Механика физика задачи с решением – . –

Примеры решения задач по механике

Задача 1. Движение тела массой 2 кг задано уравнением: , где путь выражен в метрах, время – в секундах. Найти зависимость ускорения от времени. Вычислить равнодействующую силу, действующую на тело в конце второй секунды, и среднюю силу за этот промежуток времени.

Дано:

  

Найти:

Решение: Модуль мгновенной скорости находим как производную от пути по времени:

Мгновенное тангенциальное ускорение определяется как производная от модуля скорости по времени:

Среднее ускорение определяется выражением:

После подстановки:

Равнодействующая сила, действующая на тело, определяется по второму закону Ньютона:

Тогда

Ответ:   a(t) = 36t, F = 144 H, = 72 H.

Задача 2. По наклонной плоскости, составляющей с горизонтом угол 30º, движется тело массой 5 кг. К этому телу с помощью нерастяжимой нити, перекинутой через блок, привязано тело такой же массы, движущееся вертикально вниз (рис. 1). Коэффициент скольжения между телом и наклонной плоскостью 0,05. Определить ускорение тел и силу натяжения нити.

Дано:

Рис. 1

  

Найти:

Решение: Покажем на рисунке силы, действующие на каждое тело. Запишем для каждого из тел уравнение движения (второй закон Ньютона):

В проекциях на выбранные оси координат:

Учитывая, что , где, получим систему уравнений:

Вычтем из первого уравнения второе:

Искомое ускорение равно:

Вычислим ускорение а:

Силу натяжения найдем из первого уравнения системы:

Ответ:    

Задача 3. Найти линейные ускорения движения центров тяжести шара и диска, скатывающихся без скольжения с наклонной плоскости. Угол наклона плоскости равен 30º. Начальная скорость тел равна нулю.

Дано:

Рис. 2

  

Найти:

Решение: При скатывании тела с наклонной плоскости высотой h его потенциальная энергия переходит в кинетическую поступательного и вращательного движения. По закону сохранения энергии:

(1)

где I – момент инерции тела, m – масса.

Длина наклонной плоскости l связана с высотой соотношением (рис. 2):

(2)

Линейная скорость связана с угловой:

(3)

После подстановки (2) и (3) в (1), получим:

(4)

Так как движение происходит под действием постоянной силы (силы тяжести), то движение тел – равноускоренное. Поэтому:

(5)

и

(6)

Решая совместно (4), (5) и (6), получим:

(7)

Моменты инерции:

для шара:

  

для диска:

Подставляя выражение для момента инерции в формулу (7), получим:

для шара:

  

для диска:

Ответ:      

2. Электричество и магнетизм

Изучение основ электродинамики традиционно начинается с электрического поля в вакууме. Силовой характеристикой электрического поля является напряженность, энергетической – потенциал φ. Следует обратить внимание на связь междуи φ . Для вычисления силы взаимодействия между двумя точными зарядами и вычисления напряженности электрического поля, созданного точечным зарядом, нужно уметь применять закон Кулона. Для вычисления напряженностей полей, созданных протяженными зарядами (заряженной нитью, плоскостью и т.д.), применяется теорема Гаусса. Для системы электрических зарядов необходимо применять принцип суперпозиции (задачи 201-220 контрольной работы).

При изучении темы “Постоянный ток” необходимо рассмотреть во всех формах законы Ома и Джоуля-Ленца. В контрольной работе это задачи 221- 230. При изучении “Магнетизма” необходимо иметь в виду, что магнитное поле порождается движущимися зарядами и действует на движущиеся заряды. Здесь следует обратить внимание на закон Био-Савара-Лапласа. Нужно знать этот закон и уметь применять его для расчета вектора магнитной индукции – основной характеристики магнитного поля (в контрольной работе это задачи 231-240). Особое внимание следует обратить на силу Лоренца и рассмотреть движение заряженной частицы в магнитном поле (задачи 241-250).

При изучении явления электромагнитной индукции необходимо усвоить, что механизм возникновения ЭДС индукции имеет электронный характер. Основной закон электромагнитной индукции – это закон Фарадея-Ленца. Согласно этому закону, ЭДС индукции в замкнутом контуре возникает при изменении магнитного потока, сцепленного с контуром. Необходимо знать, как вычисляется магнитный поток, ЭДС индукции, как рассчитывается работа по перемещению замкнутого контура с током в магнитном поле и энергия магнитного поля (в контрольной работе задачи 251-260).

Электрические и магнитные явления связаны особой формой существования материи – электромагнитным полем. Основой теории электромагнитного поля является теория Максвелла.

В программе большое внимание уделяется изучению уравнений Максвелла. Эти уравнения могут быть записаны в двух формах: в интегральной и дифференциальной. Уравнения Максвелла удовлетворяют принципу относительности: они инвариантны относительно преобразований Лоренца. Основным следствием теории Максвелла является вывод о существовании электромагнитных волн, распространяющихся со скоростью света.

studfiles.net

Задачи_10 класс. Механика


3. В безветренную погоду скорость приземления парашютиста V1= 4 м/с. Какой будет скорость его приземления, если в горизональном направлении ветер дует со скоростью V2= 3 м/с? Сделайте чертеж.

4. Автомобиль проходит первую половину пути со средней скоростью 70 км/ч, а вторую — со средней скоростью 30 км/ч. Определить среднюю скорость на всем пути.

5. По графику зависимости ускорения от времени (рис.2) определить, как двигалось тело от начала отсчета до конца 4-й секунды (участок АВ графика) и за промежуток времени, соответствующий участку ВС графика. В какой момент времени тело имело максимальную скорость?
Чему она равна, если V0 = 0?

Рис.2

6. При какой максимальной скорости самолеты могут приземляться на посадочную полосу аэродрома длиной 800 м при торможении с ускорением a1= −2,7 м/с2? a2= −5 м/с2?

7. Сигнальная ракета, запущенная вертикально вверх, вспыхнула через 6 с после запуска в наивысшей точке своей траектории. На какую высоту поднялась ракета? С какой начальной скоростью ее запустили?

8. Луна движется вокруг Земли по окружности радиусом 384 000 км с периодом 27 сут 7 ч 43 мин. Какова линейная скорость Луны? Каково центростремительное ускорение Луны к Земле?
—————————————————————————————————-

Механика. Динамика

Основная задача динамики материальной точки состоит в том, чтобы найти законы движения точки, зная приложенные к ней силы, или, наоборот, по известным законам движения определить силы, действующие на материальную точку.

Общие правила решения задач по динамике

Характерная особенность решения задач механики о движении материальной точки, требующих применения законов Ньютона, состоит в следующем:

  1. Сделать схематический чертеж и указать на нем все кинематические характеристики движения, о которых говорится в задаче. При этом, если возможно, обязательно проставить вектор ускорения.
  2. Изобразить все силы, действующие на данное тело (материальную точку), в текущий (произвольный) момент времени.
    Выражение «на тело действует сила» всегда означает, что данное тело взаимодействует с другим телом, в результате чего приобретает ускорение. Следовательно, к данному телу всегда приложено столько сил, сколько имеется других тел, с которыми оно взаимодействует
    Расставляя силы, приложенные к телу, необходимо все время руководствоваться третьим законом Ньютона, помня, что силы могут действовать на это тело только со стороны каких-то других тел: со стороны Земли это будет сила тяжести ,  со стороны нити — сила натяжения , со стороны поверхности — силы нормальной реакции опоры и трения .
    Полезно также иметь в виду и то обстоятельство, что для тел, расположенных вблизи поверхности Земли, надо учитывать только силу тяжести и силы, возникающие в местах непосредственного соприкосновения тел.
    Силы притяжения, действующие между отдельными телами, настолько малы по сравнению с силой земного притяжения, что во всех задачах, где нет специальных оговорок, ими пренебрегают.
  3. Говоря о движении какого-либо тела, например поезда, самолета, автомобиля и т.д., то под этим подразумевают движение материальной точки.
    Материальную точку нужно при этом изображать отдельно от связей, заменив их действие силами. Связями в механике называют тела (нити, опоры, подставки и т.д.), ограничивающие свободу движения рассматриваемого тела.
  4. Расставив силы, приложенные к материальной точке, необходимо составить основное уравнение динамики:

    .

  5. Далее, пользуясь правилом параллелограмма, определяют величину равнодействующей, выразив ее через заданные силы, и подставляют выражение для модуля равнодействующей в исходное уравнение.
    В большинстве случаев, и особенно когда дается три и более сил, выгоднее поступать иначе: движение частицы (на плоскости) описывать двумя скалярными уравнениями. Для этого нужно разложить все силы, приложенные к частице, по линии скорости (касательной к траектории движения — оси ОХ) и по направлению, ей перпендикулярному (нормали к траектории — оси 0Y), найти проекции Fx и Fyсоставляющих сил по этим осям и затем составить основное уравнение динамики точки в проекциях:

    ,
    где аxи аy— ускорения точки по осям.

    Положительное направление осей удобно выбирать так, чтобы оно совпадало с направлением ускорения частицы. При указанном выборе осей легко установить, какие из приложенных сил (или их составляющие) влияют на величину вектора скорости, какие — на направление.
    Само собой разумеется, что, если все силы действуют по одной прямой или по двум взаимно перпендикулярным направлениям, раскладывать их не надо и можно сразу записывать уравнение динамики в проекциях.
    В случае прямолинейного движения материальной точки одно из ускорений (аx или аy) обычно равно нулю.
    При наличии трения силу трения, входящую в уравнение динамики, нужно сразу же представить через коэффициент трения и силу нормального давления, если известно, что тело скользит по поверхности или находится на грани скольжения.

  6. Составив основное уравнение динамики и, если можно, упростив его (проведя возможные сокращения), необходимо еще раз прочитать задачу и определить число неизвестных в уравнении. Если число неизвестных оказывается больше числа уравнений динамики, то недостающие соотношения между величинами, фигурирующими в задаче, составляют на основании формул кинематики, законов сохранения импульса и энергии.
    После того как получена полная система уравнений, можно приступать к ее решению относительно искомого неизвестного.
  7. Выписав числовые значения заданных величин в единицах одной системы, принятой для расчета, и подставив их в окончательную формулу, прежде чем делать арифметический подсчет, нужно проверить правильность решения методом сокращения наименований. В задачах динамики, особенно там, где ответ получается в виде сложной формулы, этого правила в начальной стадии обучения желательно придерживаться  всегда,  поскольку  в этих  задачах делают много ошибок.
  8. Задачи на динамику движения материальной точки по окружности с равномерным движением точки по окружности решают только на основании законов Ньютона и формул кинематики с тем же порядком действий, о котором говорилось в пп. 1-7, но только уравнение второго закона динамики здесь нужно записывать в форме:

или

—————————————————————————————————-
Решая приведенные ниже задачи,
Вы сможете повторить основы динамики и законы сохранения импульса и энергии

1. На   опускающегося   парашютиста  действует  сила   земного  притяжения. Объясните, почему он движется равномерно.

2. Почему   машинисту   подъемного   крана   запрещается   резко   поднимать с места тяжелые грузы?

3.  Вагонетка массой 500 кг движется под действием силы 100 Н. Определите ее ускорение.

4. Автобус  массой  8000 кг  едет  по  горизонтальному  шоссе.   Какая  сила требуется
для сообщения ему ускорения 1,2 м/с2?

5. Два человека тянут за веревку в разные стороны с силой 90 Н каждый. Разорвется ли веревка, если она выдерживает натяжение до 120 Н?

6. На самолет, летящий в горизонтальном направлении, действует в направлении полета сила тяги двигателя F = 15000 Н, сила сопротивления воздуха FC = 11000 Н и сила давления бокового ветра FВ = 3000 H, направленная под углом α = 90° к курсу. Найти равнодействующую этих сил. Какие еще силы действуют на самолет в полете и чему равна их равнодействующая?

7. Определите силу, с которой  притягиваются друг к другу два  корабля массой по 107 кг каждый, находящиеся на расстоянии 500 м друг от друга.

8.  Между всеми телами существует взаимное притяжение. Почему же мы наблюдаем притяжение тел к Земле и не замечаем взаимного тяготения окружающих нас предметов друг к другу?

9. Пружину детского пистолета сжали на 3 см. Определите возникшую в ней силу упругости, если жесткость пружины равна 700 Н/м.

10. Какой силой можно сдвинуть ящик массой 60 кг, если коэффициент трения  между ним и  полом равен 0,27? Сила действует под углом 30°  к полу (горизонту).

11. Какую   начальную   скорость   нужно   сообщить   сигнальной   ракете,   выпущенной под углом  α = 45° к горизонту, чтобы она вспыхнула в наивысшей точке траектории, если запал ракеты горит t = 6 с?

12. Вычислить первую космическую скорость у поверхности Луны, если радиус Луны R= 1760 км, а ускорение свободного падения на Луне составляет 0,17 земного.
—————————————————————————————————-

Механика. Импульс, мощность, энергия

1. Пуля массой 10 г, летящая горизонтально со скоростью 400 м/с, ударяется в   преграду   и  останавливается.   Чему  равен   импульс,   полученный   пулей   от преграды? Куда он направлен?

2. Космический корабль массой 4800 кг двигался по орбите со скоростью 8000 м/с. При торможении из него тормозными двигателями было выброшено 500 кг продуктов сгорания со скоростью 800 м/с относительно его корпуса в направлении движения. Определите скорость корабля после торможения.

3. Снаряд, летевший горизонтально со скоростью 480 м/с, разорвался на два осколка равной массы. Один осколок полетел вертикально вверх со скоростью 400 м/с относительно Земли. Определите скорость второго осколка.

4. Охотник, плывя по озеру на легкой надувной лодке, стреляет в уток. Какую скорость приобретает лодка в момент выстрела из двух стволов ружья (дуплетом)? Масса охотника с лодкой и ружьем 80 кг, масса пороха и дроби в одном патроне 40 г, начальная скорость дроби 320 м/с, ствол ружья во время выстрела направлен под углом 60° к горизонту.

5. Стоящий на коньках человек массой 60 кг ловит мяч массой 500 грамм, летящий горизонтально со скоростью 72 км/ч, определите расстояние на которое откатится при этом человек, если коэффициент трения 0,05.

Решение:

6. Самолет должен иметь для взлета скорость 25 м/с. Длина пробега по полосе аэродрома составляет 100 м. Какую мощность должны развивать двигатели при взлете, если масса самолета 1000 кг и сопротивление движению равно 200 Н?

7. Футбольный мяч массой 400 г падает на Землю с высоты 6 м и отскакивает на  высоту 2,4 м.  Какое количество  механической  энергии  мяча  превращается в другие виды энергии?

8. Автомобиль массой 5000 кг при движении в горной местности поднялся на высоту 400 м над уровнем моря. Определите потенциальную энергию автомобиля относительно уровня моря.

9. Перед загрузкой  в плавильную печь чугунный металлолом измельчают ударами падающего бойка молота массой 6000 кг. Определите полную энергию в нижней точке при падении бойка с высоты 9 м. Сравните ее с полной энергией, которую имеет боек, пройдя при падении 5 м.

10. Самолет массой 1000 кг летит горизонтально на высоте 1200 м со скоростью 50 м/с. При выключенном двигателе самолет планирует и приземляется со скоростью 25 м/с. Определите силу сопротивления воздуха при спуске, считая длину спуска равной 8 км.

11. Достаточна ли мощность электродвигателя токарного станка 1А62 (7,8 кВт) для обработки детали со скоростью резания 5 м/с, если сопротивление металла резанию составляет 600 Н? КПД станка 0,75.

12. Автомобиль, мощность двигателя  которого 50 кВт, движется по горизонтальному шоссе.   Масса   автомобиля   1250   кг.   Сопротивление   движению равно 1225 Н. Какую максимальную скорость может развить автомобиль?

13. При формировании железнодорожного состава происходят соударения вагонов буферами. Пружины двух буферов вагона сжались при ударе на  10 см каждая. Определите работу сжатия  пружин, если  коэффициент их жесткости равен 5·106 Н/м.
—————————————————————————————————-


источники:

Балаш В.А. “Задачи по физике и методы их решения”. Пособие для учителей. М., Просвещение, 1974.

Гончаренко С.У., Воловик П.Н. “Физика”. Учебное пособие для 10 кл. вечерней (сменной) средн. шк. и самообразования М., Просвещение, 1989.

Гладкова Р.А., Добронравов В.Е., Жданов Л.С., Цодиков Ф.С. “Сборник задач и вопросов по физике” для сред. спец. уч. заведений М., 1975.


osiktakan.ru

Решение задач по механике | Студенческая жизнь

В пределах курса механики изучаются процессы, происходящие, в основном, в пределах замкнутых систем. Решение задач по механике может включать нахождение нужных параметров при равноускоренном движении, колебаниях, криволинейном движении. Широко распространены также процессы передачи энергии и нахождение значений, связанных с подобными явлениями. Рассмотрим решение пары задач, которые анализируют динамику материальной точки и поступательного движения.

Задача, использующая анализ замкнутой системы в условиях равноускоренного движения.

С помощью анализа ситуации, когда наблюдаемый опыт может быть рассмотрен как изолированная система и одновременно — используя законы равноускоренного движения, можно освоить подход с формированием двух систем координат одновременно. Условие задачи будет звучать, например, так:

Есть лифт, который движется с равномерным ускорением на всем протяжении пути. Величина его известна и составляет 2 м/с2. Внутри лифта стоят пружинные весы. На их чашке расположен предмет, масса которого известна и составляет 10 кг. Требуется определить показание весов в двух случаях движения лифта — вниз и вверх.

Решение задачи

Решение задач по механике в условиях разных систем счисления выглядит по-разному из-за количества сил и их взаимодействия, которые нужно учитывать. В общем случае происходит следующее. Тело действует на пружину весов с силой, численно равной его весу. Одновременно, в противоположную сторону направлена сила упругости, которую формирует сжатая пружина. То есть G (вес тела) = N (сила упругости), или, если учитывать направление приложения, G = -N.

Из проведенного анализа становится ясно, что требуется найти силу реакции опоры N. Решим задачу в двух разных координатах.

Инерциальная система отсчета

Если оценивать происходящее с такой позиции, можно смело сказать, что на тело, помещенное на весы, действует всего две силы — тяжести Р и упругости N.

Учтя все силы по оси Z, можно записать равенство

N-P = m*a,

где

N — сила упругости пружины, направленная вертикально вверх,

Р — сила тяжести, действующая вниз,

m — масса тела,

а — величина ускорения, с которым движется вся система.

Искомая величина легко записывается.

N = P + m*a = m*g + m*a = m*(g+a)

Чтобы преобразовать формулу, мы использовали запись силы тяжести в виде Р = m*g, где g — ускорение свободного падения.

Решение задач по механике с учетом направления движения, как в нашем случае, требует учета знака ускорения. Оно положительное при движении вверх и отрицательно, когда тело падает или спускается. Тогда ответ на вопрос задачи будет звучать так:

  1. Лифт двигается вверх, показания весов равны 10 * (9,8+2) = 118 Н.
  2. При спуске весы покажут 10 * (9,8-2) = 78 Н.

Для инерциальной системы неважна траектория, она складывает проекции действующих сил на вертикальную ось, как в нашем случае. Лифт может двигаться по наклонному пандусу. Важна только величина ускорения по вертикали.

Неинерциальная система отсчета, привязанная к внутренней части лифта

Здесь законы Ньютона, при первом взгляде, не работают. Однако, можно учесть силу инерции F = m*a, которая будет действовать в противоположную сторону от направления движения. Тогда система придет в равновесие и можно сказать, что законы Ньютона справедливы.

На тело будут действовать три силы. Тяжести Р, реакции опоры или упругости пружины N, а также инерции F. Для изолированной неинерциальной системы, описывающей лифт, можно использовать законы статики. Тогда верно равенство

Р + N + F = 0

Составив проекции на вертикальную ось и записав равенство с учетом знаков, получим, что

N — P — F = 0

Развернув выражение и преобразовав, получим конечную формулу

N = P + F = m*g + m*a = m*(g+a)

Как видим, формула аналогична полученной для инерциальной системы. Следовательно, решение правильное и результаты будут достоверны.

Задача на передачу энергии и сохранение импульса

Рассмотрим решение задач по механике, которые используют более сложное взаимодействие тел и оперируют уровнями энергии и импульса. Условие задачи:

Молот кузнечного устройства падает на поковку, стоящую на фундаменте. Масса молота известна и составляет 200 кг, скорость в момент удара — 2 м/с. Поковка обладает массой 2500 кг. Необходимо найти:

  1. Кинетическую энергию молота в момент удара.
  2. Количество энергии, которая передалась фундаменту в результате воздействия.

Считается, что удар молота по поковке абсолютно неупругий.

Решение задачи

Первый пункт требований довольно прост. Используется формула кинетической энергии, которая выглядит как

Ек = (m*v*v)/2

где

m — масса молота,

v — скорость в момент удара.

Подставив известные из условия задачи данные, которые уже в системе СИ, получим ответ. 400 Джоулей.

Чтобы рассчитать второй пункт, требуется понимание происходящего. Молот соприкасается с поковкой. Ей передается энергия. Поскольку в условии задачи сказано, что удар неупругий, принимаем факт — движение поковки и молота становится совместным и рассматривается как единая система.

Воспользуемся законом сохранения импульса, чтобы определить, с какой скоростью стала двигаться пара молот — поковка.

m1*v1+m2*v2=(m1+m2)*u

где

m1, m2 — массы молота и поковки соответственно,

v1, v2 — их скорости в момент удара,

u — результирующая скорость всей системы.

Поскольку начальная скорость поковки равна нулю, найдем результирующую скорость как

u=(m1/(m1+m2))*v1

Дальше решение задач по механике такого рода сводятся к закону сохранения энергии. Нужно понимать, что после передачи импульса и распределения скоростей в системе происходит передача кинетической энергии фундаменту. Вычисляется она просто.

T=((m1+m2)/2)*u^2 = (m1^2*v1^2)/(2*(m1+m2)) = (m1/(m1+m2)) * (m1*v1^2)/2

В результате преобразований и подстановки исходных данных, получим ясный и четкий ответ. Фундаменту передалось 29,6 Джоулей энергии.

life-students.ru

Решение задач по физике (механика)



Цель урока: продолжить формирование умения рассчитывать механическую работу, мощность, КПД простых механизмов, применять законы сохранения при решении качественных и вычислительных задач.

Ход урока

Проверка домашнего задания методом решения качественных задач

1. Человек толкнул вагонетку. Она пришла в движение по горизонтальному пути. Совершил ли человек работу? ( Да)

2. Когда расходуется меньше энергии при запуске искусственного спутника Земли : вдоль меридиана или вдоль экватора в сторону вращения Земли? ( При запуске вдоль экватора в сторону вращения Земли, так как скорость суточного вращения Земли складывается со скоростью, сообщенной спутнику двигателем ракеты.)

3. На первом и пятом этаже сожгли по 1м3 газа, Потенциальная энергия газа на 5 этаже больше, чем на первом. Будет ли энергия, полученная от сжигания газа на 5 этаже, больше


по сравнению с той, которую получили при сжигании газа на первом этаже? (Энергия от сжигания газа будет одинаковая)

4. Два яблока висят неподалеку друг от друга, но под одним из них яма глубиной 0,5 м. Массы яблок одинаковы и равны 0, 1кг. Сравните потенциальные энергии взаимодействия с Землей для каждого яблока.

(Решаем устно. Считаем, что g=10м/c². Ep1= 3 Дж; Ep2 = 4 Дж

Решение вычислительных задач

Задача. Подъемный кран поднимает груз массой 5 т на высоту 1,5 м . За какое время поднимается груз, если мощность двигателя крана 10 кВт и КПД равен 80%?

η= Ап/ Аз·100%; Ап= m g h; A3= N t; η= m g h·100%/Nt; t = m g h·100% / N·η; t = 5·10³·9.8·15/ 104·0.8 = 94(c)

Задача. Найдите КПД наклонной плоскости длиной 1м и высотой 60 см, если коэффициент трения при движении по ней равен 0,1.

l η= Aп/Аз·100%; Ап= m g h; A3= Fm· l

N Y Запишем уравнение движения тела при условии, что тело движется равномерно и

X Ft прямолинейно, т.е. а=0. F̄m+ mḡ+ F̄np+N̄ = 0. Спроектируем на оси координат:

на ось Ох: Fm- mg sinα – Ftp = 0; на ось Оy Т – mg cosα = 0; N = mg cosα/

Подставим значение N в выражение Ftp= μ N и получим: Ftp= μ m g cosα. Тогда Fm= mg sinα+ μmg cosα = = mg(sinα + μcosα ). A3= Fm= mg (sinα + μcosα)·l; η = mgh / mg(sinα+μcosα) ·l = h / (sinα + μcosα)·l

Найдем значение sinα = h/l; и cosα = √l²-h²/ l; Тогда η = 0,6·100%/ (0,6+0,1√1² -0,6² )·1 = 88%

Задача. С какой скоростью двигался поезд массой 1500 т, если под действием силы сопротивления 150 кН он прошел с момента начала торможения до остановки путь 500 м?

Решение: Атр= mV²/2 — mV₀²/2; так как V=0, то Aтр = mV₀²/2; значит Aтр= — FтрS; тогда mV02/2 = FтрS

Отсюда V₀= √2 Fтр S/ m Вычисляем: V₀²= 2·150·10³·500/ 1500·10³; V₀= 10 м/с

Подводим итоги урока .

Домашнее задание: §52,53, №377 (Р)


home-task.com

способы решения задач С2 по механике

Подготовка к ЕГЭ: способы решение задач С2 по механике

Из опыта работы учителя физики ГБОУ СОШ №1 «ОЦ» п.г.т. Стройкерамика Колчиной И.А.

«Человек знает физику,

если он умеет

решать задачи»

Энрико Ферми

Критерии оценки выполнения заданий С2-С6

Приведено полное правильное решение, включающее следующие элементы:

1) правильно записаны формулы, выражающие физические законы, применение которых необходимо для решения задачи выбранным способом ;

2) проведены необходимые математические преобразования и расчеты, приводящие к правильному числовому ответу, и представлен ответ; при этом допускается решение «по частям» (с промежуточными вычислениями

Представленное решение содержит п.1 полного решения, но и имеет один из следующих недостатков:

– в необходимых математических преобразованиях или вычислениях допущена ошибка;

ИЛИ

– необходимые математические преобразования и вычисления логически верны, не содержат ошибок, но не закончены;

ИЛИ

– не представлены преобразования, приводящие к ответу, но записан правильный числовой ответ или ответ в общем виде;

ИЛИ

– решение содержит ошибку в необходимых математических преобразованиях и не доведено до числового ответа. Представлены записи, соответствующие одному из следующих случаев:

– представлены только положения и формулы, выражающие физические законы, применение которых необходимо для решения задачи, без каких-либо преобразований с их использованием,

направленных на решение задачи, и ответа;

ИЛИ

– в решении отсутствует ОДНА из исходных формул, необходимая для решения задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи;

ИЛИ

– в ОДНОЙ из исходных формул, необходимых для решения задачи (или утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи.

Энергетический

Кинематический

Решение на основе закона сохранения энергии

Решение на основе законов кинематики

5

С2 (демо, 2010)

5

С2 (2009)

5

С2 (2009)

Начальная скорость снаряда, выпущенного вертикально вверх, равна 300 м/с.

В точке максимального подъёма снаряд разорвался на два осколка. Первый осколок массой m 1 упал на Землю вблизи точки выстрела, имея скорость в 2 раза больше начальной скорости снаряда, второй осколок массой m 2 имеет у поверхности Земли скорость 600 м/с. Чему равно отношение масс этих осколков? Сопротивлением воздуха пренебречь.

Согласно закону сохранения энергии, если оба осколка имели одинаковую скорость при падении на Землю, то их скорость была одинакова и в любой точке их общего участка траекторий, в том числе и в точке взрыва снаряда;

второй осколок, возвратившись в точку взрыва, имел такую же по модулю скорость, какая была у него в момент взрыва.

Следовательно, при взрыве неподвижно зависшего снаряда оба осколка приобрели одинаковые по модулю, но противоположные по направлению скорости.

Согласно закону сохранения импульса, это означает, что массы осколков равны.

Ответ: m 2 /m 1 =1

С2 (2009)

2009

5

С2

5

Задание С2

Задание С2

Задание С2

Задание С2

Задание С2

Задание С2

Задания С2

22

Задание С2

22

Задание С2

22

При вы­пол­не­нии трюка «Ле­та­ю­щий ве­ло­си­пе­дист» гон­щик дви­жет­ся по трам­пли­ну под дей­стви­ем силы тя­же­сти, на­чи­ная дви­же­ние из со­сто­я­ния покоя с вы­со­ты  Н  (см. ри­су­ нок).

На краю трам­пли­на ско­рость гон­щи­ка на­прав­ле­на под углом                к го­ри­зон­ту. Про­ле­тев по воз­ду­ху, гон­щик при­зем­ля­ет­ся на го­ри­зон­таль­ный стол, на­хо­дя­щий­ся на той же вы­со­те, что и край трам­пли­на. Ка­ко­ва вы­со­та по­ле­та  h на этом трам­пли­не? Со­про­тив­ле­ни­ем воз­ду­ха и тре­ни­ем пре­не­бречь.

Ре­ше­ние.

Мо­дель гон­щи­ка — ма­те­ри­аль­ная точка. Счи­та­ем полет сво­бод­ным па­де­ни­ем с на­чаль­ной ско­ро­стью     на­прав­лен­ной под углом     к го­ри­зон­ту. Вы­со­та по­ле­та опре­де­ля­ет­ся из вы­ра­же­ния  .             .  . Мо­дуль на­чаль­ной ско­ро­сти опре­де­ля­ет­ся из за­ко­на со­хра­не­ния энер­гии                       , так что               . При                по­лу­ча­ем                                .

Ответ:  вы­со­та подъ­ема             .

multiurok.ru

Механика (расчетная задача) | ЕГЭ по физике

Основные понятия и законы кинематики

Часть механики, в которой изучают движение, не рассматривая причины, вызывающие тот или иной характер движения, называют кинематикой.
Механическим движением называют изменение положения тела относительно других тел
Системой отсчёта называют тело отсчёта, связанную с ним систему координат и часы.
Телом отсчёта называют тело, относительно которого рассматривают положение других тел.
Материальной точкой называют тело, размерами которого в данной задаче можно пренебречь.
Траекторией называют мысленную линию, которую при своём движении описывает материальная точка.

По форме траектории движение делится на:
а) прямолинейное — траектория представляет собой отрезок прямой;
б) криволинейное — траектория представляет собой отрезок кривой.

Путь — это длина траектории, которую описывает материальная точка за данный промежуток времени. Это скалярная величина.
Перемещение — это вектор, соединяющий начальное положение материальной точки с её конечным положением (см. рис.).

Очень важно понимать, чем путь отличается от перемещения. Самое главной отличие в том, что перемещение – это вектор с началом в точке отправления и с концом в точке назначения (при этом абсолютно неважно, каким маршрутом это перемещение совершалось). А путь – это, наборот, скалярная величина, отражающая длину пройденной траектории.

Равномерным прямолинейным движением называют движение, при котором материальная точка за любые равные промежутки времени совершает одинаковые перемещения
Скоростью равномерного прямолинейного движения называют отношение перемещения ко времени, за которое это перемещение произошло:

Для неравномерного движения пользуются понятием средней скорости. Часто вводят среднюю скорость как скалярную величину. Это скорость такого равномерного движения, при котором тело проходит тот же путь за то же время, что и при неравномерном движении:

Мгновенной скоростью называют скорость тела в данной точке траектории или в данный момент времени.
Равноускоренное прямолинейное движение — это прямолинейное движение, при котором мгновенная скорость за любые равные промежутки времени изменяется на одну и ту же величину

Ускорением называют отношение изменения мгновенной скорости тела ко времени, за которое это изменение произошло:

Зависимость координаты тела от времени в равномерном прямолинейном движении имеет вид: x = x0 + Vxt, где x0 — начальная координата тела, Vx — скорость движения.
Свободным падением называют равноускоренное движение с постоянным ускорением g = 9,8 м/с2, не зависящим от массы падающего тела. Оно происходит только под действием силы тяжести.

Скорость при свободном падении рассчитывается по формуле:

Перемещение по вертикали рассчитывается по формуле:

Одним из видов движения материальной точки является движение по окружности. При таком движении скорость тела направлена по касательной, проведённой к окружности в той точке, где находится тело (линейная скорость). Описывать положение тела на окружности можно с помощью радиуса, проведённого из центра окружности к телу. Перемещение тела при движении по окружности описывается поворотом радиуса окружности, соединяющего центр окружности с телом. Отношение угла поворота радиуса к промежутку времени, в течение которого этот поворот произошёл, характеризует быстроту перемещения тела по окружности и носит название угловой скорости ω:

Угловая скорость связана с линейной скоростью соотношением

где r — радиус окружности.
Время, за которое тело описывает полный оборот, называется периодом обращения. Величина, обратная периоду — частота обращения — ν

Поскольку при равномерном движении по окружности модуль скорости не меняется, но меняется направление скорости, при таком движении существует ускорение. Его называют центростремительным ускорением, оно направлено по радиусу к центру окружности:

Основные понятия и законы динамики

Часть механики, изучающая причины, вызвавшие ускорение тел, называется динамикой

Первый закон Ньютона:
Cуществуют такие системы отсчёта, относительно которых тело сохраняет свою скорость постоянной или покоится, если на него не действуют другие тела или действие других тел скомпенсировано.
Свойство тела сохранять состояние покоя или равномерного прямолинейного движения при уравновешенных внешних силах, действующих на него, называется инертностью. Явление сохранения скорости тела при уравновешенных внешних силах называют инерцией. Инерциальными системами отсчёта называют системы, в которых выполняется первый закон Ньютона.

Принцип относительности Галилея:
во всех инерциальных системах отсчёта при одинаковых начальных условиях все механические явления протекают одинаково, т.е. подчиняются одинаковым законам
Масса — это мера инертности тела
Сила — это количественная мера взаимодействия тел.

Второй закон Ньютона:
Сила, действующая на тело, равна произведению массы тела на ускорение, сообщаемое этой силой:
$F↖{→} = m⋅a↖{→}$

Сложение сил заключается в нахождении равнодействующей нескольких сил, которая производит такое же действие, как и несколько одновременно действующих сил.

Третий закон Ньютона:
Силы, с которыми два тела действуют друг на друга, расположены на одной прямой, равны по модулю и противоположны по направлению:
$F_1↖{→} = -F_2↖{→} $

III закон Ньютона подчёркивает, что действие тел друг на друга носит характер взаимодействия. Если тело A действует на тело B, то и тело B действует на тело A (см. рис.).


Или короче, сила действия равна силе противодействия. Часто возникает вопрос: почему лошадь тянет сани, если эти тела взаимодействуют с равными силами? Это возможно только за счёт взаимодействия с третьим телом — Землёй. Сила, с которой копыта упираются в землю, должна быть больше, чем сила трения саней о землю. Иначе копыта будут проскальзывать, и лошадь не сдвинется с места.
Если тело подвергнуть деформации, то возникают силы, препятствующие этой деформации. Такие силы называют силами упругости.

Закон Гука записывают в виде

где k — жёсткость пружины, x — деформация тела. Знак «−» указывает, что сила и деформация направлены в разные стороны.

При движении тел друг относительно друга возникают силы, препятствующие движению. Эти силы называются силами трения. Различают трение покоя и трение скольжения. Сила трения скольжения подсчитывается по формуле

где N — сила реакции опоры, µ — коэффициент трения.
Эта сила не зависит от площади трущихся тел. Коэффициент трения зависит от материала, из которого сделаны тела, и качества обработки их поверхности.

Трение покоя возникает, если тела не перемещаются друг относительно друга. Сила трения покоя может меняться от нуля до некоторого максимального значения

Гравитационными силами называют силы, с которыми любые два тела притягиваются друг к другу.

Закон всемирного тяготения:
любые два тела притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.


Здесь R — расстояние между телами. Закон всемирного тяготения в таком виде справедлив либо для материальных точек, либо для тел шарообразной формы.

Весом тела называют силу, с которой тело давит на горизонтальную опору или растягивает подвес.

Сила тяжести — это сила, с которой все тела притягиваются к Земле:

При неподвижной опоре вес тела равен по модулю силе тяжести:

Если тело движется по вертикали с ускорением, то его вес будет изменяться.
При движении тела с ускорением, направленным вверх, его вес

Видно, что вес тела больше веса покоящегося тела.

При движении тела с ускорением, направленным вниз, его вес

В этом случае вес тела меньше веса покоящегося тела.

Невесомостью называется такое движение тела, при котором его ускорение равно ускорению свободного падения, т.е. a = g. Это возможно в том случае, если на тело действует только одна сила — сила тяжести.
Искусственный спутник Земли — это тело, имеющее скорость V1, достаточную для того, чтобы двигаться по окружности вокруг Земли
На спутник Земли действует только одна сила — сила тяжести, направленная к центру Земли
Первая космическая скорость — это скорость, которую надо сообщить телу, чтобы оно обращалось вокруг планеты по круговой орбите.

где R — расстояние от центра планеты до спутника.
Для Земли, вблизи её поверхности, первая космическая скорость равна

1.3. Основные понятия и законы статики и гидростатики

Тело (материальная точка) находится в состоянии равновесия, если векторная сумма сил, действующих на него, равна нулю. Различают 3 вида равновесия: устойчивое, неустойчивое и безразличное. Если при выведении тела из положения равновесия возникают силы, стремящиеся вернуть это тело обратно, это устойчивое равновесие. Если возникают силы, стремящиеся увести тело ещё дальше из положения равновесия, это неустойчивое положение; если никаких сил не возникает — безразличное (см. рис. 3).

Когда речь идёт не о материальной точке, а о теле, которое может иметь ось вращения, то для достижения положения равновесия помимо равенства нулю суммы сил, действующих на тело, необходимо, чтобы алгебраическая сумма моментов всех сил, действующих на тело, была равна нулю.

Здесь d —плечо силы. Плечом силы d называют расстояние от оси вращения до линии действия силы.

Условие равновесия рычага:
алгебраическая сумма моментов всех вращающих тело сил равна нулю.
Давлением называют физическую величину, равную отношению силы, действующей на площадку, перпендикулярную этой силе, к площади площадки:

Для жидкостей и газов справедлив закон Паскаля:
давление распространяется по всем направлениям без изменений.
Если жидкость или газ находятся в поле силы тяжести, то каждый вышерасположенный слой давит на нижерасположенные и по мере погружения внутрь жидкости или газа давление растёт. Для жидкостей

где ρ — плотность жидкости, h — глубина проникновения в жидкость.

Однородная жидкость в сообщающихся сосудах устанавливается на одном уровне. Если в колена сообщающихся сосудов залить жидкость с разными плотностями, то жидкость с большей плотностью устанавливается на меньшей высоте. В этом случае

Высоты столбов жидкости обратно пропорциональны плотностям:

Гидравлический пресс представляет собой сосуд, заполненный маслом или иной жидкостью, в котором прорезаны два отверстия, закрытые поршнями. Поршни имеют разную площадь. Если к одному поршню приложить некоторую силу, то сила, приложенная ко второму поршню, оказывается другой.
Таким образом, гидравлический пресс служит для преобразования величины силы. Поскольку давление под поршнями должно быть одинаковым, то

Тогда A1 = A2.
На тело, погружённое в жидкость или газ, со стороны этой жидкости или газа действует направленная вверх выталкивающая сила, которую называют силой Архимеда
Величину выталкивающей силы устанавливает закон Архимеда: на тело, погружённое в жидкость или газ, действует выталкивающая сила, направленная вертикально вверх и равная весу жидкости или газа, вытесненного телом:

где ρжидк — плотность жидкости, в которую погружено тело; Vпогр — объём погружённой части тела.

Условие плавания тела — тело плавает в жидкости или газе, когда выталкивающая сила,действующая на тело, равна силе тяжести, действующей на тело.

1.4. Законы сохранения

Импульсом тела называют физическую величину, равную произведению массы тела на его скорость:

Импульс — векторная величина. [p] =кг·м/с. Наряду с импульсом тела часто пользуются импульсом силы. Это произведение силы на время её действия
Изменение импульса тела равно импульсу действующей на это тело силы. Для изолированной системы тел (система, тела которой взаимодействуют только друг с другом) выполняется закон сохранения импульса: сумма импульсов тел изолированной системы до взаимодействия равна сумме импульсов этих же тел после взаимодействия.
Механической работой называют физическую величину, которая равна произведению силы, действующей на тело, на перемещение тела и на косинус угла между направлением силы и перемещения:

Мощность — это работа, совершённая в единицу времени:

Способность тела совершать работу характеризуют величиной, которую называют энергией. Механическую энергию делят на кинетическую и потенциальную. Если тело может совершать работу за счёт своего движения, говорят, что оно обладает кинетической энергией. Кинетическая энергия поступательного движения материальной точки подсчитывается по формуле

Если тело может совершать работу за счёт изменения своего положения относительно других тел или за счёт изменения положения частей тела, оно обладает потенциальной энергией. Пример потенциальной энергии: тело, поднятое над землёй, его энергия подсчитывается по формуле

где h — высота подъёма

Энергия сжатой пружины:

где k — коэффициент жёсткости пружины, x — абсолютная деформация пружины.

Сумма потенциальной и кинетической энергии составляет механическую энергию. Для изолированной системы тел в механике справедлив закон сохранения механической энергии: если между телами изолированной системы не действуют силы трения (или другие силы, приводящие к рассеянию энергии), то сумма механических энергий тел этой системы не изменяется (закон сохранения энергии в механике). Если же силы трения между телами изолированной системы есть, то при взаимодействии часть механической энергии тел переходит во внутреннюю энергию.

1.5. Механические колебания и волны

Колебаниями называются движения, обладающие той или иной степенью повторяемости во времени. Колебания называются периодическими, если значения физических величин, изменяющихся в процессе колебаний, повторяются через равные промежутки времени.
Гармоническими колебаниями называются такие колебания, в которых колеблющаяся физическая величина x изменяется по закону синуса или косинуса, т.е.

Величина A, равная наибольшему абсолютному значению колеблющейся физической величины x, называется амплитудой колебаний. Выражение α = ωt + ϕ определяет значение x в данный момент времени и называется фазой колебаний. Периодом T называется время, за которое колеблющееся тело совершает одно полное колебание. Частотой периодических колебаний называют число полных колебаний, совершённых за единицу времени:

Частота измеряется в с-1. Эта единица называется герц (Гц).

Математическим маятником называется материальная точка массой m, подвешенная на невесомой нерастяжимой нити и совершающая колебания в вертикальной плоскости.
Если один конец пружины закрепить неподвижно, а к другому её концу прикрепить некоторое тело массой m, то при выведении тела из положения равновесия пружина растянется и возникнут колебания тела на пружине в горизонтальной или вертикальной плоскости. Такой маятник называется пружинным.

Период колебаний математического маятника определяется по формуле

где l — длина маятника.

Период колебаний груза на пружине определяется по формуле

где k — жёсткость пружины, m — масса груза.

Распространение колебаний в упругих средах.
Среда называется упругой, если между её частицами существуют силы взаимодействия. Волнами называется процесс распространения колебаний в упругих средах.
Волна называется поперечной, если частицы среды колеблются в направлениях, перпендикулярных к направлению распространения волны. Волна называется продольной, если колебания частиц среды происходят в направлении распространения волны.
Длиной волны называется расстояние между двумя ближайшими точками, колеблющимися в одинаковой фазе:

где v — скорость распространения волны.

Звуковыми волнами называют волны, колебания в которых происходят с частотами от 20 до 20 000 Гц.
Скорость звука различна в различных средах. Скорость звука в воздухе равна 340 м/c.
Ультразвуковыми волнами называют волны, частота колебаний в которых превышает 20 000 Гц. Ультразвуковые волны не воспринимаются человеческим ухом.

examer.ru