Принцип работы радиоприемника – Принцип работы супергетеродинного радиоприемника | Техника и Программы

Содержание

Простая схема радиоприемника: описание. Старые радиоприемники

Долгое время радиоприёмники возглавляли список самых значимых изобретений человечества. Первые такие устройства сейчас реконструированы и изменены под современный лад, однако в схеме их сборки мало что поменялось – та же антенна, то же заземление и колебательный контур для отсеивания ненужного сигнала. Бесспорно, схемы сильно усложнились со времён создателя радио – Попова. Его последователями были разработаны транзисторы и микросхемы для воспроизведения более качественного и энергозатратного сигнала.

Почему лучше начинать с простых схем?

Если вам понятна простая схема радиоприёмника, то можете быть уверены, что большая часть пути достижения успеха в сфере сборки и эксплуатации уже осилена. В этой статье мы разберём несколько схем таких приборов, историю их возникновения и основные характеристики: частоту, диапазон и т. д.

Историческая справка

7 мая 1895 года считается днём рождения радиоприёмника. В этот день российский учёный А. С. Попов продемонстрировал свой аппарат на заседании Русского физико-химического общества.

В 1899 году была построена первая линия радиосвязи длиной 45 км между островом Гогланд и городом Котка. Во время Первой мировой войны получили распространение приёмник прямого усиления и электронные лампы. Во время военных действий наличие радио оказалось стратегически необходимым.

В 1918 году одновременно во Франции, Германии и США учёными Л. Левви, Л. Шоттки и Э. Армстронгом был разработан метод супергетеродинного приёма, но из-за слабых электронных ламп широкое распространение этот принцип получил только в 1930-х годах.

Транзисторные устройства появились и развивались в 50-х и 60-х годах. Первый широко используемый радиоприёмник на четырёх транзисторах Regency TR-1 был создан немецким физиком Гербертом Матаре при поддержке промышленника Якоба Михаэля. Он поступил в продажу в США в 1954 году. Все старые радиоприёмники работали на транзисторах.

В 70-х начинается изучение и внедрение интегральных микросхем. Сейчас приёмники развиваются с помощью большой интеграции узлов и цифровой обработки сигналов.

Характеристики приборов

Как старые радиоприёмники, так и современные обладают определёнными характеристиками:

  1. Чувствительность – способность принимать слабые сигналы.
  2. Динамический диапазон – измеряется в Герцах.
  3. Помехоустойчивость.
  4. Селективность (избирательность) – способность подавлять посторонние сигналы.
  5. Уровень собственных шумов.
  6. Стабильность.

Эти характеристики не меняются в новых поколениях приёмников и определяют их работоспособность и удобство эксплуатации.

Принцип работы радиоприёмников

В самом общем виде радиоприёмники СССР работали по следующей схеме:

  1. Из-за колебаний электромагнитного поля в антенне появляется переменный ток.
  2. Колебания фильтруются (селективность) для отделения информации от помех, т. е. из сигнала выделяется его важная составляющая.
  3. Полученный сигнал преобразуется в звук (в случае радиоприёмников).

По схожему принципу появляется изображение на телевизоре, передаются цифровые данные, работает радиоуправляемая техника (детские вертолёты, машинки).

Первый приёмник был больше похож на стеклянную трубку с двумя электродами и опилками внутри. Работа осуществлялась по принципу действия зарядов на металлический порошок. Приёмник обладал огромным по современным меркам сопротивлением (до 1000 Ом) из-за того, что опилки плохо контактировали между собой, и часть заряда проскакивала в воздушное пространство, где рассеивалась. Со временем эти опилки были заменены колебательным контуром и транзисторами для сохранения и передачи энергии.

В зависимости от индивидуальной схемы приёмника сигнал в нём может проходить дополнительную фильтрацию по амплитуде и частоте, усиление, оцифровку для дальнейшей программной обработки и т. д. Простая схема радиоприёмника предусматривает единичную обработку сигнала.

Терминология

Колебательным контуром в простейшем виде называются катушка и конденсатор, замкнутые в цепь. С помощью них из всех поступающих сигналов можно выделить нужный за счёт собственной частоты колебаний контура. Радиоприемники СССР, как, впрочем, и современные устройства, основаны на этом сегменте. Как все это функционирует?

Как правило, питание радиоприёмников происходит за счёт батареек, количество которых варьируется от 1 до 9. Для транзисторных аппаратов широко используются батареи 7Д-0.1 и типа “Крона” напряжением до 9 В. Чем больше батареек требует простая схема радиоприёмника, тем дольше он будет работать.

По частоте принимаемых сигналов устройства делятся на следующие типы:

  1. Длинноволновые (ДВ) – от 150 до 450 кГц (легко рассеиваются в ионосфере). Значение имеют приземлённые волны, интенсивность которых уменьшается с расстоянием.
  2. Средневолновые (СВ) – от 500 до 1500 кГц (легко рассеиваются в ионосфере днём, но ночью отражаются). В светлое время суток радиус действия определяется приземлёнными волнами, ночью – отражёнными.
  3. Коротковолновые (КВ) – от 3 до 30 МГц (не приземляются, исключительно отражаются ионосферой, поэтому вокруг приёмника существует зона радиомолчания). При малой мощности передатчика короткие волны могут распространяться на большие расстояния.
  4. Ультракоротковолновые (УКВ) – от 30 до 300 МГц (имеют высокую приникающую способность, как правило, отражаются ионосферой и легко огибают препятствия).
  5. Высокочастотные (ВЧ) – от 300 МГц до 3 ГГц (используются в сотовой связи и Wi-Fi, действуют в пределах видимости, не огибают препятствия и распространяются прямолинейно).
  6. Крайневысокочастотные (КВЧ) – от 3 до 30 ГГц (используются для спутниковой связи, отражаются от препятствий и действуют в пределах прямой видимости).
  7. Гипервысокочастотные (ГВЧ) – от 30 ГГц до 300 ГГц (не огибают препятствий и отражаются как свет, используются крайне ограниченно).

При использовании КВ, СВ и ДВ радиовещание можно вести, находясь далеко от станции. УКВ-диапазон принимает сигналы более специфично, но если станция поддерживает только его, то слушать на других частотах не получится. В приёмник можно внедрить плейер для прослушивания музыки, проектор для отображения на удалённые поверхности, часы и будильник. Описание схемы радиоприёмника с подобными дополнениями усложнится.

Внедрение в радиоприёмники микросхемы позволило значительно увеличить радиус приёма и частоту сигналов. Их главное преимущество в сравнительно малом потреблении энергии и маленьком размере, что удобно для переноса. Микросхема содержит все необходимые параметры для понижения дискретизации сигнала и удобства чтения выходных данных. Цифровая обработка сигнала доминирует в современных устройствах. Радиоприёмники СССР были предназначены только для передачи аудиосигнала, лишь в последние десятилетия устройство приёмников развилось и усложнилось.

Схемы простейших приёмников

Схема простейшего радиоприёмника для сборки дома была разработана ещё во времена СССР. Тогда, как и сейчас, устройства разделялись на детекторные, прямого усиления, прямого преобразования, супергетеродинного типа, рефлексные, регенеративные и сверхрегенеративные. Наиболее простыми в восприятии и сборке считаются детекторные приёмники, с которых, можно считать, началось развитие радио в начале 20-ог века. Наиболее сложными в построении стали устройства на микросхемах и нескольких транзисторах. Однако если вы разберетесь в одной схеме, другие уже не будут представлять проблемы.

Простой детекторный приёмник

Схема простейшего радиоприёмника содержит в себе две детали: германиевый диод (подойдут Д8 и Д9) и главный телефон с высоким сопротивлением (ТОН1 или ТОН2). Так как в цепи не присутствует колебательный контур, ловить сигналы определённой радиостанции, транслирующиеся в данной местности, он не сможет, но со своей основной задачей справиться.

Для работы понадобится хорошая антенна, которую можно закинуть на дерево, и провод заземления. Для верности его достаточно присоединить к массивному металлическому обломку (например, к ведру) и закопать на несколько сантиметров в землю.

Вариант с колебательным контуром

В прошлую схему для внедрения избирательности можно добавить катушку индуктивности и конденсатор, создав колебательный контур. Теперь при желании можно поймать сигнал конкретной радиостанции и даже усилить его.

Ламповый регенеративный коротковолновой приёмник

Ламповые радиоприёмники, схема которых довольно проста, изготавливаются для приёма сигналов любительских станций на небольших расстояниях – на диапазоны от УКВ (ультракоротковолнового) до ДВ (длинноволнового). На этой схеме работают пальчиковые батарейные лампы. Они лучше всего генерируют на УКВ. А сопротивление анодной нагрузки снимает низкая частота. Все детали приведены на схеме, самодельными можно считать только катушки и дроссель. Если вы хотите принимать телевизионный сигналы, то катушка L2 (EBF11) составляется из 7 витков диаметром 15 мм и провода на 1,5 мм. Для любительского приемника подойдет 5 витков.

Радиоприёмник прямого усиления на двух транзисторах

Схема содержит магнитную антенну и двухкаскадный усилитель НЧ – это настраиваемый входной колебательный контур радиоприёмника. Первый каскад – детектор ВЧ модулированного сигнала. Катушка индуктивности намотана в 80 витков проводом ПЭВ-0,25 (от шестого витка идёт отвод снизу по схеме) на ферритовом стержне диаметром 10 мм и длиной 40.

Подобная простая схема радиоприёмника рассчитана на распознавание мощных сигналов от недалёких станций.

Сверхгенеративное устройство на FM-диапазоны

FM-приёмник, собранный по модели Е. Солодовникова, несложен в сборке, но обладает высокой чувствительностью (до 1 мкВ). Такие устройства используют для высокочастотных сигналов (более 1МГЦ) с амплитудной модуляцией. Благодаря сильной положительной обратной связи коэффициент усиления каскада возрастает до бесконечности, и схема переходит в режим генерации. По этой причине происходит самовозбуждение. Чтобы его избежать и использовать приёмник как высокочастотный усилитель, установите уровень коэффициента и, когда дойдет до этого значения, резко снизьте до минимума. Для постоянного мониторинга усиления можно использовать генератор пилообразных импульсов, а можно сделать проще.

На практике нередко в качестве генератора выступает сам усилитель. С помощью фильтров (R6C7), выделяющих сигналы низких частот, ограничивается проход ультразвуковых колебаний на вход последующего каскада УНЧ. Для FM-сигналов 100-108 МГц катушка L1 преобразуется в полувиток с сечением 30 мм и линейной частью 20 мм при диаметре провода 1 мм. А катушка L2 содержит 2-3 витка диаметром 15 мм и провод с сечением 0,7 мм внутри полувитка. Возможно усиление приёмника для сигналов от 87,5 МГц.

Устройство на микросхеме

КВ-радиоприёмник, схема которого была разработана в 70-е годы, сейчас считают прототипом Интернета. Коротковолновые сигналы (3-30 МГц) путешествуют на огромные расстояния. Нетрудно настроить приёмник для прослушивания трансляции в другой стране. За это прототип получил название мирового радио.

Простой КВ-приёмник

Более простая схема радиоприёмника лишена микросхемы. Перекрывает диапазон от 4 до 13 МГц по частоте и до 75 метров по длине. Питание – 9 В от батареи “Крона”. В качестве антенны может служить монтажный провод. Приёмник работает на наушники от плейера. Высокочастотный трактат построен на транзисторах VT1 и VT2. За счёт конденсатора С3 возникает положительный обратный заряд, регулируемый резистором R5.

Современные радиоприёмники

Современные аппараты очень похожи на радиоприёмники СССР: они используют ту же антенну, на которой возникают слабые электромагнитные колебания. В антенне появляются высокочастотные колебания от разных радиостанций. Они не используются непосредственно для передачи сигнала, но осуществляют работу последующей цепи. Сейчас такой эффект достигается с помощью полупроводниковых приборов.

Широкое развитие приёмники получили в середине 20-го века и с тех пор непрерывно улучшаются, несмотря на замену их мобильными телефонами, планшетами и телевизорами.

Общее устройство радиоприёмников со времён Попова изменилось незначительно. Можно сказать, что схемы сильно усложнились, добавились микросхемы и транзисторы, стало возможным принимать не только аудиосигнал, но и встраивать проектор. Так приёмники эволюционировали в телевизоры. Сейчас при желании в аппарат можно встроить всё, что душе угодно.

fb.ru

Приемник и передатчик,схемы и принцип работы.

Супергетеродин.

Супергетеродин, приемник с преобразованием частоты – это наиболее распостраненная схема. Она содержит в себе маломощный генератор колебаний промежуточной частоты – гетеродин.

Частота генерации гетеродина меняется одновременно с изменением настройки входной частоты. Для этого применяется двухсекционный конденсатор переменной емкости – одна секция использована в входном колебательном контуре, вторая – в контуре гетеродина.

Причем, гетеродин настроен так, что разница между собственной его частотой и частотой радиосигнала остается примерно неизменной на протяжении всего перестраевомого диапазона. Это и есть промежуточная частота, которая выделяется в смесителе – каскаде где обе частоты встречаются. Причем, полученная таким образом промежуточная частота оказывается промодулированой полезным сигналом.

Далее, происходит усиление промежуточной частоты каскадами усилителя промежуточной частоты. Такие каскады имеют повышенный коэффициент усиления только на этой частоте, что исключает самовозбуждение усилителя. После усиления промежуточной частоты, происходит детектирование и окончательное усиление полезного сигнала. Супергетеродин обеспечивает высокую селективность и достаточную чувствительность для работы во всех радиовещательных диапазонах.

Кроме того, появляется возможность приема и детектирования частотно – модулированных сигналов на частотах УКВ, что значительно улушает качество воспроизведения звука. Самая распостраненная схема частотного детектора – балансная, содержит в себе два контура, настроенных на несущую частоту с некоторым отклонением – слегка рассогласоваными. Частота первого из них настраивается несколько выше, а второго – несколько ниже промежуточной частоты.

Модулированная промежуточная частота отклоняясь от своего среднего значения наводит колебания(может быть – звуковые) полезного сигнала выделяемые на резисторах R1 и R2.

Приемник прямого преобразования.

Существует однако, еще один вид приемников, способных вести прием сигнала во всех диапазонах и любой модуляции – без детектора.
Речь идет о приемниках прямого преобразования – гетеродинных или синхродинов, как их еще называют. Схема синхродина содержит в себе смеситель, гетеродин и усилитель звуковой частоты. Прием осуществляется следующим образом – полезный сигнал попадает из антенны на смеситель, куда постоянно подаются высокочастотные колебания от гетеродина(его частоту можно менять).

Как только частоты полезного сигнала и гетеродина совпадают – на выходе смесителя возникают биения с частотой модуляции, – т. е. низкочастотная информативная составляющая. Полученный сигнал можно возпроизвести, после достаточного усиления. Несмотря на свою простоту и эффективность, схема прямого преобразования получила лишь ограниченное распостранение – из-за недостаточно высокого качества передачи музыки и речи.

На главную страницу

elektrikaetoprosto.ru

Изобретение радио А. С. Поповым. Принципы радиосвязи

Изобретение радио А. С. Поповым. Принципы радиосвязи

«Физика – 11 класс»

Изобретение радио А. С. Поповым

Впервые радиосвязь была установлена в России А. С. Поповым, создавшим аппаратуру, принимающую и передающую сигналы.

Опыты Герца, описание которых появилось в 1888 г., побудили искать пути усовершенствования излучателя и приемника электромагнитных волн.

В России одним из первых изучением электромагнитных волн занялся преподаватель офицерских курсов в Кронштадте А. С. Попов.

В качестве детали, непосредственно «чувствующей» электромагнитные волны, А. С. Попов применил когерер.
Этот прибор представляет собой стеклянную трубку с двумя электродами.
В трубке помещены мелкие металлические опилки.
Принцип действия прибора основан на влиянии электрических разрядов на металлические порошки.
В обычных условиях когерер обладает большим сопротивлением, так как опилки имеют плохой контакт друг с другом.
Последовательно с когерером включаются электромагнитное реле и источник постоянного напряжения.
Пришедшая электромагнитная волна создает в когерере переменный ток высокой частоты.
Между опилками проскакивают мельчайшие искорки, в результате сопротивление когерера резко падает.

Сила тока в катушке электромагнитного реле возрастает, и оно включает звонок.
Молоточек звонка, ударяя по когереру, встряхивает его и возвращает в исходное состояние.
С последним встряхиванием когерера аппарат готов к приему новой волны.

Чтобы повысить чувствительность аппарата, А. С. Попов один из выводов когерера заземлил, а другой присоединил к высоко поднятому куску проволоки, создав тем самым первую в мире приемную антенну для беспроволочной связи.
Заземление превращает проводящую поверхность земли в часть открытого колебательного контура, что увеличивает дальность приема.

Основные принципы действия современных радиоприеников те же, что и в приборе Попова.
Современный приемник также имеет антенну, в которой приходящая волна вызывает очень слабые электромагнитные колебания.
Как и в приемнике А. С. Попова, энергия этих колебаний не используется непосредственно для приема.
Слабые сигналы лишь управляют источниками энергии, питающими последующие цепи.

Сейчас такое управление осуществляется с помощью полупроводниковых приборов.


7 мая 1895 г. на заседании Русского физико-химического общества в Петербурге А. С. Попов продемонстрировал действие своего прибора, явившегося, по сути дела, первым в мире радиоприемником.
День 7 мая стал днем рождения радио.

А. С. Попов продолжал настойчиво совершенствовать приемную и передающую аппаратуру.
Он ставил своей непосредственной задачей создать прибор для передачи сигналов на большие расстояния.

Вначале радиосвязь была установлена на расстоянии 250 м, но вскоре Попов добился дальности связи более 600 м.
Затем на маневрах Черноморского флота в 1899 г. ученый установил радиосвязь на расстоянии свыше 20 км, а в 1901 г. дальность радиосвязи была уже 150 км.
В новой конструкции передатчика искровой промежуток был размещен в колебательном контуре, индуктивно связанном с передающей антенной и настроенном с ней в резонанс.

Изменились и способы регистрации сигнала: параллельно звонку был подключен телеграфный аппарат, позволивший вести автоматическую запись сигналов.
В 1899 г. была обнаружена возможность приема сигналов с помощью телефона.
В начале 1900 г. радиосвязь успешно использовали в ходе спасательных работ в Финском заливе.
При участии А. С. Попова радиосвязь начали применять на флоте и в армии России.

За границей усовершенствование подобных приборов проводилось фирмой, организованной итальянским инженером Г. Маркони.
Опыты, поставленные в широком масштабе, позволили осуществить радиотелеграфную передачу через Атлантический океан.


Принципы радиосвязи

Переменный электрический ток высокой частоты, созданный в передающей антенне, вызывает в окружающем пространстве быстроменяющееся электромагнитное поле, которое распространяется в виде электромагнитной волны.
Достигая приемной антенны, электромагнитная волна вызывает в ней переменный ток той же частоты, на которой работает передатчик.

Важнейшим этапом в развитии радиосвязи было создание в 1913 г. генератора незатухающих электромагнитных колебаний.
Кроме передачи телеграфных сигналов, состоящих из коротких и более продолжительных импульсов («точки» и «тире») электромагнитных волн, стала возможной надежная и высококачественная радиотелефонная связь – передача речи и музыки с помощью электромагнитных волн.

Радиотелефонная связь

При радиотелефонной связи колебания давления воздуха в звуковой волне превращаются с помощью микрофона в электрические колебания той же формы.
Казалось бы, если эти колебания усилить и подать в антенну, то можно будет передавать на расстояние речь и музыку с помощью электромагнитных волн.

Однако в действительности такой способ передачи неосуществим.
Дело в том, что частота звуковых колебаний мала, а электромагнитные волны низкой (звуковой) частоты имеют малую интенсивность.

Модуляция

Для осуществления радиотелефонной связи необходимо использовать высокочастотные колебания, интенсивно излучаемые антенной.
Незатухающие гармонические колебания высокой частоты вырабатывает генератор, например генератор на транзисторе.

Для передачи звука эти высокочастотные колебания изменяют, или, как говорят, модулируют, с помощью электрических колебаний низкой (звуковой) частоты.
Можно, например, изменять со звуковой частотой амплитуду высокочастотных колебаний.
Этот способ называют амплитудной модуляцией.

На рисунке приведены три графика:
а) график колебаний высокой частоты, которую называют несущей частотой;
б) график колебаний звуковой частоты, т. е. модулирующих колебаний;
в) график модулированных по амплитуде колебаний.

Без модуляции мы в лучшем случае можем контролировать лишь, работает станция или молчит.
Без модуляции нет ни телефонной, ни телевизионной передачи.

Модуляция — медленный процесс.
Это такие изменения в высокочастотной колебательной системе, при которых она успевает совершить очень много высокочастотных колебаний, прежде чем их амплитуда изменится заметным образом.

Детектирование

Основные принципы радиосвязи представлены в виде блок-схемы:

В приемнике из модулированных колебаний высокой частоты выделяются низкочастотные колебания.
Такой процесс преобразования сигнала называют детектированием.

Полученный в результате детектирования сигнал соответствует тому звуковому сигналу, который действовал на микрофон передатчика.

После усиления колебания низкой частоты могут быть превращены в звук.

Источник: «Физика – 11 класс», учебник Мякишев, Буховцев, Чаругин



Электромагнитные волны. Физика, учебник для 11 класса – Класс!ная физика

Что такое электромагнитная волна — Экспериментальное обнаружение электромагнитных волн — Плотность потока электромагнитного излучения — Изобретение радио А. С. Поповым. Принципы радиосвязи — Модуляция и детектирование — Свойства электромагнитных волн — Распространение радиоволн — Радиолокация — Понятие о телевидении. Развитие средств связи — Краткие итоги главы

class-fizika.ru

Детекторный радиоприемник

Детекторный радиоприемник

Исполнитель: учащийся 9А класса Львов Андрей Олегович
Руководитель: Климов Александр Юрьевич, (Ведущий инженер СУНЦ УрГУ), optek (at) mail.ru

Словарь сокращений и обозначений

А – Ампер, единица измерения силы тока.
В – Вольт, единица измерения напряжения.
Вт – Ватт, единица измерения мощности.
Гн – Генри, единица измерения индуктивности.
ДРП – детекторный радиоприемник.
Др.- другие.
КПД – коэффициент полезного действия.
КПЕ – конденсатор переменной емкости.
УГО – условное графическое обозначение.
Ф – Фарада
ЭАП – электроакустический преобразователь.
Е – напряженность электрического поля радиостанции в месте приема.
m – коэффициент модуляции.
Q – добротность колебательного контура.
W – мощность.

Введение

В настоящее время известно множество типов радиоприемников: детекторный, прямого усиления, регенеративный, сверхрегенеративный, супергетеродинный и прямого преобразования. Из перечисленных, детекторный радиоприемник (далее по тексту – ДРП), имеет наихудшую чувствительность и селективность, но, несмотря на невысокие параметры, он представляет интерес для начинающих радиолюбителей и специалистов.

Простота конструкции, недефицитность деталей и отсутствие источников питания (именно поэтому ДРП изучается в средних учебных заведениях в наше время) способствовали его популярности в 20-40гг 20в. Дадим определение ДРП: это приемник, работающий за счет энергии радиоволн и не имеющий усилителя. Следует заметить, что приемник прямого усиления – это тот же детекторный с каскадами усиления сигнала низкой частоты.

1. Классическая схема ДРП

Рис.1. Типовая схема ДРП

Существует два основных варианта классических схем ДРП. Первый вариант изображен на рис.1. Второй вариант отличается от первого только тем, что детекторный диод подключен не к части контура, а к контуру полностью.

1.1. Функциональная схема ДРП

Рис. 2. Функциональная схема классического ДРП.

Радиотракт включает в себя входные цепи приемника: антенна, заземление, колебательный контур. Детектор – каскад детектирования на точечном диоде и сглаживающий конденсатор С2. Электроакустический преобразователь (ЭАП) служит для преобразования электрического сигнала в звуковой. В качестве ЭАП используются: наушники, электродинамические громкоговорители («динамики»).

1.2. Принцип работы ДРП

Настроив контур на частоту принимаемой радиостанции, выделяем высокочастотный АМ – сигнал. Частота его колебаний велика (более 100 кГц), и в наушниках он слышен не будет. Сигнал нужно продетектировать (преобразовать ВЧ электрические колебания, в колебания НЧ). Для этого служит диод VD 1 (рис.1). Он обладает свойством проводить ток только в одном направлении, от анода, обозначенного треугольником, к катоду. Положительные полуволны колебаний в контуре вызовут ток через диод, а отрицательные закроют его, и тока не будет. При отсутствии конденсатора C 2 через наушники будет протекать пульсирующий ток. Он содержит постоянную составляющую, которая изменяется со звуковой частотой. Такой ток уже вызовет в наушниках звук. Процесс детектирования улучшается при подсоединении блокировочного конденсатора C 2. он заряжается положительными полуволнами почти до амплитудного значения колебаний, а в промежутках между ними сравнительно медленно разряжается током через наушники.

2. Компоненты ДРП

2.1. Колебательный контур

Классическая схема ДРП изображена на рис. 1. Она повторяется во многих популярных книжках и журналах. Антенна WA 1 и заземление присоединены к колебательному контуру (катушка L 1 и КПЕ C 1). Колебательный контур служит для выделения из всей массы принимаемых сигналов лишь одного, желаемого. Если частота сигнала совпадает с частотой настройки контура, напряжение на нем максимально. Для настройки в пределах диапазона изменяют емкость (используют КПЕ), для переключения диапазонов изменяют индуктивность катушки L 1.

2.2. Диод

По применению полупроводниковые диоды разделяются на группы: выпрямительные, высокочастотные, туннельные и некоторые другие (рис.2).

Рис. 3. Диоды.

В качестве полупроводникового материала в диодах используется германий, кремний и арсенид галлия (в туннельных диодах).

Первые диоды стали известны с начала 20в (1906-1908 гг). Тогда же и появились первые ДРП. В 20-40гг 20в радиолюбители изготавливали детекторные диоды из кристаллов цинкита или пирита. В России пионерные работы по диодам проводил О.Лосев, который помимо детекторных диодов изготовил и первые светодиоды (он наблюдал свечение кристалла карборунда при подключении к нему батареи питания). В классических ДРП используются германиевые диоды Д2, 18,20, как самые дешевые и широко распространенные.

2.3. Конденсаторы

В классической схеме ДРП два конденсатора. С1 – переменный керамический или воздушный, предназначен для настройки приемника на частоту радиостанции (5-300 пФ). С2 нужен, чтобы убрать ВЧ – составляющую и повысить качество звука (2000 – 6800 пФ).

2.4. Головные телефоны

В России первым в приемнике высокоомные головные телефоны использовал П.Н.Рыбкин в 1899 г. За рубежом работами по усовершенствованию ДРП в эти же годы занимался Г.Маркони.

Последний элемент разбираемой схемы ДРП – головные телефоны. Для ДРП подходят только высокоомные телефоны (ТА-4, ТОН-2, ТОН-2М, ТАГ-1, ТГ-1), абсолютно не подходят низкоомные или наушники от плейера. Параметры некоторых из них приведены в Приложении 1.

Для телефонов ТОН-2 сопротивление на частоте 1000 Гц составляет 12000 Ом. Минимальная амплитуда сигнала 1000 Гц, слышимая человеком в наушниках ТОН-2 составляет 5 мВ. В классическом ДРП амплитуда сигнала на наушниках достигает 20 мВ (достаточно громко и разборчиво слышна речь и музыка), что соответствует электрической мощности 0,02 мкВт.

3. Недостатки классической схемы детекторного приемника

а) Для согласования сопротивлений колебательного контура и диода используется катушка связи (обычно 1/5-1/10 от числа витков катушки).

Следовательно, на диод поступает ВЧ напряжение в 5-10 раз меньшее, чем наводится в контуре, то есть, с большими потерями мощности (в 25-100 раз).

б) Используется энергия одного полупериода сигнала.

в) Головные телефоны сильно искажают сигнал и имеют низкий КПД (из-за металлической мембраны). Головные телефоны малоэффективны при работе на низких частотах, из-за жесткой мембраны не работают на высоких звуковых частотах. Рабочий диапазон частот наушников 300-3500 Гц. Получить качественный звук в этом случае просто невозможно.

4. Применение классического ДРП.

ДРП, выполненный по классической схеме, и в наше время находит применение для: настройки радиолюбительских передатчиков и настройки передатчиков систем электронного дистанционного управления. В любительской литературе описано успешное применение ДРП для поиска маломощных шпионских закладок (в просторечии именуемых «жучками»). В этих случаях нагрузкой ДРП работает микроамперметр постоянного тока на 10-100 мкА, шунтированный конденсатором.

5. Совершенствование ДРП

Если посмотреть на функциональную схему ДРП, можно прийти к следующим выводам: классическая схема свои возможности усовершенствования исчерпала. Кардинальное улучшение параметров ДРП возможно при полной переделке всех функциональных узлов ДРП, собранного по классической схеме.

5.1. Громкоговорящий ДРП

Добиться увеличения громкости и улучшения качества сигнала можно модернизацией всех узлов классического ДРП. В качестве колебательного контура выступает катушка индуктивности на ферритовом стержне. Эта катушка имеет межвитковую емкость, а настройка на радиостанцию производится перемещением катушки на сердечнике. Более оптимальное согласование детектора с контуром производится конденсатором связи С1 (сопротивление контура сотни килоом, а детектора 5-20 кОм). Замена одного диода диодным мостом позволяет увеличить громкость ЭАП, так как теперь в ДРП используется энергия обоих полупериодов ВЧ сигнала. Диодный мост выполнен на диодах типа Д310, так как у них меньше сопротивление и меньше потери, чем у диодов Д2, 18, 20.

Рис.4 Прибор для выбора детекторного диода

О качестве диода позволяет судить параметр – «прямой ток при напряжении 1 В», чем он больше, тем лучше.

Рис.5 Усовершенствованный классический ДРП

В качестве ЭАП используется динамик мощностью 1-8 Вт и сопротивлением катушки 4-8 Ом. Для согласования сопротивлений детектора и ЭАП служит понижающий трансформатор (~220 В/9-12 В). Для увеличения отдачи динамик устанавливается на отражательный экран. Модернизированный ДРП дает выигрыш по мощности относительно классической схемы ДРП в 140-400 раз.

5.2. Применение модернизированного ДРП.

Улучшенный ДРП является практически вечным источником бесплатной энергии «из воздуха». Он питает светильник на сверхъярком светодиоде (белом или желтом) и способен подзарядить аккумулятор, часовую батарейку или пальчиковую (типа АА или ААА) из будильника или пейджера. Он может найти применение в местах, где нет электричества, например, в коллективных садах (в доме и овощной яме), в горах. Если от него запитать светильник на сверхъярком красном светодиоде (2-10 кд), он заменит медицинский аппарат светотерапии «Дюна-Т». Также от него можно питать «серебряный ионатор» – прибор для серебрения воды.

Рис.6 ДРП – источник электрической энергии.

Накопительный конденсатор С2 рассчитан на рабочее напряжение 25-60 В при минимальном токе утечки. Приемник настраивается на самую мощную СВ или ДВ радиостанцию в этом регионе.

5.3. ДРП, питаемый «свободной энергией поля»

Для более полного использования энергии несущей, модернизированный ДРП дополняется каскадом усиления на германиевом транзисторе. И данный приемник работает громче. Теперь он стал приемником прямого усиления.

Рис.7 ДРП (приемник прямого усиления) с увеличенным КПД.

Транзистор в усилителе приемника низкочастотный и маломощный: МП39-42. Сигнал ЗЧ на базу подается через разделительный конденсатор С3. ЭАП приемника состоит из динамика ВА1, включенного через согласующий трансформатор Т1.

Настройка этого приемника сводится к настройке входного контура на частоту мощной радиостанции и одновременной подстройке емкости С1, а затем подбору сопротивления R 1 по максимальной громкости звучания.

6. Экспериментальная часть

6.1. Сборка и наладка модернизированного ДРП.

Для собранного по рис.5 модернизированного ДРП и настроенного перемещением катушки по стержню на радиостанцию «Радио России» (длина волны 260 кГц – диапазон ДВ) вольтметр на выходе приемника показал напряжение 0,25 В. После согласования сопротивлений контура и детектора согласующим конденсатором вольтметр показал 2,35 В. Затем был подключен ЭАП: динамик 6ГД-3. Полоса воспроизводимых частот 6ГД-3: 100-10000 Гц. Громко и с высоким качеством слышна музыка и речь. Антенна: медный провод диаметром 0,5 мм и длиной 8 метров. В качестве заземления использована батарея центрального отопления. Если вместо ЭАП включали сверхъяркий желтый светодиод, то наблюдали его яркое свечение!

Таким образом, все мои предположения подтвердились. Улучшенный ДРП может работать в качестве практически вечного источника энергии. Громкость звучания этого приемника можно дополнительно увеличить при использовании рупора, установленного на ЭАП.

При замене ДВ катушки на более высокодобротную на выходе приемника было получено напряжение 5,30 В и громкость приемника значительно возросла. Дальнейшее увеличение громкости приемника можно получить за счет применения более эффективной антенны.

6.2. Сборка и наладка ДРП с каскадом усиления на транзисторе (питаемый энергией электромагнитной волны).

Приемник собранный по рис.7 работал значительно громче, чем модернизированный ДРП. И это естественно, так как транзисторный усилитель НЧ питается постоянной составляющей сигнала, а она в 3-10 раз выше, чем НЧ составляющая, вдобавок транзистор усиливает слабый НЧ сигнал.

Приложение

Таблица 1 Электрические параметры высокоомных телефонов типа ТОН-2

Основные параметры

Значение параметра

Модуль полного электрического сопротивления переменному току одного телефонного капсюля на частоте 1000 Гц, не менее, Ом

6000

Неравномерность частотной характеристики отдачи капсюля в диапазоне частот 300-3000 Гц, не более, дБ

35

Таблица 2 Электрические параметры детекторных диодов

Тип диода

 

Назначение

Среднее значение выпрямленного тока, мА

Прямой ток при напряжении 1 В, мА

Обратный ток не более, мА (при напряжении, В)

Наибольшее допустимое обратное рабочее напряжение, В

Наименьш. амплитуда обратного пробивного напряжения , В

Д2А

Выпрямление переменных напряжений

50

>50

0,25 (7)

10

15

Д310

Импульсный

500

>500

0,02 (20)

* Диоды Д2 предназначены для работы в различных схемах. Оформлены в стеклянном корпусе. Предельная рабочая частота 150 МГц при температуре окружающей среды от –60 до +70 О С. Емкость между выводами при обратном напряжении на диоде – 1 пФ.

Таблица 3 Параметры громкоговорителей

Тип громкоговорителя

Отдача, Па

Треб. W сигнала для громкости 60дБ, мВт

0,025ГД-2

0,075

3,6

0,05ГД-1

0,15

1,8

1ГД-5, 1ГД-28, 1ГД-36

0,2

1,0

1ГД-4, 3ГД-1, 4ГД-5

0,3

0,45

5ГД-1, 6ГД-1, 6ГД-3

0,4

0,25

8ГД-1 РРЗ

0,45

0,2

Словарь терминов

АНТЕННА (от лат. antenna — мачта, рей), в радио — устройство, предназначенное (обычно в сочетании с радиопередатчиком или радиоприемником) для излучения или (и) приема радиоволн.

ДИОД [от ди… и (электр)од ], 2-электродный электровакуумный, полупроводниковый или газоразрядный прибор с односторонней проводимостью. Применяется в электро- и радиоаппаратуре для выпрямления переменного тока, детектирования, преобразования частоты, переключения электрических цепей.

ЗАЗЕМЛЕНИЕ, устройство для электрического соединения с землей аппаратов, машин, приборов и др.; предназначено для защиты от опасного действия электрического тока, а в ряде случаев для использования земли в качестве проводника тока или одного из плеч несимметрического вибратора (антенны).

КОНДЕНСАТОР электрический, система из двух или более подвижных или неподвижных электродов (обкладок), разделенных диэлектриком (бумагой, слюдой, воздухом и др.). Обладает способностью накапливать электрические заряды. Применяется в радиотехнике, электронике, электротехнике и т. д. в качестве элемента с сосредоточенной электрической емкостью.

ПИРИТ – медный минерал (в основном содержащий дисульфид меди)

СЕЛЕКТИВНОСТЬ (избирательность) радиоприемника, его способность выделять полезный радиосигнал на фоне посторонних электромагнитных колебаний (помех). Параметр, характеризующий эту способность количественно. Наиболее распространена частотная селективность.

ТРАНЗИСТОР (от англ. transfеr — переносить и резистор), полупроводниковый прибор для усиления, генерирования и преобразования электрических колебаний, выполненный на основе монокристаллического полупроводника (преимущественно из кремния или германия), содержащего не менее трех областей с различной — электронной и дырочной — проводимостью.

ТРАНСФОРМАТОР (от лат. transformo — преобразую), устройство для преобразования каких-либо существенных свойств энергии (напр., электрический трансформатор, гидротрансформатор).

Именной указатель

Лосев Олег Владимирович (1903-42), российский радиофизик. Создал (1922) полупроводниковый радиоприемник (кристадин). Открыл ряд явлений в кристаллических полупроводниках («свечение Лосева», фотоэлектрический эффект и др.).

Маркони Гульельмо (1874-1937), итальянский радиотехник и предприниматель. С 1894 в Италии, а с 1896 в Великобритании проводил опыты по практическому использованию электромагнитных волн; в 1897 получил патент на изобретение способа беспроводного телеграфирования. Организовал акционерное общество (1897). Способствовал развитию радио как средства связи. Нобелевская премия (1909, совместно с К. Ф. Брауном).

Поляков Владимир Тимофеевич – известный советский и российский радиотехник, специалист по радиоприемным устройствам

Попов Александр Степанович (4 (16) марта 1859, пос. Турьинские Рудники Верхотурского уезда Пермской губернии, ныне Краснотурьинск Екатеринбургской области – 31 декабря 1905 (13 января 1906), Санкт-Петербург), российский физик и электротехник, один из пионеров применения электромагнитных волн в практических целях, в том числе для радиосвязи.

Рыбкин Петр Николаевич – ассистент А. С. Попова, первый использовал в радиоприемнике высокоомные телефоны.

www.qrz.ru

Устройство и принцип работы радиоприёмника Попова

РЕФЕРАТ ПО ФИЗИКЕ

на
тему:

Устройство и принцип работы радиоприёмника

А. С. Попова

Выполнила: ученица 11 «б» класса

Овчинникова Ю.

Проверил: учитель физики

Гаврилькова И. Ю.

Новый Оскол 2003 г.

ПЛАН:

Первый радиоприёмник Попова.

Совершенствование радио Поповым.

Современные радиоприёмники.

Первый радиоприёмник Попова.

После того, как было открыто электричество, по проводам научились
передавать электрические сигналы, переносившие телеграммы и живую речь.
Но ведь телефонные и телеграфные провода не протянешь за судном или
самолётом, за поездом или автомобилем.

И тут людям помогло радио (в переводе с латинского radio означает
“излучать”, оно имеет общий корень и с другими латинскими словами radius
– “луч”). Для передачи сообщения без проводов нужны лишь радиопередатчик
и радиоприёмник, которые связаны между собой электромагнитными волнами –
радиоволнами, излучаемыми передатчиком и принимаемые приёмником.

История радио начинается с первого в мире радиоприёмника, созданного в
1895 г. русским учёным А. С. Поповым. Попов сконструировал прибор,
которые, по его словам, “заменил недостающие человеку электромагнитные
чувства” и реагировал на электромагнитные волны. Сначала приёмник мог
“чувствовать” только атмосферные электрические разряды – молнии. А затем
научился принимать и записывать на ленту телеграммы, переданные по
радио. Своим изобретением Попов подвёл итог работы большого числа учёных
ряда стран мира.

Важный вклад в развитие радиотехники внесли разные учёные: Х. Эрнест, М.
Фарадей, Дж. Максвелл и другие. Наиболее длинные электромагнитные волны
впервые сумел получить и исследовать немецкий физик

Г. Герц в 1888г. А. С. Попов, опираясь на результаты Герца, создал, как
уже говорилось, прибор для обнаружения и регистрирования электрических
колебаний – радиоприёмник.

25 апреля (7 мая) 1895 г. на заседании физико-химического общества Попов
сделал доклад “Об отношении металлических порошков к электрическим
колебаниям”, в котором изложил основные идеи о своём чувствительном
приборе для обнаружения и регистрации электромагнитных колебаний. Этот
прибор назвали грозоотметчиком. Прибор содержит все основные части
радиоприёмника искровой радиотелеграфии, включая антенну и заземление.

Грозоотметчик А. С. Попова.

Первый радиоприёмник имел очень простое устройство: батарея,
электрический звонок, электромагнитное реле и когерер (от латинского
слова cogerentia – сцепление). Этот прибор представляет собой стеклянную
трубку с двумя электродами. В трубке помещены мелкие металлические
опилки. Действие прибора основано на влиянии электрических разрядов на
металлические порошки. В обычных условиях когерер обладает большим
сопротивлением, так как опилки имеют плохой контакт друг с другом.
Пришедшая электромагнитная волна создает в когерере переменный ток
высокой частоты. Между опилками проскакивают мельчайшие искорки, которые
спекают опилки. В результате сопротивление когерера резко падает (в
опытах А.С. Попова со 100000 до 1000 – 500 Ом, то есть в 100-200 раз).
Снова вернуть прибору большое сопротивление можно, если встряхнуть его.
Чтобы обеспечить автоматичность приема, необходимо для осуществления
беспроволочной связи, А.С. Попов использовал звонковое устройство для
встряхивания когерера после приема сигнала. Под действием радиоволн,
принятых антенной, металлические опилки в когерере сцеплялись, и он
начинал пропускать электрический ток от батареи. Срабатывало реле,
включая звонок, а когерер получал “легкую встряску”, сцепление между
металлическими опилками в когерере ослабевало, и к ним поступал
следующий сигнал.

Первый радиоприёмник А. С. Попова (1895г.)

Передатчиком служил искровой разрядник, возбуждавший электромагнитные
колебания в антенне, которую Попов впервые в мире использовал для
беспроводной связи. Чтобы повысить чувствительность аппарата, А.С. Попов
один из выводов когерера заземлил, а другой присоединил к высоко
поднятому куску проволоки, создав первую приемную антенну для
беспроволочной связи. Заземление превращает проводящую поверхность земли
в часть открытого колебательного контура, что увеличивает дальность
приема.

D

t

6>dfoeeaUoeU*I3/4?F??U„z„m„b[b„b„b„[b„b

????????????U?frt¨?o*

,

R

T

– контакт звонка; А, В – вызовы когерера; С – контакт реле; РQ – выводы
батареи, М – контакт антенны.

Принцип действия передатчика и приёмника Попова можно продемонстрировать
с помощью установки, в которой диполь с когерером замкнут на батарею
через гальванометр.

В момент приёма электромагнитной волны сопротивление когерера
уменьшается, а ток в цепи увеличивается настолько, что стрелка
гальванометра отклоняется на всю шкалу. Для прекращения приёма сигнала
опилки когерера следует встряхнуть, например, лёгким постукиванием
карандаша. В приёмной станции Попова эту операцию выполнял автоматически
молоточек электрического звонка.

Схема демонстрации принципа действия приёмника Попова: К – когерер, Б –
батарея.

Совершенствование радио Поповым.

Много сил и времени посвятил Попов совершенствованию своего
радиоприёмника. Он ставил своей непосредственной задачей построить
прибор для передачи сигналов на большие расстояния.

Вначале радиосвязь была установлена на расстоянии 250 м. Неустанно
работая над своим изобретением, Попов вскоре добился дальности связи
более 600 м. Затем на маневрах Черноморского флота в 1899г. ученый
установил радиосвязь на расстоянии свыше 20км, а в 1901г. дальность
радиосвязи была уже 150км. Важную роль в этом сыграла новая конструкция
передатчика. Искровой промежуток был размещен в колебательном контуре,
индуктивно связанном с передающей антенной и настроенном с ней в
резонанс.. Существенно изменились и способы регистрации сигнала.
Параллельно звонку был включен телеграфный аппарат, позволивший вести
автоматическую запись сигналов. В 1899г. была обнаружена возможность
приема сигналов с помощью телефона.

Через 5 лет после постройки первого приёмника начала действовать
регулярная линия беспроводной связи на расстояние 40 километров.
Благодаря программе, переданной по этой линии зимой 1900 г., ледокол
“Ермак” снял со льдины рыбаков, которых шторм унёс в море. Радио,
начавшее свою практическую историю спасением людей, стало новым
прогрессивным видом связи XX века.

Современные радиоприёмники.

Хотя современные радиоприемники очень мало напоминают приемник Попова,
основные принципы их действия те же, что и в его приборе. Современный
приемник также имеет антенну, в которой приходящая волна вызывает очень
слабые электромагнитные колебания. Как и в приемнике А. С. Попова,
энергия этих колебаний не используется непосредственно для приема.
Слабые сигналы лишь управляют источниками энергии, питающими последующие
цепи. Сейчас такое управление осуществляется с помощью полупроводниковых
приборов.

Схема простейшего радиоприёмника.

Современные радиоприёмники обнаруживают и извлекают передаваемую
информацию. Достигая антенны приёмника, радиоволны пересекают её провод
и возбуждают в ней очень слабые частоты. В антенне одновременно
находятся высокочастотные колебания от многих радиопередатчиков. Поэтому
один и

ukrreferat.com

Устройство и принцип работы радиоприёмника Попова

РЕФЕРАТ ПО ФИЗИКЕ

на тему:

Устройство и принцип работы радиоприёмника

А. С. Попова

Выполнила: ученица 11 «б» класса

Овчинникова Ю.

Проверил: учитель физики

Гаврилькова И. Ю.

Новый Оскол 2003 г.

ПЛАН:

    Первый радиоприёмник Попова.

    Совершенствование радио Поповым.

    Современные радиоприёмники.

Первый радиоприёмник Попова.

После того, как было открыто электричество, по проводам научились передавать электрические сигналы, переносившие телеграммы и живую речь. Но ведь телефонные и телеграфные провода не протянешь за судном или самолётом, за поездом или автомобилем.

И тут людям помогло радио (в переводе с латинского radio означает “излучать”, оно имеет общий корень и с другими латинскими словами radius – “луч”). Для передачи сообщения без проводов нужны лишь радиопередатчик и радиоприёмник, которые связаны между собой электромагнитными волнами – радиоволнами, излучаемыми передатчиком и принимаемые приёмником.

История радио начинается с первого в мире радиоприёмника, созданного в 1895 г. русским учёным А. С. Поповым. Попов сконструировал прибор, которые, по его словам, “заменил недостающие человеку электромагнитные чувства” и реагировал на электромагнитные волны. Сначала приёмник мог “чувствовать” только атмосферные электрические разряды – молнии. А затем научился принимать и записывать на ленту телеграммы, переданные по радио. Своим изобретением Попов подвёл итог работы большого числа учёных ряда стран мира.

Важный вклад в развитие радиотехники внесли разные учёные: Х. Эрнест, М. Фарадей, Дж. Максвелл и другие. Наиболее длинные электромагнитные волны впервые сумел получить и исследовать немецкий физик

Г. Герц в 1888г. А. С. Попов, опираясь на результаты Герца, создал, как уже говорилось, прибор для обнаружения и регистрирования электрических колебаний – радиоприёмник.

25 апреля (7 мая) 1895 г. на заседании физико-химического общества Попов сделал доклад “Об отношении металлических порошков к электрическим колебаниям”, в котором изложил основные идеи о своём чувствительном приборе для обнаружения и регистрации электромагнитных колебаний. Этот прибор назвали грозоотметчиком. Прибор содержит все основные части радиоприёмника искровой радиотелеграфии, включая антенну и заземление.

Грозоотметчик А. С. Попова.

Первый радиоприёмник имел очень простое устройство: батарея, электрический звонок, электромагнитное реле и когерер (от латинского слова cogerentia – сцепление). Этот прибор представляет собой стеклянную трубку с двумя электродами. В трубке помещены мелкие металлические опилки. Действие прибора основано на влиянии электрических разрядов на металлические порошки. В обычных условиях когерер обладает большим сопротивлением, так как опилки имеют плохой контакт друг с другом. Пришедшая электромагнитная волна создает в когерере переменный ток высокой частоты. Между опилками проскакивают мельчайшие искорки, которые спекают опилки. В результате сопротивление когерера резко падает (в опытах А.С. Попова со 100000 до 1000 – 500 Ом, то есть в 100-200 раз). Снова вернуть прибору большое сопротивление можно, если встряхнуть его. Чтобы обеспечить автоматичность приема, необходимо для осуществления беспроволочной связи, А.С. Попов использовал звонковое устройство для встряхивания когерера после приема сигнала. Под действием радиоволн, принятых антенной, металлические опилки в когерере сцеплялись, и он начинал пропускать электрический ток от батареи. Срабатывало реле, включая звонок, а когерер получал “легкую встряску”, сцепление между металлическими опилками в когерере ослабевало, и к ним поступал следующий сигнал.

Первый радиоприёмник А. С. Попова (1895г.)

Передатчиком служил искровой разрядник, возбуждавший электромагнитные колебания в антенне, которую Попов впервые в мире использовал для беспроводной связи. Чтобы повысить чувствительность аппарата, А.С. Попов один из выводов когерера заземлил, а другой присоединил к высоко поднятому куску проволоки, создав первую приемную антенну для беспроволочной связи. Заземление превращает проводящую поверхность земли в часть открытого колебательного контура, что увеличивает дальность приема.

Схема радиоприёмника А. С. Попова, сделанная им самим: N – контакт звонка; А, В – вызовы когерера; С – контакт реле; РQ – выводы батареи, М – контакт антенны.

Принцип действия передатчика и приёмника Попова можно продемонстрировать с помощью установки, в которой диполь с когерером замкнут на батарею через гальванометр.

В момент приёма электромагнитной волны сопротивление когерера уменьшается, а ток в цепи увеличивается настолько, что стрелка гальванометра отклоняется на всю шкалу. Для прекращения приёма сигнала опилки когерера следует встряхнуть, например, лёгким постукиванием карандаша. В приёмной станции Попова эту операцию выполнял автоматически молоточек электрического звонка.

Схема демонстрации принципа действия приёмника Попова: К – когерер, Б – батарея.

Совершенствование радио Поповым.

Много сил и времени посвятил Попов совершенствованию своего радиоприёмника. Он ставил своей непосредственной задачей построить прибор для передачи сигналов на большие расстояния.

Вначале радиосвязь была установлена на расстоянии 250 м. Неустанно работая над своим изобретением, Попов вскоре добился дальности связи более 600 м. Затем на маневрах Черноморского флота в 1899г. ученый установил радиосвязь на расстоянии свыше 20км, а в 1901г. дальность радиосвязи была уже 150км. Важную роль в этом сыграла новая конструкция передатчика. Искровой промежуток был размещен в колебательном контуре, индуктивно связанном с передающей антенной и настроенном с ней в резонанс.. Существенно изменились и способы регистрации сигнала. Параллельно звонку был включен телеграфный аппарат, позволивший вести автоматическую запись сигналов. В 1899г. была обнаружена возможность приема сигналов с помощью телефона.

Через 5 лет после постройки первого приёмника начала действовать регулярная линия беспроводной связи на расстояние 40 километров. Благодаря программе, переданной по этой линии зимой 1900 г., ледокол “Ермак” снял со льдины рыбаков, которых шторм унёс в море. Радио, начавшее свою практическую историю спасением людей, стало новым прогрессивным видом связи XX века.

Современные радиоприёмники.

Хотя современные радиоприемники очень мало напоминают приемник Попова, основные принципы их действия те же, что и в его приборе. Современный приемник также имеет антенну, в которой приходящая волна вызывает очень слабые электромагнитные колебания. Как и в приемнике А. С. Попова, энергия этих колебаний не используется непосредственно для приема. Слабые сигналы лишь управляют источниками энергии, питающими последующие цепи. Сейчас такое управление осуществляется с помощью полупроводниковых приборов.

Схема простейшего радиоприёмника.

Современные радиоприёмники обнаруживают и извлекают передаваемую информацию. Достигая антенны приёмника, радиоволны пересекают её провод и возбуждают в ней очень слабые частоты. В антенне одновременно находятся высокочастотные колебания от многих радиопередатчиков. Поэтому один из важнейших элементов радиоприёмника – избирательное устройство, которое из всех принятых сигналов может отображать нужный. Таким устройством является колебательный контур. Контур воспринимает сигналы того радиопередатчика, высокочастотные колебания которого совпадают с собственной частотой колебаний контура приёмника. Назначение других элементов радиоприёмника заключается в том, чтобы усилить принятые колебания, выделить из их колебания звуковой частоты, усилить их и преобразовать в сигналы информации.

Различают 2 типа радиоприёмников: приёмники прямого усиления, в которых высокочастотные колебания до детектора только усиливаются, и супергетеродинные, в которых принятые сигналы преобразуются в колебания некоторой промежуточной частоты, усиливаются и только после этого поступают на детектор.

Список литературы:

    Зубков Б. В., Чумаков С. В. “Энциклопедический словарь юного техника”, Москва, “Педагогика”, 1988.

    Орехов В. П. “Колебания и волны в курсе физики средней школы, Москва, “Просвещение”, 1977.

    Мякишев Г. Я., Буховцев Б.Б. “Физика 11”, Москва, “Просвещение”, 1993.



vuz-24.ru

Устройство и принцип работы радиоприёмника Попова

на тему:

Устройство и принцип работы радиоприёмника

А. С. Попова

Выполнила: ученица 11 «б» класса

Овчинникова Ю.

Проверил: учитель физики

Гаврилькова И. Ю.

Новый Оскол 2003 г.

ПЛАН:

1. Первый радиоприёмник Попова.

2. Совершенствование радио Поповым.

3. Современные радиоприёмники.

Первый радиоприёмник Попова.

После того, как было открыто электричество, по проводам научились передавать электрические сигналы, переносившие телеграммы и живую речь. Но ведь телефонные и телеграфные провода не протянешь за судном или самолётом, за поездом или автомобилем.

И тут людям помогло радио (в переводе с латинского radio означает “излучать”, оно имеет общий корень и с другими латинскими словами radius – “луч”). Для передачи сообщения без проводов нужны лишь радиопередатчик и радиоприёмник, которые связаны между собой электромагнитными волнами – радиоволнами, излучаемыми передатчиком и принимаемые приёмником.

История радио начинается с первого в мире радиоприёмника, созданного в 1895 г. русским учёным А. С. Поповым. Попов сконструировал прибор, которые, по его словам, “заменил недостающие человеку электромагнитные чувства” и реагировал на электромагнитные волны. Сначала приёмник мог “чувствовать” только атмосферные электрические разряды – молнии. А затем научился принимать и записывать на ленту телеграммы, переданные по радио. Своим изобретением Попов подвёл итог работы большого числа учёных ряда стран мира.

Важный вклад в развитие радиотехники внесли разные учёные: Х. Эрнест, М. Фарадей, Дж. Максвелл и другие. Наиболее длинные электромагнитные волны впервые сумел получить и исследовать немецкий физик

Г. Герц в 1888г. А. С. Попов, опираясь на результаты Герца, создал, как уже говорилось, прибор для обнаружения и регистрирования электрических колебаний – радиоприёмник.

25 апреля (7 мая) 1895 г. на заседании физико-химического общества Попов сделал доклад “Об отношении металлических порошков к электрическим колебаниям”, в котором изложил основные идеи о своём чувствительном приборе для обнаружения и регистрации электромагнитных колебаний. Этот прибор назвали грозоотметчиком. Прибор содержит все основные части радиоприёмника искровой радиотелеграфии, включая антенну и заземление.

Грозоотметчик А. С. Попова.

Первый радиоприёмник имел очень простое устройство: батарея, электрический звонок, электромагнитное реле и когерер (от латинского слова cogerentia – сцепление). Этот прибор представляет собой стеклянную трубку с двумя электродами. В трубке помещены мелкие металлические опилки. Действие прибора основано на влиянии электрических разрядов на металлические порошки. В обычных условиях когерер обладает большим сопротивлением, так как опилки имеют плохой контакт друг с другом. Пришедшая электромагнитная волна создает в когерере переменный ток высокой частоты. Между опилками проскакивают мельчайшие искорки, которые спекают опилки. В результате сопротивление когерера резко падает (в опытах А.С. Попова со 100000 до 1000 – 500 Ом, то есть в 100-200 раз). Снова вернуть прибору большое сопротивление можно, если встряхнуть его. Чтобы обеспечить автоматичность приема, необходимо для осуществления беспроволочной связи, А.С. Попов использовал звонковое устройство для встряхивания когерера после приема сигнала. Под действием радиоволн, принятых антенной, металлические опилки в когерере сцеплялись, и он начинал пропускать электрический ток от батареи. Срабатывало реле, включая звонок, а когерер получал “легкую встряску”, сцепление между металлическими опилками в когерере ослабевало, и к ним поступал следующий сигнал.

Первый радиоприёмник А. С. Попова (1895г.)

Передатчиком служил искровой разрядник, возбуждавший электромагнитные колебания в антенне, которую Попов впервые в мире использовал для беспроводной связи. Чтобы повысить чувствительность аппарата, А.С. Попов один из выводов когерера заземлил, а другой присоединил к высоко поднятому куску проволоки, создав первую приемную антенну для беспроволочной связи. Заземление превращает проводящую поверхность земли в часть открытого колебательного контура, что увеличивает дальность приема.

Схема радиоприёмника А. С. Попова, сделанная им самим: N – контакт звонка; А, В – вызовы когерера; С – контакт реле; РQ – выводы батареи, М – контакт антенны.

Принцип действия передатчика и приёмника Попова можно продемонстрировать с помощью установки, в которой диполь с когерером замкнут на батарею через гальванометр.

В момент приёма электромагнитной волны сопротивление когерера уменьшается, а ток в цепи увеличивается настолько, что стрелка гальванометра отклоняется на всю шкалу. Для прекращения приёма сигнала опилки когерера следует встряхнуть, например, лёгким постукиванием карандаша. В приёмной станции Попова эту операцию выполнял автоматически молоточек электрического звонка.

Схема демонстрации принципа действия приёмника Попова: К – когерер, Б – батарея.

Совершенствование радио Поповым.

Много сил и времени посвятил Попов совершенствованию своего радиоприёмника. Он ставил своей непосредственной задачей построить прибор для передачи сигналов на большие расстояния.

Вначале радиосвязь была установлена на расстоянии 250 м. Неустанно работая над своим изобретением, Попов вскоре добился дальности связи более 600 м. Затем на маневрах Черноморского флота в 1899г. ученый установил радиосвязь на расстоянии свыше 20км, а в 1901г. дальность радиосвязи была уже 150км. Важную роль в этом сыграла новая конструкция передатчика. Искровой промежуток был размещен в колебательном контуре, индуктивно связанном с передающей антенной и настроенном с ней в резонанс.. Существенно изменились и способы регистрации сигнала. Параллельно звонку был включен телеграфный аппарат, позволивший вести автоматическую запись сигналов. В 1899г. была обнаружена возможность приема сигналов с помощью телефона.

Через 5 лет после постройки первого приёмника начала действовать регулярная линия беспроводной связи на расстояние 40 километров. Благодаря программе, переданной по этой линии зимой 1900 г., ледокол “Ермак” снял со льдины рыбаков, которых шторм унёс в море. Радио, начавшее свою практическую историю спасением людей, стало новым прогрессивным видом связи XX века.

Современные радиоприёмники.

Хотя современные радиоприемники очень мало напоминают приемник Попова, основные принципы их действия те же, что и в его приборе. Современный приемник также имеет антенну, в которой приходящая волна вызывает очень слабые электромагнитные колебания. Как и в приемнике А. С. Попова, энергия этих колебаний не используется непосредственно для приема. Слабые сигналы лишь управляют источниками энергии, питающими последующие цепи. Сейчас такое управление осуществляется с помощью полупроводниковых приборов.

Схема простейшего радиоприёмника.

Современные радиоприёмники обнаруживают и извлекают передаваемую информацию. Достигая антенны приёмника, радиоволны пересекают её провод и возбуждают в ней очень слабые частоты. В антенне одновременно находятся высокочастотные колебания от многих радиопередатчиков. Поэтому один из важнейших элементов радиоприёмника – избирательное устройство, которое из всех принятых сигналов может отображать нужный. Таким устройством является колебательный контур. Контур воспринимает сигналы того радиопередатчика, высокочастотные колебания которого совпадают с собственной частотой колебаний контура приёмника. Назначение других элементов радиоприёмника заключается в том, чтобы усилить принятые колебания, выделить из их колебания звуковой частоты, усилить их и преобразовать в сигналы информации.

Различают 2 типа радиоприёмников: приёмники прямого усиления, в которых высокочастотные колебания до детектора только усиливаются, и супергетеродинные, в которых принятые сигналы преобразуются в колебания некоторой промежуточной частоты, усиливаются и только после этого поступают на детектор.

Список литературы :

1) Зубков Б. В., Чумаков С. В. “Энциклопедический словарь юного техника”, Москва, “Педагогика”, 1988.

2) Орехов В. П. “Колебания и волны в курсе физики средней школы, Москва, “Просвещение”, 1977.

3) Мякишев Г. Я., Буховцев Б.Б. “Физика 11”, Москва, “Просвещение”, 1993.

mirznanii.com