Раздел физики – раздел физики, изучающей получение низких температур и изменение свойств материалов при таких температурах, 10 букв, сканворд

Содержание

Разделы физики

Определение 1

Физика – это область естествознания, это наука о простейших и наиболее общих природных законах, о материи, ее движении и структуре. В основе всего естествознания лежат законы физики.

Впервые термин «физика» фигурирует в учениях Аристотеля, еще в $IV$ столетии до нашей эры. Изначально термин «философия» и термин «физика» были синонимами, поскольку в основе этих дисциплин было стремление объяснить законы Вселенной. Однако научная революция $XVI$ столетия привела к трансформации физики в отдельную дисциплину.

Предмет и значение физики в современном мире

Физика – это наука о естествознании, в общем смысле слова является частью природоведения. Предметом ее изучения является материя, в виде полей и вещества, а также общие формы ее движения. Также к предмету изучения физики можно отнести фундаментальные природные взаимодействия, которые управляют движением материи.

Общими для всех материальных систем являются некоторые закономерности, которые называются физическими законами. Часто физику называют фундаментальной наукой, поскольку иные естественные науки (биология, химия, геология) описывают только конкретные классы материальных систем, которые подчиняются физическим законам.

Предмет изучения химии – атомы, вещества, что состоят из них, а также превращение одних веществ в другие. Химические свойства любого вещества определяются физическими свойствами молекул и атомов, которые описываются в таких разделах физики, как электромагнетизм, термодинамика и квантовая физика.

Физика тесно связывается с математикой, поскольку она представляет механизм, при помощи которого физические законы могут формулироваться максимально точно. Все физические законы практически всегда формулируются в виде уравнений. Причем в данном случае используются наиболее сложные разделы математики, нежели в других науках. И наоборот, потребностями физической науки стимулировалось развитие большинства областей математики.

Значение физики в современном мире очень велико. Все, чем отличается нынешнее общество от общества прошлых столетий, возникло в результате применения физических открытий.

Исследования в сфере электромагнетизма привели к возникновению стационарных и мобильных телефонов. Благодаря открытиям термодинамики получилось создать автомобиль, а развитие электроники спровоцировало возникновение компьютерной техники. Фотоника дает возможность создать принципиально новые компьютеры и фотонную технику, которые стремительно замещают современную электронную технику и приспособления. А развитие газодинамики дало рождение самолетам и вертолетам.

Знание физических процессов, которые постоянно происходят в природе, углубляются и расширяются. Большая часть новых и современных открытий получает технико-экономическое применение, зачастую в промышленности.

Перед современными исследователями регулярно возникают новые задачи и загадки – всплывают явления, для объяснения которых необходимо разрабатывать новые физические теории. Несмотря на большой опыт приобретенных знаний, современная физика еще далека от того, чтобы объяснить все природные явления.

Общие научные основы методов физики разрабатываются в методологии науки и в теории познания.

Экспериментальная и теоретическая физика

В своей основе физика является экспериментальной наукой: все ее теории и законы опираются и основаны на опытных данных. Но, несмотря на это, именно новые теории – основная причина проведения новых экспериментов, в результате осуществления которых лежат новые открытия. Поэтому принято различать теоретическую и экспериментальную физику.

В основе экспериментальной физики лежит исследование явлений природы в тех условиях, которые были подготовлены заранее. В задачи данного вида физики входит обнаружение явлений, которые не были известны ранее, а также опровержение или подтверждение физических теорий. В физике большинство достижений были сделаны благодаря экспериментальному обнаружению физических явлений, которые не описываются существующими теориями.

Экспериментальное изучение фотографического эффекта стало одной из предпосылок создания квантовой механики.

Замечание 1

Хотя научным рождением квантовой механики считается появление гипотезы Планка, который выдвинул ее для разрешения ультрафиолетовой катастрофы, что была парадоксом классической теоретической физикой излучения.

Задачами теоретической физики являются формулировка общих природных законов, объяснение их на основе различных природных явлений, а также прогнозирование неизведанных до сих пор процессов. Достоверность физической теории можно проверить экспериментально: если его результаты совпадают с прогнозами теории, то она считается адекватной и точно описывающей конкретное явление. При изучении каждого явления или процесса одинаково важны и теоретическая, и экспериментальная физика.

Прикладная физика

Физика с самого своего рождения имела огромное прикладное значение, она развивалась вместе с механизмами, машинами, которые человечество использовало для своих нужд. Физика часто применяется в инженерных науках, большинство физиков были изобретателями. Механика, как раздел физики, была тесно связана с сопротивлением материалов и с теоретической механикой, как с главными инженерными науками.

Термодинамика связана с конструированием тепловых двигателей и теплотехникой. Электричество напрямую связано с электроникой и электротехникой, для развития и становления которой были важны исследования в сфере физики твердого тела. Благодаря достижениям ядерной физики возникла ядерная энергия. Данный список можно продолжать долго.

Также физика имеет широкие междисциплинарные связи. На границе химии, физики и инженерных наук возникает и быстро развивается такая отрасль, как материаловедение. Химией используются инструменты и методы, что приводит к становлению двух исследовательских направлений: химической физики и физической химии.

Широких оборотов набирает биофизика, которая является областью исследований на границе между физикой и биологией, в которой все биологические процессы рассматриваются из атомарной структуры органических веществ. Геофизика изучает геологические явления и их физическую природу. Медицина применяет такие методы, как ультразвуковое исследование и рентгеновское облучение. Ядерный магнитный резонанс используется для диагностики, лазеры – для лечения глазных заболеваний, а ядерное облучение – в онкологии.

Основные разделы физики

Макроскопическая физика подразделяется на:

  1. Механика: классическая механика, релятивистская механика, а также механика сплошных сред (акустика, гидродинамика, механика твердого тела).
  2. Термодинамика, которая включает в себя неравновесную термодинамику.
  3. Оптика: физическая оптика, кристаллооптика, молекулярная и нелинейная оптика.
  4. Электродинамика: сюда входит магнитогидродинамика, электрогидродинамика, а также электродинамика для сплошных сред.

Микроскопическая физика состоит из следующих разделов:

  1. Атомная физика.
  2. Статистическая физика: сюда входит статистическая механика, физическая кинетика, а также статистическая теория поля.
  3. Физика конденсированных сред: физика жидкостей и твердого тела, физика наноструктур а также физика молекул и атомов.
  4. Квантовая физика. В данный раздел входят такие подразделения: квантовая теория поля, квантовая механика, квантовая хромодинамика, квантовая электродинамика, а также теория струн.
  5. Ядерная физика.
  6. Физика высоких энергий.
  7. Физика элементарных частиц.

Существуют также разделы физики, которые находятся на стыке наук:

  1. Агрофизика.
  2. Акустооптика.
  3. Астрофизика.
  4. Биофизика.
  5. Гидрофизика.
  6. Вычислительная физика.
  7. Геофизика: сейсмология, петрофизика, геофизическая гидродинамика.
  8. Математическая физика.
  9. Космология.
  10. Материаловедение.
  11. Метрология.
  12. Медицинская физика.
  13. Радиофизика: статистическая и квантовая радиофизика.
  14. Теория колебаний.
  15. Техническая физика.
  16. Химическая физика.
  17. Физика плазмы и атмосферы.
  18. Физическая химия.

Рисунок 1. Разделы физики. Автор24 — интернет-биржа студенческих работ

spravochnick.ru

Что изучают разделы физики

Введение

Вы перешли в седьмой класс и, придя 1 сентября в школу, увидели в списке своих новых уроков предмет с названием "Физика". На ваш вопрос о том, что это за зверь, родители только отмахнулись: "Наука такая!" Но вы перед первым уроком физики хотите основательно подготовиться, чтобы во время ее изучения ничему не удивляться. Как известно всем, науки разделяются на всяческие разделы, и описываемая в этой статье не исключение. Какие же разделы физики существуют, и что они изучают? Так звучит рассматриваемый в этой статье вопрос.

Основные разделы физики

Данный предмет делится на три больших раздела, которые, в свою очередь, разбиваются на подразделы. И последние также дифференцируют на виды этих подразделов. Итак, разделов физики, которые можно назвать основными, всего три: макроскопическая, микроскопическая и физика на стыке наук. Давайте рассмотрим их по порядку.

1. Макроскопическая физика

  • Механика. Изучает движение и взаимодействие материальных тел. Разделяется на классическую, релятивистскую и механику сплошных сред (гидродинамика, акустика, механика твердого тела).
  • Термодинамика. Изучает превращения и соотношения теплоты и других форм энергии.
  • Оптика. Рассматривает явления, которые связаны с распространением электромагнитных волн (инфракрасного и ультрафиолетового излучения), т.е. описывает свойства света и световые процессы. Разделяется на физическую, молекулярную, нелинейную и кристаллооптику.
  • Электродинамика. Изучает электромагнитное поле и его взаимодействие с телами, которые имеют электрический заряд. Этот раздел распределяется на электродинамику сплошных сред, магнитогидродинамику и электрогидродинамику.

2. Микроскопическая физика

  • Атомная физика. Занимается изучением строения и состояний атомов.
  • Статическая физика. Изучает системы с произвольным числом степеней свободы. Делится на статическую механику, статическую теорию поля и физическую кинетику.
  • Физика конденсированных сред. Изучает поведения сложных систем с сильной связью. Распределяется на физику твердого тела, жидкостей, наноструктур, атомов и молекул.
  • Квантовая физика. Изучает квантово-полевые и квантово-механические системы и законы их движения. Подразделяется на квантовые механику, теорию поля, электродинамику и хромодинамику, а также теорию струн.
  • Ядерная физика. Занимается изучением свойств и структуры атомных ядер и ядерных реакций.
  • Физика высоких энергий. Рассматривает взаимодействие ядер атомов и/или элементарных частиц, когда их энергия столкновения больше их массы.
  • Физика элементарных частиц. Изучает свойства, структуры и взаимодействие элементарных частиц.

3. Физика на стыке наук

  • Агрофизика. Занимается изучением физико-химических и биофизических процессов, происходящих в почве.
  • Акустооптика. Изучает взаимодействие акустических и оптических волн.
  • Астрофизика. Занимается изучением физических явлений, происходящих в астрономических объектах.
  • Биофизика. Изучает физические процессы, которые протекают в биологических системах.
  • Вычислительная физика. Изучает численные алгоритмы решения задач физики, для которых уже разработана количественная теория.
  • Гидрофизика. Занимается изучением процессов, происходящих в воде, и ее физические свойства.
  • Геофизика. Исследует строение Земли физическими методами.
  • Математическая физика. Теория математических моделей физических явлений.
  • Радиофизика. Изучает колебательно-волновые процессы различной природы.
  • Теория колебаний. Рассматривающая всевозможные колебания, исходя из их физической природы.
  • Теория динамических систем. Математическая абстракция, предназначенная для изучения и описания эволюции систем во времени.
  • Химическая физика. Наука о физических законах, управляющих превращением и строением химических веществ.
  • Физика атмосферы. Занимается изучением структуры, состава, динамики, и явлений в атмосфере Земли и прочих планет.
  • Физика плазмы. Изучает свойства и поведение плазмы.
  • Физическая химия. Занимается исследованием химических явлений с помощью теоретических и экспериментальных методов физики.

Заключение

Это все разделы физики. С некоторыми из них (например, оптикой) вы детально познакомитесь в школе, а некоторые будете изучать в институте, если поступите на одноименный факультет. А углубленно изучить разделы физики вы можете дома в любое удобное время.

fb.ru

Физика для всех | Здесь вы найдете информацию по всем основным разделам физики.

Фи́зика (от др.-греч. φύσις — природа) — область естествознания: наука о простейших и, вместе с тем, наиболее общих законах природы, о материи, её структуре и движении. Законы физики лежат в основе всего естествознания.

Термин «физика» впервые фигурирует в сочинениях одного из величайших мыслителей древности — Аристотеля (IV век до нашей эры). Первоначально термины «физика» и «философия» были синонимами, так как в основе обеих дисциплин лежало стремление объяснить законы функционирования Вселенной. Однако в результате научной революции XVI века физика развилась в самостоятельную научную отрасль.

В современном мире значение физики чрезвычайно велико. Всё то, чем отличается современное общество от общества прошлых веков, появилось в результате применения на практике физических открытий. Так, исследования в области электромагнетизма привели к появлению телефонов и позже мобильных телефонов, открытия в термодинамике позволили создать автомобиль, развитие электроники привело к появлению компьютеров. Развитие фотоники способно дать возможность создать принципиально новые — фотонные — компьютеры и другую фотонную технику, которые сменят существующую электронную технику.

Знания физики процессов, происходящих в природе, постоянно расширяются и углубляются. Большинство новых открытий вскоре получают технико-экономическое применение (в частности в промышленности). Однако перед исследователями постоянно встают новые загадки, — обнаруживаются явления, для объяснения и понимания которых требуются новые физические теории. Несмотря на огромный объём накопленных знаний, современная физика ещё очень далека от того, чтобы объяснить все явления природы.

Общенаучные основы физических методов разрабатываются в теории познания и методологии науки.

В русский язык слово «физика» было введено М. В. Ломоносовым, издавшим первый в России учебник физики — свой перевод с немецкого языка учебника «Вольфианская экспериментальная физика». Первым оригинальным учебником физики на русском языке стал курс «Краткое начертание физики» (1810), написанный П. И. Страховым.

questions-physics.ru

Физика — WiKi

Физика — естественная наука. Источником знаний для неё является практическая деятельность: наблюдения, экспериментальное исследование явлений природы, производственная деятельность. Правильность физических знаний проверяется экспериментом, использованием научных знаний в производственной деятельности. Обобщением результатов научных наблюдений и эксперимента являются физические законы, которыми объясняются эти наблюдения и эксперименты[4]. Физика сосредоточена на изучении фундаментальных и простейших явлений и на ответах на простые вопросы: из чего состоит материя, каким образом частицы материи взаимодействуют между собой, по каким правилам и законам осуществляется движение частиц и т. д.

В основе физических исследований лежит установление фактов путём наблюдения и эксперимента. Анализ данных совокупности экспериментов позволяет выявить и сформулировать закономерность. На первых этапах исследований закономерности носят преимущественно эмпирический, феноменологический характер, — то есть явление описывается количественно с помощью определённых параметров, характерных для исследуемых тел и веществ. Полученные факты подвергаются упрощению, идеализации путём введения идеальных объектов. На основе идеализации создаются модели исследуемых объектов и явлений. Физические объекты, модели и идеальные объекты описываются на языке физических величин. Затем устанавливаются связи между явлениями природы и выражаются в форме физических законов[5]. Физические законы проверяются с помощью продуманного эксперимента, в котором явление (феномен) проявлялось бы в как можно более чистом виде и не осложнялось бы другими явлениями (феноменами). Анализируя закономерности и параметры, физики строят физические теории, которые позволяют объяснить изучаемые явления на основе представлений о строении тел и веществ и взаимодействие между их составными частями. Физические теории, в свою очередь, создают предпосылки для постановки точных экспериментов, в ходе которых в основном определяются рамки их применимости. Общие физические теории позволяют формулировать физические законы, которые считаются общими истинами, пока накопления новых экспериментальных результатов не потребует их уточнения или пересмотра.

Так, например, Стивен Грей заметил, что электричество можно передавать на довольно значительное расстояние с помощью увлажнённых нитей и начал исследовать это явление. Георг Ом сумел выявить для него количественную закономерность, — ток в проводнике прямо пропорционален напряжению и обратно пропорционален сопротивлению проводника току. Эта закономерность известна как закон Ома. При этом, конечно, эксперименты Ома опирались на новые источники питания и на новые способы измерять действие электрического тока, что позволило количественно охарактеризовать его. Результаты дальнейших исследований позволили абстрагироваться от формы и длины проводников тока и ввести такие феноменологические характеристики, как удельное сопротивление проводника и внутреннее сопротивление источника питания. Закон Ома и поныне основа электротехники, однако исследования также выявили и рамки его применимости, — открыты элементы электрической цепи с нелинейными вольт-амперными характеристиками, а также вещества, в определённых ситуациях не имеющие никакого электрического сопротивления — сверхпроводники. После открытия заряженных микрочастиц — электронов (позже протонов и других), была сформулирована микроскопическая теория электропроводности, объясняющая зависимости сопротивления от температуры посредством рассеяния электронов на колебаниях кристаллической решетки, примесях и т. д.

Вместе с тем было бы неправильным считать, что только эмпирический подход определяет развитие физики. Многие важные открытия были совершены «на кончике пера», или экспериментальной проверкой теоретических гипотез. Например, принцип наименьшего действия Пьер Луи де Мопертюи сформулировал в 1744 году на основе общих соображений, и справедливость его невозможно установить экспериментальным путём в силу всеобщности принципа. В настоящее время классическая и квантовая механика, теория поля основаны на принципе наименьшего действия. В 1899 году Макс Планк ввёл понятия кванта электромагнитного поля, кванта действия, что также не было следствием наблюдений и экспериментов, а чисто теоретической гипотезой. В 1905 году Альберт Эйнштейн опубликовал работу по специальной теории относительности, построенную дедуктивным путём из самых общих физических и геометрических соображений. Анри Пуанкаре — математик, прекрасно разбиравшийся в научных методах физики, — писал, что ни феноменологический, ни умозрительный подход по отдельности не описывают и не могут описывать физическую науку[6].

Физика — это наука о материи, её свойствах и движении. Она является одной из наиболее древних научных дисциплин. Люди пытались понять свойства материи из древнейших времен: почему тела падают на землю, почему разные вещества имеют различные свойства и т. д. Интересовали людей также вопрос о строении мира, о природе Солнца и Луны. Сначала ответы на эти вопросы пытались искать в философии. В основном философские теории, которые пытались дать ответы на такие вопросы, не проверялись на практике. Однако, несмотря на то, что нередко философские теории неправильно описывали наблюдения, ещё в древние времена человечество добилось значительных успехов в астрономии, а великий греческий учёный Архимед даже сумел дать точные количественные формулировки многих законов механики и гидростатики.

Некоторые теории древних мыслителей, как, например, идеи об атомах, которые были сформулированы в древних Греции и Индии, опережали время. Постепенно от общей философии начало отделяться естествознание, важнейшей составной частью которого стала физика. Уже Аристотель использовал название «Физика» в заголовке одного из основных своих трактатов[7]. Несмотря на ряд неправильных утверждений, физика Аристотеля на протяжении веков оставалась основой знаний о природе.

Период до научной революции

  Основной способ работы камеры обскура   Ибн ал-Хайсам (около 965 — около 1040), пионер оптики

Свойство человечества сомневаться и пересматривать положения, которые раньше считались единственно истинными, в поисках ответов на новые вопросы в итоге привело к эпохе великих научных открытий, которую сегодня называют научной революцией, начавшейся в середине XVI века. Предпосылки к этим коренным изменениям сложились благодаря достоянию древних мыслителей, наследие которых можно проследить до Индии и Персии. Персидский учёный Насир ад-Дин ат-Туси указал на значительные недостатки птолемеевской системы.

Средневековая Европа на какое-то время потеряла знания античных времен, но под влиянием Арабского халифата сохраненные арабами сочинения Аристотеля вернулись. В XII—XIII веках нашли свой путь в Европу также произведения индийских и персидских учёных. В Средние века начал складываться научный метод, в котором основная роль отводилась экспериментам и математическому описанию. Ибн ал-Хайсам (Альхазен) в своей «Книге о оптике», написанной в 1021 году, описывал эксперименты, подтверждающие его теорию зрения, согласно которой глаз воспринимает свет, излучаемый другими объектами, а не сам глаз излучает свет, как считали раньше Евклид и Птолемей. В экспериментах Ибн ал-Хайсама использовалась камера-обскура. С помощью этого прибора он проверял свои гипотезы относительно свойств света: или свет распространяется по прямой, или смешиваются в воздухе различные лучи света.

Научная революция

Период научной революции характеризуется утверждением научного метода исследований, вычленением физики из массы натурфилософии в отдельную область и развитием отдельных разделов физики: механики, оптики, термодинамики и т. д.

Большинство историков придерживаются мнения о том, что научная революция началась в 1543 году, когда Николаю Копернику привезли из Нюрнберга впервые напечатанный экземпляр его книги «О вращении небесных сфер».

После этого в течение примерно ста лет человечество обогатилось работами таких исследователей, как Галилео Галилей, Христиан Гюйгенс, Иоганн Кеплер, Блез Паскаль и др. Галилей первым начал последовательно применять научный метод, проводя эксперименты, чтобы подтвердить свои предположения и теории. Он сформулировал некоторые законы динамики и кинематики, в частности закон инерции, и проверил их опытным путём. В 1687 году Исаак Ньютон опубликовал книгу «Principia», в которой в подробностях описал две основополагающие физические теории: законы движения тел, известные как законы Ньютона, и законы тяготения. Обе теории прекрасно согласовывались с экспериментом. Книга также приводила теории движения жидкостей. Впоследствии классическая механика была переформулирована и расширена Леонардом Эйлером, Жозефом Луи Лагранжем, Уильямом Роуэном Гамильтоном и другими. Законы гравитации заложили основу тому, что позже стало астрофизикой, которая использует физические теории для описания и объяснения астрономических наблюдений.

В России первым значительный вклад в развитие физической минералогии, математической физики, биофизики и астрономии в разделе изучения полярных сияний и физики «хвостов» комет внёс Михаил Ломоносов. Среди его наиболее значимых научных достижений в области физики — атомно-корпускулярная теория строения вещества и материи. Работы Ломоносова и его соратника Г. В. Рихмана внесли важный вклад в понимание электрической природы грозовых разрядов. Ломоносов не только провёл блестящее многолетнее исследование атмосферного электричества и установил ряд эмпирических закономерностей грозовых явлений, но и в работе «Слово о явлениях воздушных, от электрической силы происходящих» (1753) объяснил причину возникновения электричества в грозовых облаках конвекцией теплого воздуха (у поверхности Земли) и холодного воздуха (в верхних слоях атмосферы). Ломоносов разработал теорию света и выдвинул трёхкомпонентную теорию цвета, с помощью которой объяснил физиологические механизмы цветовых явлений. По мысли Ломоносова, цвета вызываются действием трёх родов эфира и трёх видов цветоощущающей материи, составляющей дно глаза. Теория цвета и цветового зрения, с которой Ломоносов выступил в 1756 году, выдержала проверку временем и заняла должное место в истории физической оптики.

После установления законов механики Ньютоном, следующим исследовательским полем стало электричество. Основы создания теории электричества заложили наблюдения и опыты таких учёных XVII и XVIII веков, как Роберт Бойль, Стивен Грей, Бенджамин Франклин. Сложились основные понятия — электрический заряд и электрический ток. В 1831 году английский физик Майкл Фарадей показал связь электричества и магнетизма, продемонстрировав, что движущийся магнит индуцирует в электрической цепи ток. Опираясь на эту концепцию, Джеймс Клерк Максвелл построил теорию электромагнитного поля. Из системы уравнений Максвелла следовало существование электромагнитных волн, распространяющихся со скоростью света. Экспериментальное подтверждение этому нашел Генрих Герц, открыв радиоволны.

С построением теории электромагнитного поля и электромагнитных волн, победой волновой теории света, основанной Гюйгенсом, над корпускулярной теорией Ньютона, завершилось построение классической оптики. На этом пути оптика обогатилась пониманием дифракции и интерференции света, достигнутым благодаря трудам Огюстена Френеля и Томаса Юнга.

В XVIII и начале XIX века были открыты основные законы поведения газов, а работы Сади Карно по теории тепловых машин открыли новый этап в становлении термодинамики. В XIX веке Юлиус Майер и Джеймс Джоуль установил эквивалентность механической и тепловой энергий, что привело к расширенной формулировке закона сохранения энергии (первый закон термодинамики). Благодаря Рудольфу Клаузиусу был сформулирован второй закон термодинамики и введено понятие энтропии. Позже Джозайя Уиллард Гиббс заложил основы статистической физики, а Людвиг Больцман предложил статистическую интерпретацию понятия энтропии.

К концу XIX века физики подошли к значительному открытию — экспериментальному подтверждению существования атома. В это время существенно изменилась и роль физики в обществе. Возникновение новой техники (электричества, радио, автомобиль и т. д.) требовало большого объёма прикладных исследований. Занятия наукой стало профессией. Фирма General Electric первой открыла собственные исследовательские лаборатории; такие же лаборатории стали появляться в других фирмах.

Смена парадигм

Конец девятнадцатого, начало двадцатого века был временем, когда под давлением новых экспериментальных данных физикам пришлось пересмотреть старые теории и заменить их новыми, заглядывая все глубже в строение материи. Эксперимент Майкельсона — Морли выбил основу из-под ног классического электромагнетизма, поставив под сомнение существование эфира. Были открыты новые явления, такие как рентгеновские лучи и радиоактивность. Не успели физики доказать существование атома, как появились доказательства существования электрона, эксперименты с фотоэффектом и изучение спектра теплового излучения давали результаты, которые невозможно было объяснить, исходя из принципов классической физики. В прессе этот период назывался кризисом физики, но одновременно он стал периодом триумфа физики, сумевшей выработать новые революционные теории, которые не только объяснили непонятные явления, но и многие другие, открыв путь к новому пониманию природы.

В 1905 году Альберт Эйнштейн построил специальную теорию относительности, которая продемонстрировала, что понятие эфира не требуется при объяснении электромагнитных явлений. При этом пришлось изменить классическую механику Ньютона, дав ей новую формулировку, справедливую при больших скоростях. Коренным образом изменились также представления о природе пространства и времени. Эйнштейн развил свою теорию в общую теорию относительности, опубликованную в 1916 году. Новая теория включала в себя описание гравитационных явлений и открыла путь к становлению космологии — науки об эволюции Вселенной.

Рассматривая задачу о тепловом излучении абсолютно чёрного тела, Макс Планк в 1900 году предложил невероятную идею, что электромагнитные волны излучаются порциями, энергия которых пропорциональна частоте. Эти порции получили название квантов, а сама идея начала построение новой физической теории — квантовой механики, которая ещё больше изменила классическую ньютоновскую механику, на этот раз при очень малых размерах физической системы. В том же 1905 году Альберт Эйнштейн применил идею Планка для успешного объяснения экспериментов с фотоэффектом, предположив, что электромагнитные волны не только излучаются, но и поглощаются квантами. Корпускулярная теория света, которая, казалось, потерпела сокрушительное поражение в борьбе с волновой теорией, вновь получила поддержку.

Спор между корпускулярной и волновой теорией нашел своё решение в корпускулярно-волновом дуализме, гипотезе, сформулированной Луи де Бройлем. По этой гипотезе не только квант света, а любая другая частица проявляет одновременно свойства, присущие как корпускулам, так и волнам. Гипотеза Луи де Бройля подтвердилась в экспериментах с дифракцией электронов.

В 1911 году Эрнест Резерфорд предложил планетарную теорию атома, а в 1913 году Нильс Бор построил модель атома, в которой постулировал квантовый характер движения электронов. Благодаря работам Вернера Гайзенберга, Эрвина Шрёдингера, Вольфганга Паули, Поля Дирака и многих других квантовая механика нашла свою точную математическую формулировку, подтверждённую многочисленными экспериментами. В 1927 году была создана копенгагенская интерпретация, которая открывала путь для понимания законов квантового движения на качественном уровне.

Физика современности

  Зелёный (520 нм), синий (445 нм) и красный (635 нм) лазеры

С открытием радиоактивности Анри Беккерелем началось развитие ядерной физики, которая привела к появлению новых источников энергии: атомной энергии и энергии ядерного синтеза. Открытые при исследованиях ядерных реакций новые частицы: нейтрон, протон, нейтрино, дали начало физике элементарных частиц. Эти новые открытия на субатомном уровне оказались очень важными для физики на уровне Вселенной и позволили сформулировать теорию её эволюции — теорию Большого взрыва.

Сложилось окончательное разделение труда между физиками-теоретиками и физиками-экспериментаторами. Энрико Ферми был, пожалуй, последним выдающимся физиком, успешным как в теории, так и в экспериментальной работе.

Передний край физики переместился в область исследования фундаментальных законов, ставя перед собой цель создать теорию, которая объясняла бы Вселенную, объединив теории фундаментальных взаимодействий. На этом пути физика получила частичные успехи в виде теории электрослабого взаимодействия и теории кварков, обобщённой в так называемой стандартной модели. Однако, квантовая теория гравитации до сих пор не построена. Определённые надежды связываются с теорией струн.

Начиная с создания квантовой механики, быстрыми темпами развивается физика твердого тела, открытия которой привели к возникновению и развитию электроники, а с ней и информатики, которые внесли коренные изменения в культуру человеческого общества.

ru-wiki.org

Основные разделы физики | Студенческая жизнь

Физика, как самостоятельная наука, изучает множество процессов окружающего мира. Все, что происходит с материальными объектами, светом, электромагнитными и статическими полями — во многих отношениях плотно исследовано.

Можно сказать, что основные разделы физики — это своеобразные своды законов, которые описывают любое взаимоотношение объектов на земле и в космосе.

Основная классификация разделов

Если упрощать, наука физика рассматривает взаимоотношения объектов в двух предметных областях.

I. Макромир

Раздел, который изучает поведение и преобразование сил, предметов, относящихся к большинству привычных всем объектов. Например, вода. Исследуется накопление энергии, ее передача. Харпктеристики жидкости, как материала — поверхностное натяжение, реакция на нагревание и охлаждение, переход в разные состояния (пар, лед).

Макрофизика изучает механику, термодинамику, оптику, электродинамику. Можно смело сказать, что эти области знаний — основные разделы физики, так как объем исследований просто огромен.

Например, оптика, кроме простейших законов преломления, рассеяния, взаимодействия световых волн друг с другом, изучает распространение света в различных средах. Разделы, кроме физической оптики:

  1. Кристаллооптика. Изучается поведение света при прохождении в анизотропных материалах. Если приводить пример из жизни — привычные лазерные указки — детище технологии, основанной на исследованиях в кристаллооптике.
  2. Реакцию материалов на свет изучает молекулярная оптика. Самая близкая и знакомая область — фотография, когда под воздействием света меняется структура чувствительного к свету слоя на поверхности фотобумаги. В промышленных масштабах достижения молекулярной оптики находят применение в установках лазерной гравировки и резки, когда луч точно подобранного по параметрам света может испарять и плавить металл.
  3. Специфические реакции материалов на свет или волновое излучение — изучает нелинейная оптика. Рассматривается изменение электрического сопротивления, агрегатного состояния, структуры, даже эффект самостоятельного генерирования электрического потенциала. Достижения этой области применяются в фотодатчиках, элементах солнечного питания. Например, датчики освещенности в смартфонах и планшетах — результат исследований нелинейной оптики.

Обобщенно, основные разделы физики, относящиеся к объектам, которые можно ощупать, увидеть или описать в рамках чувств человека — это макрофизика.

II. Микромир

Раздел, который изучает явления и процессы, недоступные простому восприятию. Взаимодействия между атомами, полями, передача энергии излучением, а также глубинные процессы, на которых основаны макрофизические явления — все это изучается микрофизикой.

Например, ядерный взрыв с точки зрения макрофизики — невозможен. Всего лишь сталкиваются два куска металла. Так, грубо, работает атомная бомба. Маленький кусок урана врезается в большой. Им выстреливают или соединяют обе части сильным ударом.

Чтобы понять происходящие процессы, нужно более глубокое знание структуры материала и поведения атомов. Этим и занимается физика микромира — изучением невидимых процессов и основанных на этом явлениях.

 

life-students.ru

Физика и её разделы | Закон, формула, лекция, шпаргалка, шпора, доклад, ГДЗ, решебник, конспект, кратко

Тема:

О физике

Физика — наука, изучающая наиболее общие закономер­ности природы, строение и законы движения материи. Это один из способов описания мира, важнейшим элементом которого является математика. Физика как наука дает мате­матическое описание реальности, в рамках которого обнару­живаются фундаментальные законы, управляющие поведе­нием вещества.

Особенностью физики является то, что она оперирует поня­тиями, которым соответствуют измеримые, характеризуе­мые числом величины. Измеримые величины называются наблюдаемыми, и утверждения относительно наблюдае­мых величин проверяемы. Материал с сайта http://worldofschool.ru

Слово «физика» происходит от греч. physis — природа. Первоначально, в эпоху античной культуры наука, не была расчлененной и охватывала всю совокупность знаний о природных явлениях. По мере дифференциации знаний и методов исследования из общей науки о природе выдели­лись отдельные науки, в том числе и физика. Границы, от­деляющие физику от других естественных наук, в значи­тельной мере условны и меняются с течением времени. Деление физики на отдельные дисциплины достаточно ус­ловно. Все изучаемые этой наукой темы перекрываются вследствие глубокой внутренней взаимосвязи между объ­ектами материального мира и процессами, в которых они участвуют. Поэтому по изучаемым объектам физика делит­ся на физику элементарных частиц, физику ядра, физику атомов и молекул, физику газов и жидкостей, физику твер­дого тела, физику плазмы. Другой критерий деления — из­учаемые процессы или формы движения материи. Раз­личают: механическое движение, тепловые процессы, электромагнитные явления, гравитационные, сильные, сла­бые взаимодействия. Соответственно в физике выделяют механику материальных точек и твердых тел, механику сплошных сред (включая акустику), термодинамику и ста­тистическую механику, электродинамику (включая опти­ку), теорию тяготения, квантовую механику и квантовую теорию поля. По целям исследования выделяют иногда так­же прикладную физику (например, прикладная оптика). Особо выделяют учение о колебаниях и волнах, что обуслов­лено общностью закономерностей колебательных процес­сов различной физической природы и методов их исследова­ния. Здесь рассматриваются механические, акустические, электрические и оптические колебания и волны с единой точки зрения.

worldofschool.ru

Физика | Virtual Laboratory Wiki

Теоретическая физика
Раздел науки → изучает
Подразделы → изучают

см. также список


Фи́зика (от др.-греч. φύσις «природа») — область естествознания, наука, изучающая наиболее общие и фундаментальные закономерности, определяющие структуру и эволюцию материального мира.

    Термин «Физика» впервые появился в сочинениях одного из величайших мыслителей древности — Аристотеля, жившего в IV веке до нашей эры. В русский язык слово «физика» было введено Михаилом Васильевичем Ломоносовым, когда он издал первый в России учебник физики в переводе с немецкого языка. Первый отечественный учебник под названием «Краткое начертание физики» был написан первым русским академиком Страховым.

    Общенаучные основы физических методов разрабатываются в теории познания и методологии науки

    Физика — это наука о природе в самом общем смысле (часть природоведения). Она изучает вещество (материю) и энергию, а также фундаментальные взаимодействия природы, управляющие движением материи.

    Некоторые закономерности являются общими для всех материальных систем, например, сохранение энергии, — такие свойства называют физическими законами. Физику иногда называют «фундаментальной наукой», поскольку другие естественные науки (биология, геология, химия и др.) описывают только некоторый класс материальных систем, подчиняющихся законам физики. Например, химия изучает молекулы и образованные из них вещества. Химические же свойства вещества однозначно определяются физическими свойствами атомов и молекул, описываемыми в таких разделах физики, как термодинамика, электромагнетизм и квантовая физика.

    Физика тесно связана с математикой: математика предоставляет аппарат, с помощью которого физические законы могут быть точно сформулированы. Физические теории почти всегда формулируются в виде математических выражений, причём используются более сложные разделы математики, чем обычно в других науках. И наоборот, развитие многих областей математики стимулировалось потребностями физических теорий (см. математическая физика).

    Теоретическая и экспериментальная физика Править

    Главными ветвями физики являются экспериментальная физика и теоретическая физика. И хотя может показаться, что они разделены, поскольку большинство физиков являются или чистыми теоретиками, или чистыми экспериментаторами, на самом деле теоретическая и экспериментальная физика развиваются в постоянном контакте. Над одной и той же проблемой могут работать как теоретики, так и экспериментаторы. Первые описывают существующие экспериментальные данные и делают теоретические предсказания будущих результатов, вторые проводят эксперименты, проверяя существующие теории и получая новые результаты. Многие достижения в физике были вызваны экспериментальным наблюдением явлений, не описываемых существующими теориями (например, экспериментально обнаруженная абсолютность скорости света породила специальную теорию относительности), так же как и некоторым теориям удалось предсказать результаты, проверенные позже (например, открытие позитрона)

    Основные теории Править

    Хотя физика имеет дело с разнообразными системами, некоторые физические теории применимы в больших областях физики. Такие теории считаются в целом верными при дополнительных ограничениях. Например, классическая механика верна, если размеры исследуемых объектов намного больше размеров атомов, скорости существенно меньше скорости света, и гравитационные силы малы. Эти теории всё ещё активно исследуются; например, такой аспект классической механики, как теория хаоса был открыт только в XX веке. Они составляют основу для всех физических исследований.

    .

    Макроскопическая физика Править

    Микроскопическая физика Править

    Разделы физики на стыке наук Править

    Важнейшие журналы Править

    Российские

    Зарубежные

    • Журналы Американского физического общества
      • Review of Modern Physics (RMP) Публикует обзорные статьи по большим разделам физики
      • Physical Review Letters Наиболее престижный (после Nature) журнал: короткие статьи по новейшим исследованиям
      • Physical Review (A,B,C,D,E) Статьи разного формата, более подробные, но менее оперативно публикуемые, чем в Phys. Rev. Lett.
    • Европейские журналы
      • Journal of Physics (A, B, C …)
      • Physica (A, B, C …)
      • Europhysics letters
      • Zeitschrift für Physik Именно в этом журнале публиковались Эйнштейн, Гейзенберг, Планк…
      • Nuovo cimento (A, B, C …)
    • Популярные журналы

    А также архив препринтов arXiv.org, на котором статьи появляются гораздо раньше их появления в журналах и доступны для свободного скачивания.

    Коды в системах классификации знаний Править

    Шаблон:Области естествознания

    Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Физика. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .


    ru.vlab.wikia.com