightarrow} \; \ text {g} [/ latex] при –58 ° C

Если мы поместим образец воды в герметичный контейнер при 25 ° C, удалим воздух и позволим установиться равновесию испарения и конденсации, у нас останется смесь жидкой воды и водяного пара с давлением 0.03 атм. Четко прослеживается четкая граница между более плотной жидкостью и менее плотным газом. По мере увеличения температуры давление водяного пара увеличивается, как это описано кривой жидкость-газ на фазовой диаграмме для воды (рис. 2), и сохраняется двухфазное равновесие жидкой и газообразной фаз. При температуре 374 ° C давление пара повысилось до 218 атм, и любое дальнейшее повышение температуры приводит к исчезновению границы между жидкой и паровой фазами.Вся вода в контейнере теперь находится в одной фазе, физические свойства которой являются промежуточными между газообразным и жидким состояниями. Эта фаза вещества называется сверхкритической жидкостью , а температура и давление, выше которых существует эта фаза, являются критической точкой (рис. 6). Выше критической температуры газ не может быть сжижен независимо от того, какое давление приложено. Давление, необходимое для сжижения газа при его критической температуре, называется критическим давлением.Критические температуры и критические давления некоторых распространенных веществ приведены в таблице 6.

Вещество Критическая температура (К) Критическое давление (атм.)
водород 33,2 12,8
азот 126,0 33,5
кислород 154,3 49,7
диоксид углерода 304.2 73,0
аммиак 405,5 111,5
диоксид серы 430,3 77,7
вода 647,1 217,7
Таблица 6.
Рис. 6. (a) Герметичный контейнер с жидким диоксидом углерода немного ниже его критической точки нагревается, что приводит к (b) образованию сверхкритической жидкой фазы.Охлаждение сверхкритической жидкости снижает ее температуру и давление ниже критической точки, что приводит к восстановлению отдельных жидких и газообразных фаз (c и d). Цветные поплавки показывают разницу в плотности между жидким, газообразным и сверхкритическим состояниями текучей среды. (кредит: модификация работы «mrmrobin» / YouTube)

Понаблюдайте за переходом из жидкости в сверхкритическую для диоксида углерода.

Подобно газу, сверхкритическая жидкость будет расширяться и заполнять контейнер, но ее плотность намного больше, чем типичная плотность газа, обычно близкая к плотности жидкости.Подобно жидкостям, эти жидкости способны растворять нелетучие растворенные вещества. Однако они практически не проявляют поверхностного натяжения и обладают очень низкой вязкостью, поэтому они могут более эффективно проникать в очень маленькие отверстия в твердой смеси и удалять растворимые компоненты. Эти свойства делают сверхкритические жидкости чрезвычайно полезными растворителями для широкого спектра применений. Например, сверхкритический диоксид углерода стал очень популярным растворителем в пищевой промышленности, который используется для удаления кофеина из кофе, удаления жиров из картофельных чипсов и экстракции вкусовых и ароматических соединений из цитрусовых масел.Это нетоксично, относительно недорого и не считается загрязняющим веществом. После использования CO 2 можно легко восстановить, снизив давление и собрав образовавшийся газ.

Пример 3

Критическая температура углекислого газа
Если мы встряхнем углекислый огнетушитель в прохладный день (18 ° C), мы услышим, как внутри цилиндра плещется жидкий CO 2 . Однако в жаркий летний день (35 ° C) в этом же цилиндре нет жидкости.Объясните эти наблюдения.

Раствор
В прохладный день температура CO 2 ниже критической температуры CO 2 , 304 K или 31 ° C (Таблица 6), поэтому жидкий CO 2 присутствует в цилиндр. В жаркий день температура CO 2 превышает его критическую температуру 31 ° C. Выше этой температуры никакое давление не может привести к сжижению CO 2 , поэтому в огнетушителе нет жидкого CO 2 .

Проверьте свои знания
Аммиак можно сжижать путем сжатия при комнатной температуре; кислород не может быть сжижен в этих условиях. Почему два газа ведут себя по-разному?

Ответ:

Критическая температура аммиака составляет 405,5 К, что выше комнатной температуры. Критическая температура кислорода ниже комнатной; таким образом кислород нельзя сжижать при комнатной температуре.

Кофе без кофеина с использованием сверхкритического CO

2

Кофе – второй по популярности товар в мире после нефти.Во всем мире люди любят кофе за аромат и вкус. Многие из нас также зависят от одного компонента кофе – кофеина – который помогает нам двигаться утром или оставаться бодрым днем. Но в конце дня стимулирующий эффект кофе может помешать вам уснуть, поэтому вы можете пить кофе без кофеина вечером.

С начала 1900-х годов для обеззараживания кофе использовалось множество методов. У всех есть свои преимущества и недостатки, и все они зависят от физических и химических свойств кофеина.Поскольку кофеин представляет собой несколько полярную молекулу, он хорошо растворяется в воде, полярной жидкости. Однако, поскольку многие из более чем 400 соединений, которые влияют на вкус и аромат кофе, также растворяются в H 2 O, процессы декофеинизации горячей водой также могут удалять некоторые из этих соединений, что отрицательно сказывается на запахе и вкусе кофе без кофеина. Дихлорметан (CH 2 Cl 2 ) и этилацетат (CH 3 CO 2 C 2 H 5 ) имеют сходную полярность с кофеином и поэтому являются очень эффективными растворителями для экстракции кофеина, но оба также удаляют некоторые компоненты вкуса и аромата, а их использование требует длительного времени экстракции и очистки.Поскольку оба эти растворителя токсичны, высказывались опасения по поводу воздействия остаточного растворителя, остающегося в кофе без кофеина.

Сверхкритическая флюидная экстракция с использованием диоксида углерода в настоящее время широко используется как более эффективный и экологически безопасный метод удаления кофеина (рис. 7). При температурах выше 304,2 К и давлениях выше 7376 кПа CO 2 представляет собой сверхкритическую жидкость, обладающую свойствами как газа, так и жидкости. Как газ, он проникает глубоко в кофейные зерна; подобно жидкости, он эффективно растворяет определенные вещества.Сверхкритическая экстракция углекислым газом из пропаренных кофейных зерен удаляет 97-99% кофеина, оставляя неизменными вкусовые и ароматические соединения кофе. Поскольку CO 2 представляет собой газ при стандартных условиях, его удаление из экстрагированных кофейных зерен легко осуществляется, как и извлечение кофеина из экстракта. Кофеин, полученный из кофейных зерен с помощью этого процесса, является ценным продуктом, который впоследствии можно использовать в качестве добавки к другим продуктам питания или лекарствам.

Рисунок 7. (a) Молекулы кофеина имеют как полярные, так и неполярные области, что делает его растворимым в растворителях различной полярности. (b) На схеме показан типичный процесс удаления кофеина с участием сверхкритического диоксида углерода.

Условия температуры и давления, при которых вещество находится в твердом, жидком и газообразном состояниях, суммированы на фазовой диаграмме для этого вещества. Фазовые диаграммы представляют собой совмещенные графики трех кривых равновесия давления-температуры: твердое тело-жидкость, жидкость-газ и твердое тело-газ.Эти кривые представляют отношения между температурами фазовых переходов и давлениями. Точка пересечения всех трех кривых представляет тройную точку вещества – температуру и давление, при которых все три фазы находятся в равновесии. При давлениях ниже тройной точки вещество не может существовать в жидком состоянии независимо от его температуры. Конец кривой жидкость-газ представляет собой критическую точку вещества, давление и температуру, выше которых жидкая фаза не может существовать.

Химия: упражнения в конце главы

  1. По фазовой диаграмме воды (рисунок 2) определите состояние воды при:

    (а) 35 ° C и 85 кПа

    (б) −15 ° C и 40 кПа

    (в) −15 ° C и 0,1 кПа

    (d) 75 ° C и 3 кПа

    (e) 40 ° C и 0,1 кПа

    (f) 60 ° C и 50 кПа

  2. Какие фазовые изменения произойдут, когда вода подвергнется воздействию переменного давления при постоянной температуре 0,005 ° C? При 40 ° C? При -40 ° С?
  3. Скороварки позволяют еде готовиться быстрее, поскольку более высокое давление внутри скороварки увеличивает температуру кипения воды.В конкретной скороварке есть предохранительный клапан, который настроен на выпуск пара, если давление превышает 3,4 атм. Какая приблизительная максимальная температура может быть достигнута внутри этой скороварки? Объясните свои рассуждения.
  4. Из фазовой диаграммы диоксида углерода на рисунке 5 определите состояние CO 2 при:

    (a) 20 ° C и 1000 кПа

    (б) 10 ° C и 2000 кПа

    (c) 10 ° C и 100 кПа

    (г) −40 ° C и 500 кПа

    (e) −80 ° C и 1500 кПа

    (f) −80 ° C и 10 кПа

  5. Определить фазовые изменения, которым подвергается углекислый газ при изменении давления, если температура поддерживается на уровне –50 ° C? Если поддерживать температуру -40 ° C? При 20 ° C? (См. Фазовую диаграмму на рисунке 5.)
  6. Рассмотрим баллон, содержащий смесь жидкой двуокиси углерода в равновесии с газообразной двуокисью углерода при начальном давлении 65 атм и температуре 20 ° C. Нарисуйте график, изображающий изменение давления в цилиндре со временем, когда газообразный диоксид углерода выделяется при постоянной температуре.
  7. Сухой лед, CO 2 ( с ), не тает при атмосферном давлении. Он сублимируется при температуре −78 ° C. При каком минимальном давлении CO 2 ( с ) расплавится с образованием CO 2 ( l )? Примерно при какой температуре это произойдет? (См. Диаграмму фазы на рисунке 5.)
  8. Если сильный шторм приводит к отключению электричества, возможно, потребуется использовать веревку для белья для сушки белья. Во многих частях страны в разгар зимы одежда быстро замерзает, когда ее вешают на веревку. Если не пойдет снег, они все равно высохнут? Поясните свой ответ.
  9. Можно ли сжижать азот при комнатной температуре (около 25 ° C)? Можно ли сжижать диоксид серы при комнатной температуре? Объясни свои ответы.
  10. Элементарный углерод состоит из одной газовой фазы, одной жидкой фазы и двух различных твердых фаз, как показано на фазовой диаграмме:

    (a) На фазовой диаграмме отметьте газовую и жидкую области.

    (б) Графит – наиболее стабильная фаза углерода при нормальных условиях. На фазовой диаграмме отметьте графитовую фазу.

    (c) Если графит при нормальных условиях нагревается до 2500 K, а давление повышается до 10 10 Па, он превращается в алмаз. Обозначьте алмазную фазу.

    (d) Обведите каждую тройную точку на фазовой диаграмме.

    (e) В какой фазе находится углерод при 5000 K и 10 8 Па?

    (f) Если температура образца углерода повышается с 3000 K до 5000 K при постоянном давлении 10 6 Па, какой фазовый переход происходит, если он есть?

Глоссарий

критическая точка
температура и давление, выше которых газ не может конденсироваться в жидкость
фазовая диаграмма
График давление-температура, обобщающий условия, при которых могут существовать фазы вещества
сверхкритическая жидкость
вещество при температуре и давлении выше его критической точки; обладает промежуточными свойствами между газообразным и жидким состояниями
тройная точка
температура и давление, при которых паровая, жидкая и твердая фазы вещества находятся в равновесии

Решения

Ответы на упражнения в конце главы по химии

2.При низком давлении и 0,005 ° C вода представляет собой газ. Когда давление увеличивается до 4,6 торр, вода становится твердой; по мере увеличения давления он становится жидкостью. При 40 ° C вода при низком давлении представляет собой пар; при давлениях выше примерно 75 торр он превращается в жидкость. При -40 ° C вода переходит из газа в твердое тело, когда давление увеличивается выше очень низких значений.

4. (а) жидкость; (б) твердые; (c) газ; (г) газ; е) газ; (е) газ

6.

8.Да, лед будет возвышенным, хотя на это может потребоваться несколько дней. Лед имеет небольшое давление пара, и некоторые молекулы льда образуют газ и выходят из кристаллов льда. Со временем все больше и больше твердого вещества превращается в газ, пока в конечном итоге одежда не высохнет.

10. (а)

(б)

(в)

(г)

(д) жидкая фаза (е) сублимация

Фазовые диаграммы

| Химия

ЦЕЛИ ОБУЧЕНИЯ

К концу этого раздела вы сможете:

  • Объясните построение и использование типовой фазовой диаграммы
  • Используйте фазовые диаграммы для определения стабильных фаз при заданных температурах и давлениях и для описания фазовых переходов, возникающих в результате изменения этих свойств
  • Описать сверхкритическую жидкую фазу вещества

Рисунок 1.Физическое состояние вещества и температуры его фазовых переходов графически представлены на фазовой диаграмме.

В предыдущем модуле было описано изменение равновесного давления пара жидкости в зависимости от температуры. Учитывая определение точки кипения, графики зависимости давления пара от температуры показывают, как точка кипения жидкости изменяется с давлением. Также было описано использование кривых нагрева и охлаждения для определения точки плавления (или замерзания) вещества.Выполнение таких измерений в широком диапазоне давлений дает данные, которые могут быть представлены графически в виде фазовой диаграммы. Фазовая диаграмма объединяет графики зависимости давления от температуры для равновесия фазового перехода жидкость-газ, твердое тело-жидкость и твердое тело-газ для вещества. Эти диаграммы показывают физические состояния, которые существуют при определенных условиях давления и температуры, а также обеспечивают зависимость от давления температур фазовых переходов (точки плавления, точки сублимации, точки кипения).Типичная фазовая диаграмма чистого вещества показана на рисунке 1.

Чтобы проиллюстрировать полезность этих графиков, рассмотрим фазовую диаграмму для воды, показанную на рисунке 2.

Рис. 2. Оси давления и температуры на этой фазовой диаграмме воды построены не в постоянном масштабе, чтобы проиллюстрировать несколько важных свойств.

Мы можем использовать фазовую диаграмму для определения физического состояния образца воды при определенных условиях давления и температуры.Например, давление 50 кПа и температура -10 ° C соответствуют области диаграммы, обозначенной «лед». В этих условиях вода существует только в твердом виде (лед). Области «воды» соответствуют давление 50 кПа и температура 50 ° C – здесь вода существует только в виде жидкости. При 25 кПа и 200 ° C вода существует только в газообразном состоянии. Обратите внимание, что на фазовой диаграмме H 2 O оси давления и температуры не приведены в постоянном масштабе, чтобы можно было проиллюстрировать некоторые важные особенности, как описано здесь.

Кривая BC на рисунке 2 представляет собой график зависимости давления пара от температуры, как описано в предыдущем модуле этой главы. Эта кривая «жидкость-пар» разделяет жидкую и газообразную области на фазовой диаграмме и обеспечивает точку кипения воды при любом давлении. Например, при 1 атм температура кипения составляет 100 ° C. Обратите внимание, что кривая жидкость-пар заканчивается при температуре 374 ° C и давлении 218 атм, что указывает на то, что вода не может существовать как жидкость выше этой температуры, независимо от давления.По физическим свойствам вода в этих условиях занимает промежуточное положение между ее жидкой и газообразной фазами. Это уникальное состояние вещества называется сверхкритической жидкостью, и эта тема будет описана в следующем разделе этого модуля.

Рис. 3 Лиофилизированные продукты, такие как это мороженое, обезвоживаются путем сублимации при давлениях ниже тройной точки для воды. (кредит: ʺlwaoʺ / Flickr)

Кривая твердое тело-пар, обозначенная AB на рисунке 2, показывает температуры и давления, при которых лед и водяной пар находятся в равновесии.Эти пары данных температуры и давления соответствуют точкам сублимации или осаждения воды. Если бы мы могли увеличить масштаб линии твердое тело – газ на рисунке 2, мы бы увидели, что лед имеет давление пара около 0,20 кПа при -10 ° C. Таким образом, если мы поместим замороженный образец в вакуум с давлением менее 0,20 кПа, лед возгонится. Это основа для процесса «сублимационной сушки», часто используемого для консервирования пищевых продуктов, таких как мороженое, показанное на Рисунке 3.

Кривая твердое тело-жидкость, обозначенная BD, показывает температуру и давление, при которых лед и жидкая вода находятся в равновесии, представляя точки плавления / замерзания воды.Обратите внимание, что эта кривая имеет небольшой отрицательный наклон (сильно преувеличенный для ясности), что указывает на то, что температура плавления воды немного снижается с увеличением давления. Вода – необычное вещество в этом отношении, поскольку большинство веществ демонстрируют повышение температуры плавления с увеличением давления. Такое поведение частично отвечает за движение ледников, как показано на рисунке 4. Дно ледника испытывает огромное давление из-за своего веса, которое может растопить часть льда, образуя слой жидкой воды, на котором ледник может легче скользить.

Рис. 4. Огромное давление под ледниками приводит к частичному таянию, в результате чего образуется слой воды, обеспечивающий смазку, способствующую движению ледников. На этом спутниковом снимке показан приближающийся край ледника Перито-Морено в Аргентине. (кредит: НАСА)

Точка пересечения всех трех кривых обозначена буквой B на рисунке 2. При давлении и температуре, представленных этой точкой, все три фазы воды сосуществуют в равновесии. Эта пара данных температура-давление называется тройной точкой .При давлениях ниже тройной точки вода не может существовать в виде жидкости независимо от температуры.

Пример 1

Определение состояния воды

Используя фазовую диаграмму для воды, приведенную на рисунке 10.30, определите состояние воды при следующих температурах и давлениях:

(а) −10 ° C и 50 кПа

(б) 25 ° C и 90 кПа

(c) 50 ° C и 40 кПа

(d) 80 ° C и 5 кПа

(e) −10 ° C и 0.3 кПа

(f) 50 ° C и 0,3 кПа

Решение

Используя фазовую диаграмму для воды, мы можем определить, что состояние воды при каждой заданной температуре и давлении следующее: (а) твердое; (б) жидкость; (c) жидкость; (г) газ; (д) твердые; (е) газ.

Проверьте свои знания

Какие фазовые изменения могут претерпеть вода при изменении температуры, если давление поддерживается на уровне 0,3 кПа? Если давление удерживается на уровне 50 кПа?

Ответ : на 0.3 кПа: [латекс] \ text {s} \ longrightarrow \ text {g} [/ latex] при –58 ° C. При 50 кПа: [латекс] \ text {s} \ longrightarrow \ text {l} [/ latex] при 0 ° C, l ⟶ г при 78 ° C

Рассмотрим фазовую диаграмму для диоксида углерода, показанную на рисунке 5, в качестве другого примера. Кривая твердое тело-жидкость имеет положительный наклон, указывая на то, что температура плавления CO 2 увеличивается с давлением, как и для большинства веществ (вода является заметным исключением, как описано ранее). Обратите внимание, что тройная точка намного выше 1 атм, что указывает на то, что диоксид углерода не может существовать в виде жидкости в условиях атмосферного давления.Вместо этого охлаждение газообразного диоксида углерода до 1 атм приводит к его осаждению в твердом состоянии. Точно так же твердый диоксид углерода не плавится при давлении 1 атм, а вместо этого сублимируется с образованием газообразного CO 2 . Наконец, обратите внимание, что критическая точка для углекислого газа наблюдается при относительно умеренных температуре и давлении по сравнению с водой.

Рис. 5. Оси давления и температуры на этой фазовой диаграмме диоксида углерода не показаны в постоянном масштабе, чтобы проиллюстрировать несколько важных свойств.

Пример 2

Определение состояния диоксида углерода

Используя фазовую диаграмму для диоксида углерода, показанную на рисунке 5, определите состояние CO 2 при следующих температурах и давлениях:

(а) −30 ° C и 2000 кПа

(б) −60 ° C и 1000 кПа

(c) −60 ° C и 100 кПа

(d) 20 ° C и 1500 кПа

(e) 0 ° C и 100 кПа

(f) 20 ° C и 100 кПа

Решение

Используя приведенную фазовую диаграмму для диоксида углерода, мы можем определить, что состояние CO 2 при каждой заданной температуре и давлении является следующим: (a) жидкий; (б) твердые; (c) газ; (г) жидкость; е) газ; (е) газ.

Проверьте свои знания

Определить фазовые изменения, которым диоксид углерода претерпевает при изменении его температуры, таким образом поддерживая его давление постоянным на уровне 1500 кПа? При 500 кПа? При каких примерных температурах происходят эти фазовые переходы?

Ответ : при 1500 кПа: [латекс] \ text {s} \ longrightarrow \ text {l} [/ latex] при -45 ° C, [латекс] \ text {l} \ longrightarrow \ text {g} [ / латекс] при -10 ° С; при 500 кПа: [латекс] \ text {s} \ longrightarrow \ text {g} [/ latex] при –58 ° C

Сверхкритические жидкости

Если мы поместим образец воды в герметичный контейнер при 25 ° C, удалим воздух и позволим установиться равновесию испарения и конденсации, у нас останется смесь жидкой воды и водяного пара с давлением 0.03 атм. Четко прослеживается четкая граница между более плотной жидкостью и менее плотным газом. По мере увеличения температуры давление водяного пара увеличивается, как это описано кривой жидкость-газ на фазовой диаграмме для воды (рис. 2), и сохраняется двухфазное равновесие жидкой и газообразной фаз. При температуре 374 ° C давление пара повысилось до 218 атм, и любое дальнейшее повышение температуры приводит к исчезновению границы между жидкой и паровой фазами.Вся вода в контейнере теперь находится в одной фазе, физические свойства которой являются промежуточными между газообразным и жидким состояниями. Эта фаза вещества называется сверхкритической жидкостью , а температура и давление, выше которых эта фаза существует, являются критической точкой . Выше критической температуры газ не может быть сжижен независимо от того, какое давление приложено. Давление, необходимое для сжижения газа при его критической температуре, называется критическим давлением.Критические температуры и критические давления некоторых распространенных веществ приведены в таблице 1.

Таблица 1.
Вещество Критическая температура (К) Критическое давление (атм.)
водород 33,2 12,8
азот 126,0 33,5
кислород 154,3 49,7
диоксид углерода 304.2 73,0
аммиак 405,5 111,5
диоксид серы 430,3 77,7
вода 647,1 217,7

Рис. 6. (a) Герметичный контейнер с жидким диоксидом углерода немного ниже его критической точки нагревается, что приводит к (b) образованию сверхкритической жидкой фазы. Охлаждение сверхкритической жидкости снижает ее температуру и давление ниже критической точки, что приводит к восстановлению отдельных жидких и газообразных фаз (c и d).Цветные поплавки показывают разницу в плотности между жидким, газообразным и сверхкритическим состояниями текучей среды. (кредит: модификация работы «mrmrobin» / YouTube)

Понаблюдайте за переходом из жидкости в сверхкритическую жидкость для диоксида углерода в этом видео.

Подобно газу, сверхкритическая жидкость будет расширяться и заполнять контейнер, но ее плотность намного больше, чем типичная плотность газа, обычно близкая к плотности жидкости. Подобно жидкостям, эти жидкости способны растворять нелетучие растворенные вещества.Однако они практически не проявляют поверхностного натяжения и обладают очень низкой вязкостью, поэтому они могут более эффективно проникать в очень маленькие отверстия в твердой смеси и удалять растворимые компоненты. Эти свойства делают сверхкритические жидкости чрезвычайно полезными растворителями для широкого спектра применений. Например, сверхкритический диоксид углерода стал очень популярным растворителем в пищевой промышленности, который используется для удаления кофеина из кофе, удаления жиров из картофельных чипсов и экстракции вкусовых и ароматических соединений из цитрусовых масел.Это нетоксично, относительно недорого и не считается загрязняющим веществом. После использования CO 2 можно легко восстановить, снизив давление и собрав образовавшийся газ.

Пример 3

Критическая температура диоксида углерода

Если встряхнуть углекислый огнетушитель в прохладный день (18 ° C), мы услышим, как внутри цилиндра плещется жидкий CO 2 . Однако в жаркий летний день (35 ° C) в этом же цилиндре нет жидкости.Объясните эти наблюдения.

Решение

В прохладный день температура CO 2 ниже критической температуры CO 2 , 304 K или 31 ° C (Таблица 10.3), поэтому в баллоне присутствует жидкий CO 2 . В жаркий день температура CO 2 превышает его критическую температуру 31 ° C. Выше этой температуры никакое давление не может привести к сжижению CO 2 , поэтому в огнетушителе нет жидкого CO 2 .

Проверьте свои знания

Аммиак можно сжижать путем сжатия при комнатной температуре; кислород не может быть сжижен в этих условиях. Почему два газа ведут себя по-разному?

Ответ : Критическая температура аммиака составляет 405,5 К, что выше комнатной температуры. Критическая температура кислорода ниже комнатной; таким образом кислород нельзя сжижать при комнатной температуре.

Кофе без кофеина с использованием сверхкритического CO

2

Кофе – второй по популярности товар в мире после нефти.Во всем мире люди любят кофе за аромат и вкус. Многие из нас также зависят от одного компонента кофе – кофеина – который помогает нам двигаться утром или оставаться бодрым днем. Но в конце дня стимулирующий эффект кофе может помешать вам уснуть, поэтому вы можете пить кофе без кофеина вечером.

С начала 1900-х годов для обеззараживания кофе использовалось множество методов. У всех есть свои преимущества и недостатки, и все они зависят от физических и химических свойств кофеина.Поскольку кофеин представляет собой несколько полярную молекулу, он хорошо растворяется в воде, полярной жидкости. Однако, поскольку многие из более чем 400 соединений, которые влияют на вкус и аромат кофе, также растворяются в H 2 O, процессы декофеинизации горячей водой также могут удалять некоторые из этих соединений, что отрицательно сказывается на запахе и вкусе кофе без кофеина. Дихлорметан (CH 2 Cl 2 ) и этилацетат (CH 3 CO 2 C 2 H 5 ) имеют сходную полярность с кофеином и поэтому являются очень эффективными растворителями для экстракции кофеина, но оба также удаляют некоторые компоненты вкуса и аромата, а их использование требует длительного времени экстракции и очистки.Поскольку оба эти растворителя токсичны, высказывались опасения по поводу воздействия остаточного растворителя, остающегося в кофе без кофеина.

Сверхкритическая флюидная экстракция с использованием диоксида углерода в настоящее время широко используется как более эффективный и экологически безопасный метод удаления кофеина (рис. 7). При температурах выше 304,2 К и давлениях выше 7376 кПа CO 2 представляет собой сверхкритическую жидкость, обладающую свойствами как газа, так и жидкости. Как газ, он проникает глубоко в кофейные зерна; подобно жидкости, он эффективно растворяет определенные вещества.Сверхкритическая экстракция углекислым газом из пропаренных кофейных зерен удаляет 97-99% кофеина, оставляя неизменными вкусовые и ароматические соединения кофе. Поскольку CO 2 представляет собой газ при стандартных условиях, его удаление из экстрагированных кофейных зерен легко осуществляется, как и извлечение кофеина из экстракта. Кофеин, полученный из кофейных зерен с помощью этого процесса, является ценным продуктом, который впоследствии можно использовать в качестве добавки к другим продуктам питания или лекарствам.

Рисунок 7.(а) Молекулы кофеина имеют как полярные, так и неполярные области, что делает его растворимым в растворителях различной полярности. (b) На схеме показан типичный процесс удаления кофеина с участием сверхкритического диоксида углерода.

Ключевые концепции и резюме

Условия температуры и давления, при которых вещество находится в твердом, жидком и газообразном состояниях, суммированы на фазовой диаграмме для этого вещества. Фазовые диаграммы представляют собой совмещенные графики трех кривых равновесия давления-температуры: твердое тело-жидкость, жидкость-газ и твердое тело-газ.Эти кривые представляют отношения между температурами фазовых переходов и давлениями. Точка пересечения всех трех кривых представляет тройную точку вещества – температуру и давление, при которых все три фазы находятся в равновесии. При давлениях ниже тройной точки вещество не может существовать в жидком состоянии независимо от его температуры. Конец кривой жидкость-газ представляет собой критическую точку вещества, давление и температуру, выше которых жидкая фаза не может существовать.

Chemsitry Упражнения в конце главы

  1. По фазовой диаграмме воды (рисунок 2) определите состояние воды при:
    1. 35 ° C и 85 кПа
    2. −15 ° C и 40 кПа
    3. −15 ° C и 0,1 кПа
    4. 75 ° C и 3 кПа
    5. 40 ° C и 0,1 кПа
    6. 60 ° C и 50 кПа
  2. Какие фазовые изменения произойдут, когда вода подвергнется воздействию переменного давления при постоянной температуре 0,005 ° C? При 40 ° C? При -40 ° С?
  3. Скороварки позволяют еде готовиться быстрее, поскольку более высокое давление внутри скороварки увеличивает температуру кипения воды.В конкретной скороварке есть предохранительный клапан, который настроен на выпуск пара, если давление превышает 3,4 атм. Какая приблизительная максимальная температура может быть достигнута внутри этой скороварки? Объясните свои рассуждения.
  4. Из фазовой диаграммы диоксида углерода на рисунке 5 определите состояние CO 2 при:
    1. 20 ° C и 1000 кПа
    2. 10 ° C и 2000 кПа
    3. 10 ° C и 100 кПа
    4. −40 ° C и 500 кПа
    5. −80 ° C и 1500 кПа
    6. −80 ° C и 10 кПа
  5. Определить фазовые изменения, которым подвергается углекислый газ при изменении давления, если температура поддерживается на уровне –50 ° C? Если поддерживать температуру -40 ° C? При 20 ° C? (См. Фазовую диаграмму на рисунке 5).
  6. Рассмотрим баллон, содержащий смесь жидкой двуокиси углерода в равновесии с газообразной двуокисью углерода при начальном давлении 65 атм и температуре 20 ° C. Нарисуйте график, изображающий изменение давления в цилиндре со временем, когда газообразный диоксид углерода выделяется при постоянной температуре.
  7. Сухой лед, CO 2 ( s ), не тает при атмосферном давлении. Он сублимируется при температуре −78 ° C. При каком минимальном давлении CO 2 ( s ) расплавится с образованием CO 2 ( l )? Примерно при какой температуре это произойдет? (См. Диаграмму фазы на рисунке 5.)
  8. Если сильный шторм приводит к отключению электричества, возможно, потребуется использовать веревку для белья для сушки белья. Во многих частях страны в разгар зимы одежда быстро замерзает, когда ее вешают на веревку. Если не пойдет снег, они все равно высохнут? Поясните свой ответ.
  9. Можно ли сжижать азот при комнатной температуре (около 25 ° C)? Можно ли сжижать диоксид серы при комнатной температуре? Объясни свои ответы.
  10. Элементарный углерод состоит из одной газовой фазы, одной жидкой фазы и трех различных твердых фаз, как показано на фазовой диаграмме:
    1. На фазовой диаграмме отметьте газовую и жидкую области.
    2. Графит – наиболее стабильная фаза углерода при нормальных условиях. На фазовой диаграмме отметьте графитовую фазу.
    3. Если графит при нормальных условиях нагреть до 2500 К при повышении давления до 10 5 атм, он превращается в алмаз. Обозначьте алмазную фазу.
    4. Обведите каждую тройную точку на фазовой диаграмме.
    5. В какой фазе находится углерод при 4000 К и 10 5 атм?
    6. Если температура образца углерода повышается с 4000 K до 5000 K при постоянном давлении 10 2 атм, какой фазовый переход происходит, если он есть?
Избранные ответы

2.При низком давлении и 0,005 ° C вода представляет собой газ. Когда давление увеличивается до 4,6 торр, вода становится твердой; по мере увеличения давления он становится жидкостью. При 40 ° C вода при низком давлении представляет собой пар; при давлениях выше примерно 75 торр он превращается в жидкость. При -40 ° C вода переходит из газа в твердое тело, когда давление увеличивается выше очень низких значений.

4. (а) жидкость; (б) твердые; (c) газ; (г) газ; е) газ; (е) газ

6.

8. Да, лед будет возвышенным, хотя на это может потребоваться несколько дней.Лед имеет небольшое давление пара, и некоторые молекулы льда образуют газ и выходят из кристаллов льда. Со временем все больше и больше твердого вещества превращается в газ, пока в конечном итоге одежда не высохнет.

10. (а)

(б)

(в)

(г)

(д) жидкая фаза

(е) сублимация

Глоссарий

критическая точка
температура и давление, выше которых газ не может конденсироваться в жидкость

фазовая диаграмма
диаграмма давление-температура, обобщающая условия, при которых могут существовать фазы вещества

сверхкритическая жидкость
Вещество при температуре и давлении выше его критической точки; обладает промежуточными свойствами между газообразным и жидким состояниями

тройная точка
температура и давление, при которых паровая, жидкая и твердая фазы вещества находятся в равновесии

Глава 7.7. Фазовые диаграммы – Chemistry LibreTexts

  1. Последнее обновление
  2. Сохранить как PDF
  1. Обратите внимание на образец
  2. Общие характеристики фазовой диаграммы
  3. Фазовая диаграмма воды
  4. Фазовая диаграмма диоксида углерода
    1. Пример 7.71
    2. Резюме
    3. Ключевые выводы
    4. Концептуальные проблемы
    5. Ответ
    6. Численные задачи
    7. Участники

Цель обучения

  • Чтобы понять общие особенности фазовой диаграммы.

Состояние данного образца вещества зависит от его свойств, температуры и давления. Фазовая диаграмма – графическая сводка физического состояния вещества как функции температуры и давления в замкнутой системе.представляет собой графическое изображение физического состояния вещества как функции температуры и давления в замкнутой системе.

Типичная фазовая диаграмма состоит из дискретных областей, которые представляют различные фазы, проявляемые веществом (рисунок 7.7.1). Каждая область соответствует диапазону комбинаций температуры и давления, при котором эта фаза стабильна. Комбинация высокого давления и низкой температуры (верхний левый рисунок 7.7.1) соответствует твердой фазе, тогда как газовая фаза предпочтительна при высокой температуре и низком давлении (нижний правый угол).Комбинация высокой температуры и высокого давления (вверху справа) соответствует сверхкритической жидкости.

Рис. 7.7.1 Типичная фазовая диаграмма для вещества, имеющего три фазы – твердую, жидкую и газовую – и сверхкритическую область

Обратите внимание на шаблон

Твердая фаза предпочтительна при низкой температуре и высоком давлении; газовая фаза предпочтительна при высокой температуре и низком давлении.

Общие характеристики фазовой диаграммы

Линии на фазовой диаграмме соответствуют комбинациям температуры и давления, при которых две фазы могут сосуществовать в равновесии.На рисунке 7.7.1 линия, соединяющая точки A и D, разделяет твердую и жидкую фазы и показывает, как температура плавления твердого вещества изменяется с давлением. Твердая и жидкая фазы находятся в равновесии на всем протяжении этой линии; пересечение линии по горизонтали соответствует плавлению или замерзанию. Линия, соединяющая точки A и B, представляет собой кривую давления пара жидкости, которую мы обсуждали в разделе 7.4. Он заканчивается в критической точке, за которой вещество существует как сверхкритическая жидкость.Линия, соединяющая точки A и C, представляет собой кривую давления паров твердой фазы . Вдоль этой линии твердое вещество находится в равновесии с паровой фазой за счет сублимации и осаждения. Наконец, точка A, где пересекаются линии твердое тело / жидкость, жидкость / газ и твердое тело / газ, является тройной точкой Точка на фазовой диаграмме, где пересекаются линии твердое тело / жидкость, жидкость / газ и твердое тело / газ; он представляет собой единственную комбинацию температуры и давления, при которой все три фазы находятся в равновесии и поэтому могут существовать одновременно.; это комбинация температуры и давления only , при которой все три фазы (твердая, жидкая и газовая) находятся в равновесии и поэтому могут существовать одновременно. Поскольку сосуществовать может не более трех фаз, на фазовой диаграмме никогда не может быть более трех линий, пересекающихся в одной точке.

Помните, что фазовая диаграмма, такая как диаграмма на рис. 7.7.1, предназначена для одного чистого вещества в закрытой системе, а не для жидкости в открытом химическом стакане, контактирующей с воздухом при давлении 1 атм.На практике, однако, выводы, сделанные о поведении вещества в закрытой системе, обычно могут быть экстраполированы на открытую систему без большой ошибки.

Фазовая диаграмма воды

На рисунке 7.7.2 показана фазовая диаграмма воды и показано, что тройная точка воды возникает при 0,01 ° C и 0,00604 атм (4,59 мм рт. Ст.). Намного более воспроизводимо, чем точка плавления льда, которая зависит от количества растворенного воздуха и атмосферного давления, тройная точка (273.16 K) используется для определения шкалы абсолютных (Кельвинов) температур. Тройная точка также представляет самое низкое давление, при котором жидкая фаза может существовать в равновесии с твердым телом или паром. Следовательно, при давлениях менее 0,00604 атм лед не тает в жидкость при повышении температуры; твердое вещество возгоняется непосредственно в водяной пар. Сублимацию воды при низкой температуре и давлении можно использовать для «сублимационной сушки» продуктов и напитков. Пищевой продукт или напиток сначала охлаждают до отрицательных температур и помещают в контейнер, в котором поддерживается давление ниже 0.00604 атм. Затем, когда температура повышается, вода возгоняется, оставляя обезвоженную пищу (например, ту, которую используют туристы или астронавты) или порошкообразный напиток (как с лиофилизированным кофе).

Фазовая диаграмма воды, проиллюстрированная в части (b) на рисунке 7.7.2, показывает границу между льдом и водой в увеличенном масштабе. Кривая таяния льда имеет наклон вверх и немного влево, а не вверх и вправо, как показано на рисунке 7.7.1; то есть точка плавления льда снижается на с увеличением давления; при 100 МПа (987 атм) лед тает при -9 ° C.Вода ведет себя так, потому что это одно из немногих известных веществ, для которых твердое кристаллическое вещество на менее плотное, чем на , чем жидкость (другие включают сурьму и висмут). Повышение давления льда, находящегося в равновесии с водой при 0 ° C и 1 атм, имеет тенденцию сближать некоторые молекулы, тем самым уменьшая объем образца. Уменьшение объема (и соответствующее увеличение плотности) для твердого тела или жидкости меньше, чем для газа, но этого достаточно, чтобы растопить часть льда.

Рисунок 7.7.2 Две версии фазовой диаграммы воды (a) На этом графике с линейными осями температуры и давления граница между льдом и жидкой водой почти вертикальна. (b) Этот график с увеличенной шкалой показывает снижение температуры плавления с увеличением давления. (Буквы относятся к пунктам, рассмотренным в Примере 10.)

В части (b) на рисунке 7.7.2 точка A расположена при P = 1 атм и T = -1.0 ° C в твердой (ледяной) области фазовой диаграммы. Когда давление увеличивается до 150 атм при неизменной температуре, линия от точки A пересекает границу лед / вода до точки B, которая находится в области жидкой воды. Следовательно, приложение давления в 150 атм приведет к таянию льда при -1,0 ° C. Мы уже указали, что зависимость температуры плавления воды от давления имеет жизненно важное значение. Если бы граница твердое / жидкое вещество на фазовой диаграмме воды была наклонной вверх и вправо, а не влево, лед был бы плотнее воды, кубики льда утонули бы, водопроводные трубы не лопнули бы при замерзании, а антифриз бы быть ненужным в автомобильных двигателях.

Хотя при обычных температурах и давлениях фазовая диаграмма воды проста, увеличение давления выше 1000 атм дробит открытую твердую структуру обычного льда на все более компактные структуры, как показано на рис. 7.73

Рисунок 7.7.3 Фазовая диаграмма воды: При высоких давлениях появляются новые твердые фазы, поскольку открытая структура обычного льда дробится. Это цифра из Википедии.

Мы снова рассмотрим ледяные структуры в следующей главе, когда будем обсуждать твердые тела.

Фазовая диаграмма диоксида углерода

В отличие от фазовой диаграммы воды, фазовая диаграмма CO 2 (рисунок 7.7.3) имеет более типичную кривую плавления, наклоненную вверх и вправо. Тройная точка составляет -56,6 ° C и 5,11 атм, что означает, что жидкий CO 2 не может существовать при давлениях ниже 5,11 атм. Таким образом, при 1 атм твердый CO 2 сублимируется непосредственно в пар, поддерживая при этом температуру -78,5 ° C, нормальную температуру сублимации.Твердый CO 2 обычно называют сухим льдом, потому что это холодное твердое вещество без жидкой фазы при нагревании. Также обратите внимание на критическую точку при 30,98 ° C и 72,79 атм. В дополнение к использованию, описанному в разделе 7.6, сверхкритический диоксид углерода становится естественным хладагентом, что делает его низкоуглеродным (и, следовательно, более экологически чистым) решением для бытовых тепловых насосов.

Рис. 7.73. Фазовая диаграмма диоксида углерода Обратите внимание на критическую точку, тройную точку и нормальную температуру сублимации на этой диаграмме.

Пример 7.71

Ссылаясь на фазовую диаграмму воды на рисунке 7.7.2,

  1. предсказывает физическую форму образца воды при 400 ° C и 150 атм.
  2. описывают изменения, которые происходят, когда образцу в части (а) дают медленно остыть до -50 ° C при постоянном давлении 150 атм.

Дано: фазовая диаграмма, температура и давление

Запрошено: Физическая форма и физические изменения

Стратегия:

A Определите область фазовой диаграммы, соответствующую начальным условиям, и определите фазу, которая существует в этой области.

B Проведите линию, соответствующую заданному давлению. Двигайтесь по этой линии в соответствующем направлении (в данном случае охлаждение) и опишите фазовые изменения.

Решение:

  1. A Найдите начальную точку на фазовой диаграмме в части (a) на рисунке 7.7.2. Начальные условия соответствуют точке A, которая находится в области фазовой диаграммы водяного пара. Таким образом, вода при T = 400 ° C и P = 150 атм является газом.
  2. B Охлаждение образца при постоянном давлении соответствует перемещению влево по горизонтальной линии в части (a) на рисунке 7.72. Примерно при 340 ° C (точка B) мы пересекаем кривую давления пара, в этот момент водяной пар начинает конденсироваться, и образец будет состоять из смеси пара и жидкости. Когда весь пар конденсируется, температура падает еще больше, и мы попадаем в область, соответствующую жидкой воде (обозначенной точкой C). Дальнейшее охлаждение приводит нас к кривой плавления, линии, разделяющей жидкую и твердую фазы при температуре чуть ниже 0 ° C (точка D), в которой образец будет состоять из смеси жидкой и твердой воды (лед).Когда вся вода замерзнет, ​​охлаждение образца до -50 ° C приведет нас по горизонтальной линии к точке E, которая находится в области, соответствующей твердой воде. При P = 150 атм и T = −50 ° C, следовательно, образец представляет собой твердый лед.

Exercise

Ссылаясь на фазовую диаграмму воды на рисунке 7.7.2, спрогнозируйте физическую форму образца воды при -0,0050 ° C при постепенном повышении давления с 1,0 мм рт. Ст. До 218 атм.

Ответ: Образец изначально представляет собой газ, конденсируется в твердое тело при повышении давления, а затем плавится при дальнейшем повышении давления с образованием жидкости.

Сводка

Состояния вещества, проявляемые веществом при различных температурах и давлениях, могут быть представлены графически на фазовой диаграмме , которая представляет собой график зависимости давления от температуры. Фазовые диаграммы содержат дискретные области, соответствующие твердой, жидкой и газовой фазам. Твердые и жидкие области разделены кривой плавления вещества, а жидкие и газовые области разделены кривой давления пара, которая заканчивается в критической точке.В пределах данной области стабильна только одна фаза, но вдоль линий, разделяющих области, две фазы находятся в равновесии при данной температуре и давлении. Линии, разделяющие три фазы, пересекаются в одной точке, тройной точке , которая является единственной комбинацией температуры и давления, при которой все три фазы могут сосуществовать в равновесии. У воды необычная фазовая диаграмма: ее температура плавления снижается с увеличением давления, потому что лед менее плотен, чем жидкая вода.Фазовая диаграмма диоксида углерода показывает, что жидкий диоксид углерода не может существовать при атмосферном давлении. Следовательно, твердый диоксид углерода непосредственно сублимируется в газ.

Ключевые вынос

  • Фазовая диаграмма – это графическая сводка физического состояния вещества как функции температуры и давления в замкнутой системе. На нем показаны тройная точка, критическая точка и четыре области: твердое тело, жидкость, газ и сверхкритическая область.

Концептуальные проблемы

  1. Фазовая диаграмма – это графическое изображение стабильной фазы вещества при любой комбинации температуры и давления.Что обозначают линии, разделяющие разные области на фазовой диаграмме? Какую информацию о физических свойствах разделяемых фаз передает наклон линии на фазовой диаграмме? Может ли фазовая диаграмма иметь более одной точки пересечения трех линий?

  2. Если бы наклон линии, соответствующей границе твердое тело / жидкость на фазовой диаграмме воды, был скорее положительным, чем отрицательным, как бы это отразилось на водных организмах в периоды отрицательных температур? Поясните свой ответ.

Ответ

  1. Линии на фазовой диаграмме представляют границы между различными фазами; при любой комбинации температуры и давления, которая лежит на линии, две фазы находятся в равновесии. Физически невозможно сосуществование более трех фаз при любой комбинации температуры и давления, но в принципе на фазовой диаграмме может быть более одной тройной точки. Наклон линии, разделяющей две фазы, зависит от их относительной плотности.Например, если линия твердое тело – жидкость идет вверх и к вправо , жидкость менее плотная, чем твердое тело, а если она наклоняется вверх и к влево , жидкость плотнее твердого.

Числовые задачи

  1. Нафталин (C 10 H 8 ) является ключевым ингредиентом нафталина. Он имеет нормальные температуры плавления и кипения 81 ° C и 218 ° C соответственно. Тройная точка нафталина составляет 80 ° C при 1000 Па.Используйте эти данные, чтобы построить фазовую диаграмму для нафталина и пометить все области вашей диаграммы.

  2. Аргон – инертный газ, используемый при сварке. Он имеет нормальные температуры кипения и замерзания 87,3 К и 83,8 К соответственно. Тройная точка аргона 83,8 К при 0,68 атм. Используйте эти данные, чтобы построить фазовую диаграмму для аргона и пометить все области вашей диаграммы.

Авторы

Изменено Джошуа Халперн, Скотт Синекс и Скотт Джонсон

6.1.2 Считывание фазовых диаграмм: одиночные фазы и границы

© H. Föll (Скрипт Iron, Steel и Swords)

6.1.2 Чтение фазовых диаграмм: Однофазные и границы

А теперь приступим к работе. Сначала перерисовываю фазовую диаграмму железо-углерод, которая поможет вам лучше понять разные фазы.
Фазовая диаграмма железо-углерод
Разные цвета обозначают разные фазы.Смешанные цвета = смешанные фазы
Теперь у нас есть простое правило: разные фазы = разные цвета. Смешанные цвета = смешанные фазы. Вы помните, из конечно, что такое фаза? Спасибо; иначе идти вернуться к разделу 2.3.1.
Начнем “читать” фазовая диаграмма железо-углерод.Сначала мы выбираем определенную концентрацию карбон, допустим 1,3% . Мне нравится такая концентрация, потому что ее легко начертите на фазовой диаграмме вертикальной линией. Соответствующая часть показана на право на немедленную справку. Вдоль красной линии у нас то же самое состав, но разные температуры.
От 600 K (328 o C; 620 o F) и ниже (не показано) до около 1000 K (727 o C; 1341 o F) мы имеем смешанная фаза “синий и розовый”.
При 1000 K (727 o C; 1341 o F) наблюдается фаза превращение в смешанную фазу «розовый и желтый».
Эта первая фаза трансформации – самая важная для вас, древних (или современный) кузнец. В большинстве случаев, когда вы вставляете заготовку в горячую угли в вашем очаге, вы делаете это, чтобы вызвать это фазовое превращение. Мы будем назовите температуру около 1000 K (727 o C; 1341 o F) где это фазовое превращение происходит “ температура перехода (обычно сокращенно A 1 ), потому что это самый важный.
Если продолжать повышать температуру, произойдет еще одно фазовое превращение. около 1170 К (897 ° ° С; 1447 ° ° F). Смешанная фаза “розовый и желтый” теперь превращается в чистую фазу “желтый”.
Затем, около 1550 K (1277 o C; 2331 o F), мы достигли смешанного фаза «желто-белый» и около 1730 K (1457 o C; 2655 o F), он весь белый, это означает, что фазовое превращение на этом температура просто означает полное плавление , потому что белый цвет – это жидкая фаза , всегда обозначается сокращенно “L”.
Пора присмотреться при чем, именно определяет однофазный . Что я вам предлагал давным-давно в это уважение слишком слабо, чтобы нас здесь хватило. Итак, начнем.

Фаза – это область пространства, где все
физических свойств материала

(например.грамм. плотность, твердость, химический состав)
практически однородны.
Таким образом, фаза – это часть материал, который является химически однородным, физически отличным и часто (или по крайней мере в принципе) механически отделим от окружающей среды.
Теперь мы знаем, что строк на фазовой диаграмме означают: Они обозначают «где», т.е.е. при каких составах и температуре, происходит фазовое превращение . Они разделить разные фазы или разные смеси фаз по составу – температурный «космос».
Если мы проделаем ту же процедуру для чистого железа (до упора влево для 0% углерода), пробегаем три одиночных фазы (синий, желтый, голубоватый) по мере увеличения температуры. Маленькая часть на фазовой диаграмме справа показаны только первые две фазы.
Мы уже знаем что они означают: синий = кубический кристалл с кубической кубической структурой, желтый = кубическая грань центрированный кубический), голубоватый = ОЦК еще раз.
Конечно, в этом случае у нас могут быть только отдельные фазы, и пора дать их имена. Железное правило состоит в том, что твердые фазы – , всегда с греческой буквой. Для исторического По этой причине фаза может иметь более или менее причудливое название в дополнение к . Иногда бывает даже два имени, часто с участием мертвых белые парни.Что мы имеем в случае чистого железа: То, что мы имеем в случае железа и некоторого количества углерода, точно такое же. Пока поскольку вы “находитесь” в однофазной области, показанной здесь одним цветом, вы иметь фазу этого цвета. Чтобы это было совершенно ясно, я повторяю список выше для железа плюс некоторые углерод:
Такие названия, как Феррит или аустенит , таким образом, относятся не к чистому железу , а к железу с некоторым количеством растворенного в нем углерода .Сколько углерода это могло быть при некоторой заданной температуре показано однофазными областями в фазе диаграмма.
Вообще говоря, состав сингла фаза в бинарных сплавах всегда представляет собой A (или B) с растворенным в ней B (или A, соответственно).
Это важно. Мы должны разрешить отдельные фазы должны содержать два типа атомов, если они атомарно «смешанный». В конце концов, это определение фазы, данное выше, если подумать.Растворенные одиночные атомы распределены равномерно и не могут быть разделены.
Повторим:

“Феррит”, “аустенит” и т. Д. не
означает чистое железо с некоторыми специфическими кристаллическая структура
, но железо с определенной кристаллической структурой
и некоторыми

растворенный углерод в это
Сколько углерода может быть растворено в фазе – это то, что фаза Диаграмма говорит вам.
Растворенный означает, что иностранный атомы сидят как индивидуумы в кристалле (промежуточные места для углерода в железе) в некотором случайном распределении. Другими словами: они внешняя точка дефекты. Любая точка внутри синей области на фазовой диаграмме выше ( a-фаза или ферритная фаза) обозначает допустимую комбинация твердого раствора углерода концентрация и температура. Углерод окончательно растворяется.
Обратите внимание, что если он достаточно горячий, атомы углерода не «сидят» на месте, а перемещаются случайным образом. Они размытый, как мы называли этот процесс. У нас также будут перемещаться вакансии и, таким образом, атомы тоже не сидят на месте. Тем не менее, снимок всегда выглядишь как наш старая фигура с отображается только нужное количество атомов углерода. Другими словами, композиция не меняется от всего этого движения.
Так что любая точка в тонком синем область на фазовой диаграмме обозначает альфа-фазу или феррит, а феррит всегда имеет решетку bcc и различные, но неизменно малых концентраций углерода (включая ноль) в некоторых температура.
Любая точка в желтой области обозначает гамма-фазу или аустенит, а аустенит всегда имеет решетку fcc и различные концентрации углерода от нуля до максимум около 2% при некоторой температуре.
Название феррит происходит от латинского «феррум». для железа. Это всегда скрытая копия кристалл и лучшее, что он может сделать в отношении растворения углерода, – это примерно 0,1% около 1000 K (727 o C, 1341 o F). Мы называем это предел растворимости .
Аустенит был назван в честь Сэр Уильям Чендлер Робертс-Остин , британец металлург (1843-1902), проводивший обширные исследования влияния примесей на механические свойства чистых металлов.Аустентит или фаза g всегда fcc кристалл. Он может растворять углерод намного лучше, чем феррит – почти 2%. около 1400 K (1127 o C, 2061 o F), и все еще около 0,7% около 1000 K (727 o C, 1341 o F).
Разница в растворении углерода «сила» между аустенитом и ферритом лежит в основе производства стали. и ковку лезвия, и мы потратим много времени на разгадку последствия.
Теперь посмотрим на точка плавления железа с некоторым углерод в нем. Линия между желто-белым и белым Об этом сообщает регион « L ». L = “ Ликвидус ” всегда обозначает жидкую фазу (зачем использовать простое слово, если есть латинское?). Конечно, жидкая фаза также может содержат углерод.
Линия, отделяющая жидкую фазу от другой фазы «внизу» эта линия дает температуру плавления как функцию концентрации примеси = концентрация углерода в нашем случае здесь.
Как я утверждал давно и объяснил в некоторой степени не так долго назад температура плавления действительно снижалась с увеличением содержания углерода до минимум 1403 K (1130 o C, 2066 o F) для углерода концентрация чуть выше 4% масс.
Итак, сплав железа с углеродом с содержанием углерода около 4%. был бы ваш идеал состав для отливка утюг .Почему? На самом деле есть две веских причин:
  1. Первая: в этом составе у вас есть самая низкая точка плавления , которую вы когда-либо найдете в система Fe – C. Низкие температуры плавления хороши тем, что не так просто достичь температуры выше 1100 o C (2012 o F).
  2. Секунда: это эвтектический состав .
??? Если это выглядит Греческий для вас, это потому, что это так.
Хорошо. Я допускаю, что даже приличное общее образование в большинстве стран больше не включать древнегреческий язык. Даже одна из моих дочерей, которая отсидела классический немецкий “гимназия” и конечно выучил древнегреческий (вместе с большим количеством латыни и немного (конечно же, древнееврейского) иврита), не знаете, что означает “ эвтектика “. Так Вы определенно извиняетесь за то, что не знаете этого.
Я скоро займусь этим. Но сначала мы посмотрите еще раз, что происходит при концентрации углерода 1,3%, которую я пометил красная линия на фазовой диаграмме выше.
Для состава 1,3 мас.% Углерода в железе фаза чуть ниже линии, определяющей точку плавления, представляет собой смешанная фаза , обозначается g + L. Это может означать только смесь из твердого вещества g фаза или аустенит и жидкость .
Это не так странно, как может показаться: на 0 o C (32 o F) можно хранить смесь жидкой воды и льда. (= твердая вода) стабильна сколько угодно долго.Попытайся. Вам разрешено использовать виски вместо воды.
Внутри (g + L) смешанная фаза, вы можете сохранить смесь жидкой стали и твердой стали стабильной, поскольку вдоль, как вам нравится (и может терпеть жар). Если вы пойдете в разные места внутри области смешанной фазы, только вы измените относительное количество жидкости и твердого вещества (много льда и немного виски или много виски и немного льда). Но все, что у вас есть, все еще смешанная фаза.
Когда ты, кузнец, делаешь меч лезвие, у вас есть сталь с определенной концентрацией углерода, которую вы к различным температурам при ковке. Для простоты предположим, что концентрация углерода не меняется во время ковки, всего нагрева и охлаждения просто означает, что вы двигаетесь вверх и вниз a вертикальная линия на фазовой диаграмме.
Если температура превышает 1000 K (727 o C, 1341 o F) для концентраций углерода в обычном диапазоне (около 0,1 мас.% – 2 % по весу), ваша сталь претерпит хотя бы одно фазовое превращение.И ты обязательно пойдет выше этой температуры; делать это это то, что ковка все о.
Вот и прозрение в одной строчке, которую вы должны прочитать вслух:

То, что у вас на наковальне выше
1000 K, является полностью материал
отличается от того, что у вас есть при комнатной температуре.
Насколько отличается “ полностью” другой »? Что ж, согласитесь, бриллиант полностью отличается от куска угля (по крайней мере, ваша жена будет), так почему это должно быть иначе с ферритом и аустенитом?
Это две разных фаз одного и того же материала (железо + немного углерода), и нет никаких причин, по которым их свойства не могут быть такие же разные, как у графита и алмаза.Их электрические проводимости или магнитные свойства, например, разные, и поэтому их механические свойства, такие как твердость.
Это только потому, что никому не нужна горячая железная проволока или магнит на 1000 К, которые мы не очень заботимся об этих различиях и не осознаем их.
Тем не менее, решетчатый тип, возможность растворяют углерод, а механическая «твердость» и общая поведение при деформации совершенно иное в феррите и аустените.Аустенит – это на самом деле немного тверже феррита при высоких температурах. Однако обе фазы намного мягче при высоких температурах, чем феррит при низких температурах. основная причина, по которой вы нагреваете сталь, когда хотите придать ей форму путем ковки.

Произошла ошибка при настройке вашего пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности.Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки вашего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались.Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie.Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в cookie-файлах может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Страница не найдена | MIT

Перейти к содержанию ↓
  • Образование
  • Исследовать
  • Инновации
  • Прием + помощь
  • Студенческая жизнь
  • Новости
  • Выпускников
  • О MIT
  • Подробнее ↓
    • Прием + помощь
    • Студенческая жизнь
    • Новости
    • Выпускников
    • О MIT
Меню ↓ Поиск Меню Ой, похоже, мы не смогли найти то, что вы искали!
Попробуйте поискать что-нибудь еще! Что вы ищете? Увидеть больше результатов

Предложения или отзывы?

% PDF-1.2 % 323 0 объект > эндобдж xref 323 108 0000000016 00000 н. 0000002530 00000 н. 0000002673 00000 н. 0000002818 00000 н. 0000003605 00000 н. 0000003779 00000 п. 0000003863 00000 н. 0000003951 00000 н. 0000004035 00000 н. 0000004096 00000 н. 0000004241 00000 н. 0000004302 00000 н. 0000004447 00000 н. 0000004530 00000 н. 0000004591 00000 н. 0000004697 00000 н. 0000004758 00000 п. 0000004843 00000 н. 0000004904 00000 н. 0000004965 00000 н. 0000005160 00000 н. 0000005221 00000 н. 0000005366 00000 н. 0000005500 00000 н. 0000005656 00000 н. 0000005788 00000 н. 0000005849 00000 н. 0000005932 00000 н. 0000005993 00000 н. 0000006054 00000 н. 0000006115 00000 н. 0000006226 00000 н. 0000006287 00000 н. 0000006398 00000 н. 0000006494 00000 н. 0000006609 00000 н. 0000006670 00000 н. 0000006731 00000 н. 0000006851 00000 н. 0000006912 00000 н. 0000006973 00000 п. 0000007034 00000 п. 0000007181 00000 н. 0000007242 00000 н. 0000007399 00000 н. 0000007546 00000 н. 0000007662 00000 н. 0000007771 00000 н. 0000007832 00000 н. 0000007960 00000 п. 0000008021 00000 н. 0000008157 00000 н. 0000008218 00000 н. 0000008341 00000 п. 0000008402 00000 п. 0000008463 00000 н. 0000008524 00000 н. 0000008629 00000 н. 0000008774 00000 н. 0000008835 00000 н. 0000008944 00000 н. 0000009047 00000 н. 0000009108 00000 п. 0000009169 00000 п. 0000009230 00000 н. 0000009338 00000 п. 0000009399 00000 н. 0000009489 00000 н. 0000009609 00000 н. 0000009670 00000 н. 0000009831 00000 н. 0000009951 00000 н. 0000010012 00000 п. 0000010098 00000 п. 0000010159 00000 п. 0000010319 00000 п. 0000010380 00000 п. 0000010503 00000 п. 0000010564 00000 п. 0000010697 00000 п. 0000010758 00000 п. 0000010819 00000 п. 0000010880 00000 п. 0000010982 00000 п. 0000011043 00000 п. 0000011144 00000 п. 0000011205 00000 п. 0000011307 00000 п. 0000011368 00000 п. 0000011470 00000 п. 0000011531 00000 п. 0000011591 00000 п.


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *