Что такое напряжение и сила тока простыми словами – Основы радиотехники – напряжение тока. сила тока. Simpleinfo – все сложное простыми словами!

cxema.org - Что такое ток и напряжение простыми словами

Что такое ток и напряжение простыми словами

Ток – это упорядоченное движение заряженных частиц, для металлов это электроны.

 

Напряжение – это отношение электрического поля к величине заряда.

 

Такое объяснение встречается в большинстве научных источников, но совершенно непригодно к визуальному моделированию движения носителей заряда. Не смотря на то, что в понимании схемотехники, и электроники в целом это никак не скажется, так как затрагиваются фундаментальные процессы, которые лежат в основе большинства явлений, которые используются не только в электронике.

 

Для начала вспомним несколько вполне пригодных к визуализации явлений – кристаллическая решётка атомов металла, который является проводником в подавляющем большинстве схем.

 

 

Как мы видим, ядра атомов – положительного заряда,  электроны – негативного, расстояние между ядрами атомов очень значительное, но из-за разных потенциалов они склонны притягиваться, поэтому при интенсивном движении заряженных частиц они могут время от времени сталкиваться с ядрами.

 

 

 Так же немало важную роль играет скорость движения ядер атомов, которая зависит от температуры проводника,  они начинают быстро двигаться, и натыкаться на большее количество электронов, и больше отпускает электронов назад, таким образом, больше количество электронов передаёт свою кинетическую энергию ядру атома, вызывающее большую вибрацию, и как следствие больший нагрев. Тем самым меньше электронов может пробегать по проводнику. Заряженные частицы двигаются под действием напряжения, это та сила, которая заставляет носители заряда двигаться в одном направлении, чем больше напряжение, тем больше электронов может преодолеть притяжение ядер атомов. Но при этом, давая электронам больше кинетической энергии, можно повысить вибрацию ядер атомов, как следствие – ещё больший нагрев проводника. Сопротивление так же зависит от площади сечения проводника, чем больше сечение – тем больше ядер атомов могут одновременно принимать и отпускать носителей заряда, что не только уменьшает сопротивление, но так же и увеличивает теплоёмкость проводника, значит, он легче может выдержать перегрев.

 

 

Но стоит отметить, что охладить такой провод сложнее, понадобится больше мощности затратить на его охлаждение, хотя на практике провод подбирают так, что бы при номинальном токе, он не грелся, и это правило применимо только к резисторам, где сопротивление больше, и мощность выделяемая больше. Так как при движении электронов, они на некоторое время задерживаются у ядер атомов, пока их не выбьет с поля ядра другой электрон, то на участке проводника, при протекании через него тока будет определённая разница в количестве заряженных частиц. Это зовётся падением напряжения, как правило, наибольшее падение напряжения происходит на самом высокоомном участке цепи, падение напряжения зависит от тока в цепи и сопротивления участка, на котором производится замер. Только что мы на уровне движения элементарных частиц объяснили некоторые аспекты закона Ома, и мощности выделяемой на резисторе, и почему она превращается в тепло. С напряжением всё проще, для начала вспомним, что источником напряжения могут быть как химические батареи (аккумуляторы, батарейки, и т.д.) так и магнитно-динамические (генераторы, электродвигатели). Принцип работы разный, но результат одинаков – это разница потенциалов на выводах. Если говорить совсем просто, то это банально разница свободных электронов, то есть на одном выводе их значительно больше чем на другом. Свободные электроны – это те электроны, которые не прикреплены на определённой орбите возле ядра атома, они под воздействием магнитных полей хаотично двигаются по всему проводнику, поэтому напряжение одинаково во всех частях проводника (пока через него не протекает ток). А источник напряжения можно представить как насос, который перекачивает ток с одного вывода в другой.

 

Ну и под конец в видео приводится аналогия заряженных частиц с автомобилями, а проводника с дорогой.

Статья специально подготовлена для конкурса на канале АКА

 

 

 

Автор - Ростислав Михайлов 

 

  • < Назад
  • Вперёд >

vip-cxema.org

Основы радиотехники - напряжение тока. сила тока. Simpleinfo – все сложное простыми словами!

14 Декабря 2016

414

В предыдущей статье, мы рассмотрели электрический ток. В этой статье будем рассматривать единицы измерения. Как без них? Но что бы не усложнять, рассмотрим только самые нужные, да и в дальнейшем в принципе только они понадобятся.

Мы уже знаем, что электрический ток, это движение частиц. Что бы эти частицы двигались, необходима внешняя направленная сила (например электрическое поле). И эту силу, которая двигает частицы, необходимо поддерживать.
Источник питания (источник напряжения, источник тока) имеют две клеммы или два полюса. Которые имеют разность потенциалов. Разность потенциалов, если простыми словами дать объяснение – это запас частиц, которые стремятся друг к другу. То есть, при возможности частицы из клеммы (-) будут стремится к клемме с (+).

Рассмотрим на картинке.

наведите или кликните мышкой, для анимации

На картинке мы видим источник питания и проводник. Если наведем мышку на картинку, источник питания «крутиться», то есть там поддерживается какая то сила для переноса частиц. Проводник не соединен к источнику питания, то есть цепь не замкнутая. Для того, что бы возник электрический ток - необходимо замкнуть цепь.
Рассмотрим на примере.

наведите или кликните мышкой, для анимации

В проводнике возникает электрический ток, то есть упорядоченное движение частиц. При перемещение заряженных частиц, что мы видим?

  • 1. Какое количество частиц передвигаются.
  • 2. Какая энергия тратится на перемещение частицы.

Сила тока

Сила тока - это величина, равная отношению количества заряда, проходящего через поперечное сечение проводника, к времени его прохождения. То есть это ответ на наш первый вопрос, сколько зарядов проходит через поперечное сечение проводника, за определенное время.
Единица измерения силы тока – это Ампер (А).

Условное обозначение: I
Ниже на картинке отобразим этот момент:

наведите или кликните мышкой, для анимации

Напряжение тока

Сила тока, это больше количественный показатель. Для того что бы частицы перемещались, необходима энергия (работа).
Напряжение тока (электрическое напряжение) – это энергия расходуемая при перемещение заряда. Простыми словами, это сила (давление) которое передвигает заряды по проводнику. Таким образом мы ответили на второй вопрос.
Единицы измерения напряжения тока – это Вольт (В).
Условное обозначение: U

наведите или кликните мышкой, для анимации

Мы теперь знаем что такое сила тока, напряжение тока и их условные обозначения. Еще хочу добавить, часто для объяснения этих процессов приводят пример с водой в трубе. Труба в данном случае это проводник, давление которое толкает воду это напряжение и количество воды (через поперечное сечение) это сила тока.

simple-info.ru

Что такое напряжение и ток | Начинающим

Что такое напряжение и ток

Напряжение и ток — это количественные понятия, о которых следует помнить всегда, когда дело касается электронной схемы. Обычно они изменяются во времени, в противном случае работа схемы не представляет интереса.

Напряжение (условное обозначение: U, иногда Е). Напряжение между двумя точками — это энергия (или работа), которая затрачивается на перемещение единичного положительного заряда из точки с низким потенциалом в точку с высоким потенциалом (т. е. первая точка имеет более отрицательный потенциал по сравнению со второй). Иначе говоря, это энергия, которая высвобождается, когда единичный заряд «сползает» от высокого потенциала к низкому. Напряжение называют также

разностью потенциалов или электродвижущей силой (э. д. с). Единицей измерения напряжения служит вольт. Обычно напряжение измеряют в вольтах (В), киловольтах (1 кВ = 103 В), милливольтах (1 мВ = 10-3 В) или микровольтах (1 мкВ = 10-6 В). Для того чтобы переместить заряд величиной 1 кулон между точками, имеющими разность потенциалов величиной 1 вольт, необходимо совершить работу в 1 джоуль. (Кулон служит единицей измерения электрического заряда и равен заряду приблизительно 6*1018 электронов.) Напряжение, измеряемое в нановольтах (1 нВ = 10-9 В) или в мегавольтах (1 МВ = 106 В) встречается редко.

Ток (условное обозначение: I). Ток — это скорость перемещения электрического заряда в точке. Единицей измерения тока служит ампер. Обычно ток измеряют в амперах (А), миллиамперах (1 мА = 10-3 А), микроамперах (1 мкА = 10-6 А), наноамперах (1 нА = 10-9 А) и иногда в пикоамперах (1 пкА = 10-12 А). Ток величиной 1 ампер создается перемещением заряда величиной 1 кулон за время, равное 1 с. Условились считать, что ток в цепи протекает от точки с более положительным потенциалом к точке с более отрицательным потенциалом, хотя электрон перемещается в противоположном направлении.

Запомните: напряжение всегда измеряется между двумя точками схемы, ток всегда протекает через точку в схеме или через какой-либо элемент схемы.

Говорить «напряжение в резисторе» нельзя — это неграмотно. Однако часто говорят о напряжении в какойлибо точке схемы. При этом всегда подразумевают напряжение между этой точкой и «землей», то есть такой точкой схемы, потенциал которой всем известен. Скоро вы привыкнете к такому способу измерения напряжения.

Напряжение создается путем воздействия на электрические заряды в таких устройствах, как батареи (электрохимические реакции), генераторы (взаимодействие магнитных сил), солнечные батареи (фотогальванический эффект энергии фотонов) и т. п. Ток мы получаем, прикладывая напряжение между точками схемы.

Здесь, пожалуй, может возникнуть вопрос: а что же такое напряжение и ток на самом деле, как они выглядят? Для того чтобы ответить на этот вопрос, лучше всего воспользоваться таким электронным прибором, как осциллограф. С его помощью можно наблюдать напряжение (а иногда и ток) как функцию, изменяющуюся во времени.

В реальных схемах мы соединяем элементы между собой с помощью проводов, металлических проводников, каждый из которых в каждой своей точке обладает одним и тем же напряжением (по отношению, скажем, к земле). В области высоких частот или низких полных сопротивлений это утверждение не совсем справедливо. Сейчас же примем это допущение на веру. Мы упомянули об этом для того, чтобы вы поняли, что реальная схема не обязательно должна выглядеть как ее схематическое изображение, так как провода можно соединять поразному.

Запомните несколько простых правил, касающихся тока и напряжения:

  1. Сумма токов, втекающих в точку, равна сумме токов, вытекающих из нее (сохранение заряда). Иногда это правило называют законом Кирхгофа для токов. Инженеры любят называть такую точку схемы узлом. Из этого правила вытекает следствие: в последовательной цепи (представляющей собой группу элементов, имеющих по два конца и соединенных этими концами один с другим) ток во всех точках одинаков.

  2. При параллельном соединении элементов (рис. 1) напряжение на каждом из элементов одинаково. Иначе говоря, сумма падений напряжения между точками А и В, измеренная по любой ветви схемы, соединяющей эти точки, одинакова и равна напряжению между точками А и В. Иногда это правило формулируется так: сумма падений напряжения в любом замкнутом контуре схемы равна нулю. Это закон Кирхгофа для напряжений.

  3. Мощность (работа, совершенная за единицу времени), потребляемая схемой, определяется следующим образом:

    P = UI

 

Вспомним, как мы определили напряжение и ток, и получим, что мощность равна: (работа/заряд)*(заряд/ед. времени). Если напряжение U измерено в вольтах, а ток I — в амперах, то мощность Р будет выражена в ваттах. Мощность величиной 1 ватт — это работа в 1 джоуль, совершенная за 1 с (1 Вт=1 Дж/с).

Мощность рассеивается в виде тепла (как правило) или иногда затрачивается на механическую работу (моторы), переходит в энергию излучения (лампы, нередатчики) или накапливается (батареи, конденсаторы). При разработке сложной системы одним из основных является вопрос определения ее тепловой нагрузки (возьмем, например, вычислительную машину, в которой побочным продуктом нескольких страниц результатов решения задачи становятся многие киловатты электрической энергии, рассеиваемой в пространство в виде тепла).

В дальнейшем при изучении периодически изменяющихся токов и напряжений мы обобщим простое выражение Р=UI. В таком виде оно справедливо для определения мгновенного значения мощности. Кстати, запомните, что не нужно называть ток силой тока — это неграмотно.

www.radiomexanik.spb.ru

Что такое сила тока простыми словами. Чем отличается ток от напряжения

Дурацкий вопрос, скажете вы? Отнюдь. Опыт показал, что не так уж и много людей могут на него ответить правильно. Известную путаницу вносит и язык: в выражении «имеется в продаже источник постоянного тока 12 В» смысл искажен. На самом деле в данном случае имеется в виду, конечно, ис­точник напряжения, а не тока, так как ток в вольтах не измеряется, но так говорить не принято. Самое правильное будет сказать - «источник питания постоянного напряжения 12 вольт», а написать можно и «источник питания =12В» где символ «=» обозначает, что это именно постоянное напряжение, а не переменное. Впрочем, и в этой книге мы тоже иногда будем «ошибать­ся» - язык есть язык.

Чтобы разобраться во всем этом, для начала напомним строгие определения из учебника (зазубривать их- очень полезное занятие!). Итак, ток, точнее, его величина, есть количество электрического заряда, протекающее через сечение проводника за единицу времени: / = Qlt. Единица тока называется «ампер», и ее размерность в системе СИ- кулоны в секунду, знание сего факта пригодится нам позднее.

Куда более запутанно выглядит определение напряжения- величина на­пряжения есть разность электрических потенциалов между двумя точками пространства. Измеряется она в вольтах, и размерность этой единицы изме­рения - джоуль на кулон, то есть U – EIQ. Почему это так, легко понять, вникнув в смысл строгого определения величины напряжения: 1 вольт есть такая разность потенциалов, при которой перемещение заряда в 1 кулон тре­бует затраты энергии, равной 1 джоулю.

Все это наглядно можно представить себе, сравнив проводник с трубой, по которой течет вода. При таком сравнении величину тока можно себе пред­ставить, как количество (расход) протекающей воды за секунду (это доволь­но точная аналогия), а напряжение - как разность давлений на входе и вы­ходе трубы. Чаще всего труба заканчивается открытым краном, так что давление на выходе равно атмосферному давлению, и его можно принять за нулевой уровень. Точно так же в электрических схемах существует общий провод (или «общая шина» - в просторечии для краткости ее часто называ­ют «землей», хотя это и не точно - мы еще вернемся к этому вопросу позд­нее), потенциал которого принимается за ноль и относительно которого от-считываются все напряжения в схеме. Обычно (но не всегда!) за общий провод принимают минусовой вывод основного источника питания схемы.

Итак, вернемся к вопросу, сформулированному в заголовке: так чем же отли­чается ток от напряжения? Правильный ответ будет звучать так: ток - это количество электричества, а напряжение - мера его потенциальной энергии. Неискушенный в физике собеседник, разумеется, начнет трясти головой, пы­таясь вникнуть, и тогда можно дать такое пояснение. Представьте себе па­дающий камень. Если он маленький (количество электричества мало), но па­дает с большой высоты (велико напряжение), то он может наделать столько же несчастий, сколько и большой камень (много электричества), но падаю­щий с малой высоты (напряжение невелико).

Как только мы начинаем изучать по школьной программе физику, практически сразу же нам учителя начинают говорить о том, что между током и напряжением очень большая разница, и ее знание крайне нам понадобиться в дальнейшей жизни. И все же, сейчас об отличиях между двумя понятиями зачастую не может рассказать даже взрослый человек. А ведь знать эту разницу нужно каждому, потому как с током и напряжением мы имеем дело в повседневной жизни, например, включая телевизор или зарядное устройство телефона в розетку.

Определение

Током называется процесс, когда под воздействием электрического поля начинается упорядоченное движение заряженных частиц. Частицами могут выступать самые разные элементы, все зависит от конкретного случая. Если мы говорим о проводниках, то частицами в данной ситуации являются электроны. Изучая электричество, люди стали понимать, что возможности тока позволяют использовать его в самых разных областях, включая медицину. Ведь электрические заряды помогают реанимировать больных, восстанавливать работу сердца. Кроме того, ток применяют в лечении таких сложных заболеваний, как эпилепсия или болезнь Паркинсона. В быту же электрический ток просто незаменим, ведь с его помощью в наших квартирах и домах горит свет, работают электроприборы.

Напряжение – понятие куда более сложное, нежели ток. Единичные положительные заряды перемещаются из разных точек: из низкого потенциала в высокий. И напряжением называется энергия, затрачиваемая на это перемещение. Для простоты понимания часто приводят пример с течением воды между двумя банками: ток – это сам поток воды, а напряжение показывает разницу уровней в двух банках. Соответственно, течение будет до тех пор, пока уровни не сравнятся.

Отличие

Наверное, основную разницу между током и напряжением можно было заметить уже из определения. Но для удобства мы приведем два основных различия между рассматриваемыми понятиями с более подробным описанием:

  1. Ток – это количество электричества, в то время как напряжением называют меру потенциальной энергии. Иными словами, оба этих понятия сильно зависят друг от друга, но при этом являются очень разными. I (сила тока) = U (напряжение) / R (сопротивление). Это главная формула, по которой можно вычислить зависимость силы тока от напряжения. На сопротивление влияет целый ряд факторов, включая материал, из которого сделан проводник, температура, внешние условия.
  2. Разница в получении. Воздействие на электрические заряды в разных приборах (например, батареях или генераторах) создает напряжение. А ток получается путем прикладывания напряжения между точками схемы.

Неспособность воочию видеть электрический ток и поток зарядов всегда была проблемой для тех, кто пытается воспринимать основные электрические понятия. Два основных компонента исследований сила тока и напряжение, как правило, неверно истолкованы теми, кто пытается разобраться в теме. Эта статья поможет вам понять разницу между ними.

Основные понятия электричества вращаются вокруг одного атомного компонента ― электрона. Неустойчивые атомы, имеют либо дефицит, либо дополнительные электроны в своей валентной зоне. Лишние электроны с одного нестабильного атома стремятся в валентную зону атома имеющего дефицит электронов.

С помощью внешнего электрохимического источника, можно создать движение электронов. Любые две клеммы могут быть использованы для подключения этого источника заряда и создания двух контактов один с положительным потенциалом, а другой с отрицательным.

Разница потенциалов между двумя такими точками, одна из которых выступает в качестве источника, а другая приемника электронов, называется напряжением. Единицей измерения напряжения является вольт, и его символ «.

Поток электронов в проводнике, вызывает током. Направление тока идет от положительного полюса к отрицательному. Но электрические заряды, т. е. электроны, на самом деле путешествуют от отрицательного к положительному потенциалу источника. Количество электрического заряда, протекающего через единицу площади поперечного сечения проводника, называется силой тока. Сила тока измеряется в амперах, и имеет символ «.

Предохранители

Предохранитель используется в электрической цепи и электромонтажных работах , чтобы прервать поток чрезмерного тока через его компоненты. Производители электрических предохранителей указывают характеристики с помощью двух параметров - напряжения и силы тока. Критерии выбора предохранителя зависят от номинального напряжения цепи, в которой он будет работать.

Текущие характеристики предохранителя не зависят от вида, протекающего через него тока - переменного или постоянного. Это зависит только от величины тока в момент расплавления плавкой проволоки. Хотя толщина провода и тип используемой металлической проволоки является фактором, непосредственно связанным с текущей характеристикой оборудования. Это происходит потому, что теплота, выделяемая плавкой проволокой, является функцией квадрата тока, протекающего через проводник, умноженного на сопротивление и время протекания тока.

Влияние аккумуляторов на силу тока и напряжение

Аккумуляторы (батареи) как правило оцениваются по силе тока (амперам) который они могут поставлять непрерывно в течение одного часа. Поэтому характеристики аккумуляторов указаны в ампер-часах. Срок службы батареи зависит от подключенной через нее нагрузки. Тяжелые нагрузки, как правило, сокращают срок службы батареи, в то время как легкие нагрузки увеличивают ее срок службы.

Если аккумуляторы соединены в последовательном сочетании в электрической цепи, сети питания, напряжение в цепи будет увеличиваться, а сила тока в цепи останется на том же уровне.

Параллельное соединение источников напряжения используется для увеличения тока без увеличения напряжения.

Аналогия с потоком воды

Рассмотрим два резервуара соединенных прозрачной трубкой, вода в них держится на одинаковой высоте от земли. В трубке потока воды нет.

Теперь, если мы изменим положение одного из резервуаров, чтобы создать разность потенциалов, мы заметим, что вода поступает по трубке из контейнера с большим потенциалом в контейнер с более низким потенциалом. Вместо изменения уровня водоемов, мы можем также использовать водяные насосы для той же цели. Клапаны могут использоваться для регулирования количества протекающей в трубе воды из одного резервуара в другой.

Можно провести аналогию между этой ситуацией и простой электрической цепью. Водяной насос используется для создания давления воды в потоке, назовем это «напряжением». Вода ведет себя как заряженные электроны. Поток воды аналогичен движению электронов, и количество воды, протекающей через единицу площади поперечного сечения трубы аналогично «силе тока». Резервуар более высокого потенциала является "источником питания", и количество содержащейся в нем воды, является «емкостью аккумулятора». Любой кран устанавливаемый вдоль трубы можно рассматривать в качестве «нагрузки». электромонтажные работы

technosvarmet.ru

Сила тока и мощность тока. Simpleinfo – все сложное простыми словами!

07 Сентября 2017

85

Подведем итоги по разделу. Обратим внимание на некоторые важные вещи и еще разберем пройденный материал.

1.В какую сторону течет ток?

Если вы обратили внимание, во всех предыдущих статьях, направление тока обозначено от (-) к (+), то есть с отрицательного полюса к положительному. Но в статье про закон Ома, мы указали с положительного полюса к отрицательному. В статье Электрическая проводимость мы выяснили, что носителем заряда являются отрицательно заряженные частицы, под воздействие поля происходит упорядоченное движение отрицательно заряженных частиц.

Таким образом направление движения тока с отрицательного полюса к положительному. Но в схематике (при разборе схем) и в быту используется направление от положительного к отрицательному. Как я понимаю это пришло с древности, пока точно не понимали, как движутся частицы.

наведите или кликните мышкой, для анимации

наведите или кликните мышкой, для анимации

Мы же, при разборе радиоэлементов, чтобы понять, как они работают будем использовать с отрицательного к положительному. А при разборе схем, с положительного полюса к отрицательному.  

2. Более простой разбор электрической цепи. Сколько потребляет нагрузка?

Мы теперь знаем, что такое замкнутая электрическая цепь. И как течет по нему ток. Также выяснили, что в цепи существует определенная сила тока, напряжение тока, сопротивление нагрузки или нагрузок, а также возникает выработка мощности. Теперь на практике выясним более подробнее.

Нужно запомнить, что чаще всего в электрической цепи, мы можем изменять напряжение тока и сопротивление нагрузки или нагрузок. К примеру, если у нас регулируемый источник питания, мы можем установить регулятор напряжения к отметке 5 В или 12 В. Если используются батарейки, можем взять 2 “пальчиковых” батарейки, это 3 В. Либо можем использовать 3 батарейки, таким образом уже будет 4,5 В. Что касается нагрузки, мы можем подключить 1 лампу накаливания или 2 и т.д., что приведет к изменению общего сопротивления нагрузки. А сила тока будет подстраиваться согласно закону Ома.

Силу тока нужно представлять себе так: показатель силы тока в цепи - это “потребление” нагрузки. Чем больше сила тока в цепи, чем больше потребляется ток нагрузкой. Давайте рассмотрим на примере, если взять две одинаковые аккумуляторные батареи и присоединить к ним разные нагрузки. Быстрее сядет та батарея, в цепи которой было больше силы тока.

Теперь возникает вопрос, если, меняя нагрузку, мы можем менять “потребление” тока, то значит меняя напряжение, мы также можем повлиять на “потребление” тока, то есть на силу тока. Так и есть, если мы увеличим напряжение, увеличится и ток в нагрузке. Но тут необходимо быть осторожным, так как если слишком большой ток пройдет через нагрузку, он может его испортить, так же наоборот, если недостаток тока, то устройство может не работать или работать плохо.

3. Чем отличается сила тока от мощности тока?

Еще раз вспоминаем, что такое сила тока и мощность тока.  
Сила тока - это прохождение частиц за единицу времени, выше мы с вами представили силу тока, как «потребление» нагрузки. К примеру, чтобы зажечь лампочку нужно создать в цепи 0,2 Ампера силы тока. Еще проще говоря, какая нужна сила, чтобы совершить, какое-то действие. (Зажечь лапочку, крутить двигатель, греть электроплиту и т.д.)

Мощность тока – это работа, которая выполняется за единицу времени нагрузкой. То есть, когда вращается двигатель - он совершает работу, когда электроплита греет - он совершает работу, когда лампочка горит – он так же совершает работу. Получается сила тока нам дает возможность выполнить работу, как бы отдавая свою энергию в нагрузку, далее нагрузка совершает ту или иную работу. При этом чем мощнее нагрузка, тем больше нужны заряды, соответственно больше силы тока в цепи. Более мощные нагрузки, выполняют больше работы. К примеру мощные электродвигатели сильнее крутятся, мощные лампочки ярче горят.

Таким образом, сила тока это, потребление тока нагрузкой или необходимое количества тока, для получения выработки мощности нагрузки. Мощность тока, это работа нагрузки за единицу времени. Сила тока и мощность тока взаимосвязаны. Что бы не путаться в голове нужно держать две вещи:

  • 1. В источниках питания пишут, показатель силы тока, то есть, сколько он сможет отдать.
  • 2. В нагрузках, в электроприборах пишут потребление в мощностях, то есть сколько ему нужно.

наведите или кликните мышкой, для анимации

simple-info.ru

Напряжение и ток [Амперка / Вики]

Для того, чтобы электронный компонент совершал полезную работу: лампа — горела, двигатель — вращался, через него должен протекать электрический ток.

Ток создаётся электрическим потенциалом. Если сравнивать течение тока и течение жидкости, то электрический потенциал — это напор, а ток — это струя воды. Наличие потенциала самого по себе не достаточно для создания тока.

Во-первых, необходим проводник по которому ток будет течь. Например: медный провод. Если проводника нет, потенциал «утыкается» в воздух, а воздух очень хорошо препятствует течению электричества. Это аналогично тому, что вода не будет течь пока закрыт кран: давление есть — течения нет. Материалы, не позволяющие току течь называются диэлектриками. Позволяющие течь — проводниками. Позволяющие при одних условиях и не позволяющие при других — полупроводниками.

Во-вторых, необходима разность потенциалов. Ведь если с двух концов водопроводной трубы будет одинаковый напор, каким бы сильным он не был — течения внутри не будет. То же самое и с электричеством. Разность потенциалов называют напряжением.

Потенциал и напряжение (обозначаются буквой U или V) мерятся в вольтах; сила тока (обозначается буквой I) или просто ток — в амперах. В микроэлектронике обычно используются напряжения от долей вольт до десятков вольт и силы тока от долей миллиампер (мА) до сотен миллиампер.

По договорённости считается, что ток течёт в направлении от плюса к минусу. По аналогии как вода течёт из области высокого давления к пустому концу трубы. На самом деле, какое направление положительное, а какое отрицательное — условность. Исторически так сложилось, что открытие отрицательно заряженных электронов, которые и формируют ток, было сделано уже после того, как все договорились, что считать положительным течением тока. Поэтому в силу той ошибки на практике ситуация такова: говорят, что ток течёт из точки А в точку Б, хотя на физическом уровне электроны мчатся от точки Б к точке А. Чтобы не путаться, нужно запомнить: в схемотехнике никто не вспоминает куда перемещаются электроны, положительное течение тока — это течение из точки с большим потенциалом в точку с меньшим; в направлении тока перемещаются положительные заряды. Да, они виртуальные, их не бывает на самом деле, но так удобнее.

Точку цепи, предоставляющую неограниченную возможность возврата/слива отработавших зарядов называют землёй (Ground, GND). Не нужно понимать «землю» в буквальном смысле. Ей может быть и отрицательный полюс батарейки, и корпус автомобиля, и, действительно, планета Земля. Для удобства считают, что земля — это потенциал в 0 В. Все остальные потенциалы считают относительно неё. Кроме того, в схемотехнике практически не пользуются понятием электрического потенциала: говорят, что напряжение в определённой точке составляет 12 В, на самом деле имеют в виду, что разность потенциалов между ней и землёй составляет 12 В.

Источники питания

Проходя по цепи, электрическая энергия расходуется: часть её идёт на совершение полезной работы, часть теряется, превращаясь в тепло. Чтобы устройство работало постоянно, требуется сила, которая бы удерживала напряжение в цепи. Её называют ЭДС (электродвижущая сила, electromotive force, EMF), а создают её источники питания. Примером компонента с ЭДС являются: обычные батарейки, солнечные батареи, трансформатор в блоке питания, моторчик вращаемый хомяком в колесе.

На схемах источник питания может указываться как в явном виде, собственным символом, так и в неявном: обозначается ноль контакт входного напряжения и земля без акцента на то, откуда энергия возьмётся. Таким образом, следующие схемы эквивалентны:

Мощность

Мощность — это количество переносимой энергии за единицу времени. Переносимая электрическая энергия обычно трансформируется конечными устройствами в другие формы: тепло, свет, звук и т.д. Единица измерения мощности — Ватт. Мощность P рассчитывается по формуле:

Различные компоненты расчитаны на разную мощность. Обычно в документации на компонент указывается при каком напряжении он работает и какой ток при этом потребляет. Есть компоненты, которые «возьмут» только то количество тока, которое им необходимо; есть те, которые будут гореть и плавиться, но заберут всё, что дают.

Предоставить нужное количество энергии в нужный момент в определённое место цепи — одна из главных задач разработчика схемы. Реализуется это с помощью соединения базовых компонентов (таких как, например, резисторы и транзисторы) в типовые, шаблонные схемы.

wiki.amperka.ru

Сила тока и напряжение: что это и в чем разница

Многие из нас, еще со школьной скамьи не могут понять того, какие аспекты, отличают силу тока от напряжения. Конечно, учителя постоянно утверждали то, что разница между двумя этими понятиями, является просто огромной. Тем не менее, только некоторые взрослые имеют возможность похвастаться наличием соответствующих знаний и если вы к числу таковых не принадлежите, то вам самое время обратить внимание на наш, сегодняшний обзор.

Что такое сила тока и напряжение?

Для того, чтобы говорить о том, что собой представляет сила тока и какие нюансы с ней могут быть связаны, считаем необходимым обратить ваше внимание на то, чем она является сам по себе. Ток — это процесс, во время которого, под непосредственным воздействие электрического поля, начинает происходить движение неких, заряженных частиц. В качестве последних, может выступать целый перечень всевозможных элементов, в этом плане, все зависит от конкретной ситуации. Так, к примеру, если речь идет об проводниках, то в этом случае, в качестве вышеупомянутых частиц, будут выступать электроны.

Возможно некоторые из вас этого и не знали, но ток активно используется в современной медицине и в частности для того, что избавить человека от целого перечня всевозможных болезней, та же эпилепсия, например. Незаменим ток также и в быту, ведь с его помощью, у вас дома горит свет и работают некоторые электроприборы. Сила тока, в свою очередь, подразумевает под собой некую физическую величину. Обозначается она символом I.

В случае с напряжением, все обстоит куда сложнее, даже если сравнивать его с таким понятием, как «сила тока». Там предусмотрены единичные положительные заряды, которые должны перемещаться из разных точек. Кроме этого, напряжением называют такую энергию, посредством которой и происходит вышеупомянутое перемещение. В школах, для понимания этого понятия, нередко приводят в пример течение воды, которое происходит между двумя банками. В данной ситуации, в качестве тока, будет выступать сам поток воды, в то время, как напряжение сможет показывать разницу уровней в двух этих банках. По этому, течение будет наблюдаться до тех пор, пока оба уровни в банках не сравняются.

Что отличает силу тока от напряжения?

Осмелимся предположить, что в качестве основной разницы между двумя этими понятиями является их непосредственное определением:

  1. Под словами «сила тока» и «ток», в частности, представляют некое количество электричества, в то время, как напряжением принято считать меру потенциальной энергии. Простыми словами, два эти понятия достаточно сильно зависят друг от друга, сохраняя некоторые отличительные особенности, при всем этом. На их сопротивление влияет огромное количество самых разнообразных факторов. Важнейшим из них, является материал, из которого выполнен тот или иной проводник, внешние условия, а также температура.
  2. Некая разница предусмотрена также и в их получение. Так, если воздействие на электрические заряды, создает напряжение, то ток получается уже путем прикладывания напряжения между точками схемы. Кстати говоря, в качестве таковых приборов, могут выступать обыкновенные батареи или более продвинутые и удобные генераторы. По этой причине мы и можем говорить о том, что основные отличия двух этих понятий, сводятся к их определению, а также тому, что получаются они в результате совершенно разных процессов.

Путать не следовало бы ток также и вместе с энергопотреблением. Понятия эти являются совершенно разными и главным их отличием должна восприниматься именно мощность. Так, в том случае, если напряжение предназначено для того. чтобы характеризовать потенциальную энергию, то в случае с током, энергия эта будет уже кинетической. В наших, современных реалиях, преимущественное большинство труб соответствует аналогиям из мира электричества. Речь идет об нагрузке, которая создается во время подключения лампочки или того же телевизора в сеть. Во время этого, создается расход электричества, который в конечном итоге, приводит к появлению тока.

Конечно, в том случае, если в розетку вы не будете подключать никаких электроприборов, напряжение будет оставаться неизменным, в то самое время, как ток будет равняться нулю. Ну а если не будет предусмотрено расхода, то какая вообще может идти речь о токе и какой-либо его силе? По этому, ток — это всего лишь некое количество электричества, в то время, как напряжением считается мера потенциальной энергии определенного источника электричества.

Интересное видео, где подробно объясняется разница между током и напряжением:

vchemraznica.ru