Что такое частная производная – ❶ Как вычислить частную производную 🚩 вычислить частные производные 🚩 Математика

В чём смысл частных производных? — Мегаобучалка

По своей сути частные производные 1-го порядка напоминают «обычную» производную:

– это функции, которые характеризуют скорость изменения функции в направлении осей и соответственно. Так, например, функция характеризует крутизну «подъёмов» и «склонов» поверхности в направлении оси абсцисс, а функция сообщает нам о «рельефе» этой же поверхности в направлении оси ординат.

! Примечание: здесь подразумеваются направления, которые параллельны координатным осям.

В целях лучшего понимания рассмотрим конкретную точку плоскости и вычислим в ней значение функции («высоту»):
– а теперь представьте, что вы здесь находитесь (НА САМОЙ поверхности).

Вычислим частную производную по «икс» в данной точке:

Отрицательный знак «иксовой» производной сообщает нам об убывании функции в точке по направлению оси абсцисс. Иными словами, если мы сделаем маленький-маленький (бесконечно малый)

шажок в сторону острия оси (параллельно данной оси), то спустимся вниз по склону поверхности.

Теперь узнаем характер «местности» по направлению оси ординат:

Производная по «игрек» положительна, следовательно, в точке по направлению оси функция возрастает. Если совсем просто, то здесь нас поджидает подъём в гору.

Кроме того, частная производная в точке характеризует скорость изменения функции по соответствующему направлению. Чем полученное значение больше по модулю – тем поверхность круче, и наоборот, чем оно ближе к нулю – тем поверхность более пологая. Так, в нашем примере «склон» по направлению оси абсцисс более крут, чем «гора» в направлении оси ординат.

Но то были два частных пути. Совершенно понятно, что из точки, в которой мы находимся, (и вообще из любой точки данной поверхности) мы можем сдвинуться и в каком-нибудь другом направлении. Таким образом, возникает интерес составить общую «навигационную карту», которая сообщала бы нам о «ландшафте» поверхности

по возможностив каждой точке области определения данной функции по всем доступным путям.



Систематизируем элементарные прикладные правила:

1) Когда мы дифференцируем по , то переменная считается константой.

2) Когда же дифференцирование осуществляется по , то константой считается .

3) Правила и таблица производных элементарных функций справедливы и применимы для любой переменной ( , либо какой-нибудь другой), по которой ведется дифференцирование.

Шаг второй. Находим частные производные второго порядка. Их четыре.

Обозначения:
или – вторая производная по «икс»
или – вторая производная по «игрек»
или – смешанная производная «икс по игрек»
или – смешанная производная «игрек по икс»

Со второй производной нет никаких проблем. Говоря простым языком,

вторая производная – это производная от первой производной.

Для удобства я перепишу уже найденные частные производные первого порядка:

Сначала найдем смешанные производные:

Как видите, всё просто: берем частную производную и дифференцируем ее еще раз, но в данном случае – уже по «игрек».

Аналогично:

В практических примерах можно ориентироваться на следующее равенство:

Таким образом, через смешанные производные второго порядка очень удобно проверить, а правильно ли мы нашли частные производные первого порядка.

Находим вторую производную по «икс».
Никаких изобретений, берем и дифференцируем её по «икс» еще раз:

Аналогично:

Следует отметить, что при нахождении , нужно проявить повышенное внимание, так как никаких чудесных равенств для их проверки не существует.

Вторые производные также находят широкое практическое применение, в частности, они используются в задаче отыскания

экстремумов функции двух переменных.

Пример 2

Вычислить частные производные первого порядка функции в точке . Найти производные второго порядка.

Пример 3

Найти частные производные первого порядка функции . Проверить, что . Записать полный дифференциал первого порядка .

Решение: Находим частные производные первого порядка:

Обратите внимание на подстрочный индекс: , рядом с «иксом» не возбраняется в скобках записывать, что – константа. Данная пометка может быть очень полезна для начинающих, чтобы легче было ориентироваться в решении.

Дальнейшие комментарии:

(1) Выносим все константы за знак производной. В данном случае и , а, значит, и их произведение считается постоянным числом.

(2) Не забываем, как правильно дифференцировать корни.

(1) Выносим все константы за знак производной, в данной случае константой является .

(2) Под штрихом у нас осталось произведение двух функций, следовательно, нужно использовать правило дифференцирования произведения .

(3) Не забываем, что – это сложная функция (хотя и простейшая из сложных). Используем соответствующее правило: .

Теперь находим смешанные производные второго порядка:

, значит, все вычисления выполнены верно.

Запишем полный дифференциал . В контексте рассматриваемого задания не имеет смысла рассказывать, что такое полный дифференциал функции двух переменных. Важно, что этот самый дифференциал очень часто требуется записать в практических задачах.

Полный дифференциал первого порядка функции двух переменных имеет вид:

В данном случае:

То есть, в формулу нужно тупо просто подставить уже найденные частные производные первого порядка. Значки дифференциалов и в этой и похожих ситуациях по возможности лучше записывать в числителях:

Пример 4

Найти частные производные первого порядка функции . Проверить, что . Записать полный дифференциал первого порядка .

 

Рассмотрим серию примеров, включающих в себя сложные функции.

Пример 5

Найти частные производные первого порядка функции .
Записать полный дифференциал .

Решение:

(1) Применяем правило дифференцирования сложной функции .

Следует помнить очень важный момент: когда мы по таблице превращаем синус (внешнюю функцию) в косинус, то вложение (внутренняя функция) у нас не меняется.

(2) Здесь используем свойство корней: , выносим константу за знак производной, а корень представляем в нужном для дифференцирования виде.

Аналогично:

Запишем полный дифференциал первого порядка:

Пример 6

Найти частные производные первого порядка функции .

Записать полный дифференциал .

Это пример для самостоятельного решения (ответ в конце урока). Полное решение не привожу, так как оно достаточно простое

Довольно часто все вышерассмотренные правила применяются в комбинации.

Пример 7

Найти частные производные первого порядка функции .

(1) Используем правило дифференцирования суммы

(2) Первое слагаемое в данном случае считается константой, поскольку в выражении нет ничего, зависящего от «икс» – только «игреки». Всегда приятно, когда дробь удается превратить в ноль.

Для второго слагаемого применяем правило дифференцирования произведения. Кстати, в этом смысле ничего бы не изменилось, если бы вместо была дана функция – важно, что здесь произведение двух функций, КАЖДАЯ из которых зависит от «икс», а поэтому, нужно использовать правило дифференцирования произведения. Для третьего слагаемого применяем правило дифференцирования сложной функции.

(1) В первом слагаемом и в числителе и в знаменателе содержится «игрек», следовательно, нужно использовать правило дифференцирования частного: . Второе слагаемое зависит ТОЛЬКО от «икс», значит, считается константой и превращается в ноль. Для третьего слагаемого используем правило дифференцирования сложной функции.

Мехматовский анекдот для разрядки:

Однажды в пространстве функций появилась злобная производная и как пошла всех дифференцировать. Все функции разбегаются кто куда, никому не хочется превращаться! И только одна функция никуда не убегает. Подходит к ней производная и спрашивает:

– А почему это ты от меня никуда не убегаешь?

– Ха. А мне всё равно, ведь я «е в степени икс», и ты со мной ничего не сделаешь!

На что злобная производная с коварной улыбкой отвечает:

– Вот здесь ты ошибаешься, я тебя продифференцирую по «игрек», так что быть тебе нулем.

Кто понял анекдот, тот освоил производные, минимум, на «тройку».

Пример 8

Найти частные производные первого порядка функции .

Это пример для самостоятельного решения.

Пример 9

Дана функция двух переменных . Найти все частные производные первого и второго порядков.

Это пример для самостоятельного решения. Полное решение и образец оформления где-то рядом.

Что дальше? Дальше знакомимся с родственной темой – частными производными функции трёх переменных. После этого я рекомендую ДОБРОСОВЕСТНО (жить будет легче 😉 отработать технику дифференцирования.

Примеры: , , , ,
, ,
.

, ,

 

megaobuchalka.ru

Частная производная — WiKi

У этого термина существуют и другие значения, см. Производная. Символы со сходным начертанием: 
д
 ·  ·

В математическом анализе частная производная — одно из обобщений понятия производной на случай функции нескольких переменных. Частная производная — это предел отношения приращения функции по выбранной переменной к приращению этой переменной, при стремлении этого приращения к нулю.

В явном виде частная производная функции f{\displaystyle f} в точке (a1,a2,…,an){\displaystyle (a_{1},a_{2},\ldots ,a_{n})} определяется следующим образом:

∂f∂xk(a1,⋯,an)=limΔx→0f(a1,…,ak+Δx,…,an)−f(a1,…,ak,…,an)Δx.{\displaystyle {\frac {\partial f}{\partial x_{k}}}(a_{1},\cdots ,a_{n})=\lim _{\Delta x\to 0}{\frac {f(a_{1},\ldots ,a_{k}+\Delta x,\ldots ,a_{n})-f(a_{1},\ldots ,a_{k},\ldots ,a_{n})}{\Delta x}}.}
График функции z = x² + xy + y². Частная производная в точке (1, 1, 3) при постоянном
y
соответствует углу наклона касательной прямой, параллельной плоскости xz. Сечения графика, изображенного выше, плоскостью y = 1

Обозначение

Следует обратить внимание, что обозначение ∂f∂x{\displaystyle {\frac {\partial f}{\partial x}}}  следует понимать как цельный символ, в отличие от обычной производной функции одной переменной dfdx{\displaystyle {\frac {df}{dx}}} , которую можно представить, как отношение дифференциалов функции и аргумента. Однако, и частную производную можно представить как отношение дифференциалов, но в этом случае необходимо обязательно указывать, по какой переменной осуществляется приращение функции: ∂f∂x≡dxfdx{\displaystyle {\frac {\partial f}{\partial x}}\equiv {\frac {d_{x}f}{dx}}} , где dxf{\displaystyle d_{x}f}  — частный дифференциал функции f{\displaystyle f}  по переменной x{\displaystyle x} . Часто непонимание факта цельности символа ∂f∂x{\displaystyle {\frac {\partial f}{\partial x}}}  является причиной ошибок и недоразумений, как, например, сокращение ∂x{\displaystyle \partial x}  в выражении ∂f∂x∂x∂t{\displaystyle {\frac {\partial f}{\partial x}}{\frac {\partial x}{\partial t}}}  [1].

Геометрическая интерпретация

Геометрически, частная производная даёт производную по направлению одной из координатных осей. Частная производная функции f{\displaystyle f}  в точке x→0=(x10,…,xn0){\displaystyle {\vec {x}}{\,}^{0}=(x_{1}^{0},\ldots ,x_{n}^{0})}  по координате xk{\displaystyle x_{k}}  равна производной ∂f∂e→{\displaystyle {\frac {\partial f}{\partial {\vec {e}}}}}  по направлению e→=e→k=(0,…,0,1,0,…,0){\displaystyle {\vec {e}}={\vec {e}}{\,}^{k}=(0,\ldots ,0,1,0,\ldots ,0)} , где единица стоит на k{\displaystyle k} -м месте.

Примеры

  Объём конуса зависит от высоты и радиуса основания

Объём V конуса зависит от высоты h и радиуса r, согласно формуле

V=πr2h4,{\displaystyle V={\frac {\pi r^{2}h}{3}},} 

Частная производная объёма V относительно радиуса r

∂V∂r=2πrh4,{\displaystyle {\frac {\partial V}{\partial r}}={\frac {2\pi rh}{3}},} 

которая показывает скорость, с которой изменяется объём конуса, если его радиус меняется, а его высота остаётся неизменной. Например, если считать единицы измерения объёма m3{\displaystyle m^{3}} , а измерения длины m{\displaystyle m} , то вышеуказанная производная будет иметь размерность скорости измерения объёма m3/m{\displaystyle m^{3}/m} , т.е. изменение величины радиуса на 1 m{\displaystyle m}  будет соответствовать изменению объёма конуса на 2πrh4{\displaystyle {\frac {2\pi rh}{3}}}  m3{\displaystyle m^{3}} .

Частная производная относительно h

∂V∂h=πr23,{\displaystyle {\frac {\partial V}{\partial h}}={\frac {\pi r^{2}}{3}},} 

которая показывает скорость, с которой изменяется объём конуса, если его высота меняется, а его радиус остаётся неизменным.

Полная производная V относительно r и h

d⁡Vd⁡r=2πrh4⏞∂V∂r+πr23⏞∂V∂hd⁡hd⁡r{\displaystyle {\frac {\operatorname {d} V}{\operatorname {d} r}}=\overbrace {\frac {2\pi rh}{3}} ^{\frac {\partial V}{\partial r}}+\overbrace {\frac {\pi r^{2}}{3}} ^{\frac {\partial V}{\partial h}}{\frac {\operatorname {d} h}{\operatorname {d} r}}} 

и

d⁡Vd⁡h=πr23⏞∂V∂h+2πrh4⏞∂V∂rd⁡rd⁡h{\displaystyle {\frac {\operatorname {d} V}{\operatorname {d} h}}=\overbrace {\frac {\pi r^{2}}{3}} ^{\frac {\partial V}{\partial h}}+\overbrace {\frac {2\pi rh}{3}} ^{\frac {\partial V}{\partial r}}{\frac {\operatorname {d} r}{\operatorname {d} h}}} 

Различие между полной и частной производной — устранение косвенных зависимостей между переменными в последней.

Если (по некоторым причинам) пропорции конуса остаются неизменными, то высота и радиус находятся в фиксированном отношении k,

k=hr=d⁡hd⁡r.{\displaystyle k={\frac {h}{r}}={\frac {\operatorname {d} h}{\operatorname {d} r}}.} 

Это даёт полную производную относительно r:

d⁡Vd⁡r=2πrh4+kπr23{\displaystyle {\frac {\operatorname {d} V}{\operatorname {d} r}}={\frac {2\pi rh}{3}}+k{\frac {\pi r^{2}}{3}}} 

Уравнения, в которые входят частные производные, называются дифференциальными уравнениями в частных производных и широко известны в физике, инженерии и других науках и прикладных дисциплинах.

См. также

Примечания

  1. ↑ Фихтенгольц, «Курс дифференциального и интегрального исчисления»

ru-wiki.org

Смешанная частная производная – это… Что такое Смешанная частная производная?

Определение

Пусть функция , и ее частные производные

определены в некоторой окрестности точки . Тогда предел

если он существует, называется смешанной (смежной) производной функции в точке и обозначается .

Аналогично определяется как

если он существует.

Смешанные частные производные порядка большего двух определяются индуктивно.

Обозначение

Свойства

  • Для непрерывной функции имеет место равенство . При условии их непрерывности в рассматриваемой точке.

Пример Шварца

То есть смешанные производные в примере Шварца не равны.

  • Имеет место теорема о равенстве смешанных производных

Теорема Шварца

Пусть выполнены условия:

  1. функции определены в некоторой окрестности точки .
  2. непрерывны в точке .

Тогда , то есть смешанные производные второго порядка равны в каждой точке, где они непрерывны.

Теорема Шварца о равенстве смешанных частных производных индуктивно распространяется на смешанные частные производные высших порядков, при условии, что они непрерывны.

  • Тем не менее, условие непрерывности смешанных производных отнюдь не является необходимым в теореме Шварца.

Пример

смешанные производные второго порядка равны всюду кроме точки , в которой и нарушается равенство смешанных производных[1].

Примечания

  1. Тер-Крикоров А. М., Шабунин М. И. Глава 5. Функции многих переменных // Курс математического анализа. — 2-е изд. — М.: МФТИ, 1997. — С. 283. — 716 с. — ISBN 5-89155-006-7

dic.academic.ru

Частная производная – это… Что такое Частная производная?

У этого термина существуют и другие значения, см. Производная.

В математическом анализе, частная производная — одно из обобщений понятия производной на случай функции нескольких переменных.

В явном виде частная производная функции определяется следующим образом:

График функции z = x² + xy + y². Частная производная в точке (1, 1, 3) при постоянном y соответствует углу наклона касательной прямой, параллельной плоскости xz. Сечения графика, изображенного выше, плоскостью y = 1

Следует обратить внимание, что обозначение следует понимать как цельный символ, в отличие от обычной производной функции одной переменной , которую можно представить, как отношение дифференциалов функции и аргумента. Однако, и частную производную можно представить как отношение дифференциалов, но в этом случае необходимо обязательно указывать, по какой переменной осуществляется приращение функции: , где  — частный дифференциал функции f по переменной x. Часто непонимание факта цельности символа является причиной ошибок и недоразумений, как, например, сокращение в выражении . (подробнее см. Фихтенгольц, «Курс дифференциального и интегрального исчисления»).

Геометрически, частная производная является производной по направлению одной из координатных осей. Частная производная функции в точке по координате равна производной по направлению , где единица стоит на -ом месте.

Примеры

Объем конуса зависит от высоты и радиуса основания

Объём V конуса зависит от высоты h и радиуса r, согласно формуле

Частная производная объема V относительно радиуса r

которая показывает скорость, с которой изменяется объем конуса, если его радиус меняется, а его высота остается неизменной. Например, если считать единицы измерения объема , а измерения длины , то вышеуказанная производная будет иметь размерность скорости измерения объема , т.е. изменение величины радиуса на 1 м будет соответствовать изменению объема конуса на .

Частная производная относительно h

которая показывает скорость, с которой изменяется объем конуса, если его высота меняется, а его радиус остается неизменным.

Полная производная V относительно r и h

и

Различие между полной и частной производной — устранение косвенных зависимостей между переменными в последней.

Если (по некоторым причинам) пропорции конуса остаются неизменными, то высота и радиус находятся в фиксированном отношении k,

Это дает полную производную относительно r:

Уравнения, в которые входят частные производные, называются дифференциальными уравнениями в частных производных и широко известны в физике, инженерии и других науках и прикладных дисциплинах.

См. также

veter.academic.ru

Частная производная – это… Что такое Частная производная?

У этого термина существуют и другие значения, см. Производная.

В математическом анализе, частная производная — одно из обобщений понятия производной на случай функции нескольких переменных.

В явном виде частная производная функции определяется следующим образом:

График функции z = x² + xy + y². Частная производная в точке (1, 1, 3) при постоянном y соответствует углу наклона касательной прямой, параллельной плоскости xz. Сечения графика, изображенного выше, плоскостью y = 1

Следует обратить внимание, что обозначение следует понимать как цельный символ, в отличие от обычной производной функции одной переменной , которую можно представить, как отношение дифференциалов функции и аргумента. Однако, и частную производную можно представить как отношение дифференциалов, но в этом случае необходимо обязательно указывать, по какой переменной осуществляется приращение функции: , где  — частный дифференциал функции f по переменной x. Часто непонимание факта цельности символа является причиной ошибок и недоразумений, как, например, сокращение в выражении . (подробнее см. Фихтенгольц, «Курс дифференциального и интегрального исчисления»).

Геометрически, частная производная является производной по направлению одной из координатных осей. Частная производная функции в точке по координате равна производной по направлению , где единица стоит на -ом месте.

Примеры

Объем конуса зависит от высоты и радиуса основания

Объём V конуса зависит от высоты h и радиуса r, согласно формуле

Частная производная объема V относительно радиуса r

которая показывает скорость, с которой изменяется объем конуса, если его радиус меняется, а его высота остается неизменной. Например, если считать единицы измерения объема , а измерения длины , то вышеуказанная производная будет иметь размерность скорости измерения объема , т.е. изменение величины радиуса на 1 м будет соответствовать изменению объема конуса на .

Частная производная относительно h

которая показывает скорость, с которой изменяется объем конуса, если его высота меняется, а его радиус остается неизменным.

Полная производная V относительно r и h

и

Различие между полной и частной производной — устранение косвенных зависимостей между переменными в последней.

Если (по некоторым причинам) пропорции конуса остаются неизменными, то высота и радиус находятся в фиксированном отношении k,

Это дает полную производную относительно r:

Уравнения, в которые входят частные производные, называются дифференциальными уравнениями в частных производных и широко известны в физике, инженерии и других науках и прикладных дисциплинах.

См. также

dis.academic.ru

Частная производная – это… Что такое Частная производная?

У этого термина существуют и другие значения, см. Производная.

В математическом анализе, частная производная — одно из обобщений понятия производной на случай функции нескольких переменных.

В явном виде частная производная функции определяется следующим образом:

График функции z = x² + xy + y². Частная производная в точке (1, 1, 3) при постоянном y соответствует углу наклона касательной прямой, параллельной плоскости xz. Сечения графика, изображенного выше, плоскостью y = 1

Следует обратить внимание, что обозначение следует понимать как цельный символ, в отличие от обычной производной функции одной переменной , которую можно представить, как отношение дифференциалов функции и аргумента. Однако, и частную производную можно представить как отношение дифференциалов, но в этом случае необходимо обязательно указывать, по какой переменной осуществляется приращение функции: , где  — частный дифференциал функции f по переменной x. Часто непонимание факта цельности символа является причиной ошибок и недоразумений, как, например, сокращение в выражении . (подробнее см. Фихтенгольц, «Курс дифференциального и интегрального исчисления»).

Геометрически, частная производная является производной по направлению одной из координатных осей. Частная производная функции в точке по координате равна производной по направлению , где единица стоит на -ом месте.

Примеры

Объем конуса зависит от высоты и радиуса основания

Объём V конуса зависит от высоты h и радиуса r, согласно формуле

Частная производная объема V относительно радиуса r

которая показывает скорость, с которой изменяется объем конуса, если его радиус меняется, а его высота остается неизменной. Например, если считать единицы измерения объема , а измерения длины , то вышеуказанная производная будет иметь размерность скорости измерения объема , т.е. изменение величины радиуса на 1 м будет соответствовать изменению объема конуса на .

Частная производная относительно h

которая показывает скорость, с которой изменяется объем конуса, если его высота меняется, а его радиус остается неизменным.

Полная производная V относительно r и h

и

Различие между полной и частной производной — устранение косвенных зависимостей между переменными в последней.

Если (по некоторым причинам) пропорции конуса остаются неизменными, то высота и радиус находятся в фиксированном отношении k,

Это дает полную производную относительно r:

Уравнения, в которые входят частные производные, называются дифференциальными уравнениями в частных производных и широко известны в физике, инженерии и других науках и прикладных дисциплинах.

См. также

dvc.academic.ru

Частная производная – это… Что такое Частная производная?

У этого термина существуют и другие значения, см. Производная.

В математическом анализе, частная производная — одно из обобщений понятия производной на случай функции нескольких переменных.

В явном виде частная производная функции определяется следующим образом:

График функции z = x² + xy + y². Частная производная в точке (1, 1, 3) при постоянном y соответствует углу наклона касательной прямой, параллельной плоскости xz. Сечения графика, изображенного выше, плоскостью y = 1

Следует обратить внимание, что обозначение следует понимать как цельный символ, в отличие от обычной производной функции одной переменной , которую можно представить, как отношение дифференциалов функции и аргумента. Однако, и частную производную можно представить как отношение дифференциалов, но в этом случае необходимо обязательно указывать, по какой переменной осуществляется приращение функции: , где  — частный дифференциал функции f по переменной x. Часто непонимание факта цельности символа является причиной ошибок и недоразумений, как, например, сокращение в выражении . (подробнее см. Фихтенгольц, «Курс дифференциального и интегрального исчисления»).

Геометрически, частная производная является производной по направлению одной из координатных осей. Частная производная функции в точке по координате равна производной по направлению , где единица стоит на -ом месте.

Примеры

Объем конуса зависит от высоты и радиуса основания

Объём V конуса зависит от высоты h и радиуса r, согласно формуле

Частная производная объема V относительно радиуса r

которая показывает скорость, с которой изменяется объем конуса, если его радиус меняется, а его высота остается неизменной. Например, если считать единицы измерения объема , а измерения длины , то вышеуказанная производная будет иметь размерность скорости измерения объема , т.е. изменение величины радиуса на 1 м будет соответствовать изменению объема конуса на .

Частная производная относительно h

которая показывает скорость, с которой изменяется объем конуса, если его высота меняется, а его радиус остается неизменным.

Полная производная V относительно r и h

и

Различие между полной и частной производной — устранение косвенных зависимостей между переменными в последней.

Если (по некоторым причинам) пропорции конуса остаются неизменными, то высота и радиус находятся в фиксированном отношении k,

Это дает полную производную относительно r:

Уравнения, в которые входят частные производные, называются дифференциальными уравнениями в частных производных и широко известны в физике, инженерии и других науках и прикладных дисциплинах.

См. также

xzsad.academic.ru