Решения матриц – Онлайн калькулятор. Решение систем линейных уравнений. Матричный метод. Метод обратной матрицы.

Решение уравнений методом обратной матрицы

Метод обратной матрицы используется при решении систем линейных алгебраических уравнений, если число неизвестных равно числу уравнений.

Суть метода

Пусть задана система линейных уравнений с неизвестными:

   

Эту систему можно записать в виде матричного уравнения ,

где – матрица системы,

– столбец неизвестных,

– столбец свободных коэффициентов.

Из полученного матричного уравнения необходимо выразить . Для этого умножим обе части матричного уравнения слева на , получим:

   

Так как , то или .

Далее находится обратная матрица и умножается на столбец свободных членов .

ЗАМЕЧАНИЕ Обратная матрица к матрице существует только при условии, что . Поэтому при решении системы линейных уравнений методом обратной матрицы в первую очередь вычисляется . Если , то система имеет единственное решение, которое можно найти методом обратной матрицы, если же , то методом обратной матрицы решить эту систему нельзя.

Пример решения методом обратной матрицы

ПРИМЕР 1
Задание Решить систему линейных уравнений методом обратной матрицы

   

Решение Данная система уравнений может быть записана матричным уравнением

   

где , , .

Выразив из этого уравнения , получим

   

Найдем определитель матрицы :

   

   

Так как , то система имеет единственное решение, которое можно найти методом обратной матрицы.

Найдем обратную матрицу с помощью союзной матрицы. Вычислим алгебраические дополнения к соответствующим элементам матрицы :

   

   

   

   

   

Запишем союзную матрицу , составленную из алгебраических дополнений элементов матрицы :

   

Далее запишем обратную матрицу согласно формуле . Будем иметь:

   

Умножая обратную матрицу на столбец свободных членов , получим искомое решение исходной системы:

   

Ответ
Читайте также:

Умножение матрицы на вектор

Ранг матрицы

Вычитание матриц

Перемножение матриц

Элементарные преобразования матриц

Операции над матрицами и их свойства

ru.solverbook.com

Решение матричных уравнений: теория и примеры

Матричным уравнением называется уравнение вида

A ⋅ X = B

или

X ⋅ A = B,

где A и B – известные матрицы, X – неизвестная матрица, которую требуется найти.

Как решить матричное уравнение в первом случае? Для того, чтобы решить матричное уравнение вида A ⋅ X = B, обе его части следует умножить на обратную к A матрицу слева:

.

По определению обратной матрицы, произведение обратной матрицы на данную исходную матрицу равно единичной матрице: , поэтому

.

Так как E – единичная матрица, то E ⋅ X = X. В результате получим, что неизвестная матрица X равна произведению матрицы, обратной к матрице A, слева, на матрицу B:

.

Как решить матричное уравнение во втором случае? Если дано уравнение

X ⋅ A = B,

то есть такое, в котором в произведении неизвестной матрицы

X и известной матрицы A матрица A находится справа, то нужно действовать аналогично, но меняя направление умножения на матрицу, обратную матрице A, и умножать матрицу B на неё справа:

,

,

.

Как видим, очень важно, с какой стороны умножать на обратную матрицу, так как . Обратная к A матрица умножается на матрицу B с той стороны, с которой матрица A умножается на неизвестную матрицу X. То есть с той стороны, где в произведении с неизвестной матрицей находится матрица A.

Как решить матричное уравнение в третьем случае? Встречаются случаи, когда в левой части уравнения неизвестная матрица X находится в середине произведения трёх матриц. Тогда известную матрицу из правой части уравнения следует умножить слева на матрицу, обратную той, которая в упомянутом выше произведении трёх матриц была слева, и справа на матрицу, обратную той матрице, которая располагалась справа. Таким образом, решением матричного уравнения

A ⋅ X ⋅ B = C,

является

.

Пример 1. Решить матричное уравнение

.

Решение. Данное уравнение имеет вид A ⋅ X = B, то есть в произведении матрицы A и неизвестной матрицы X матрица A находится слева. Поэтому решение следует искать в виде , то есть неизвестная матрица равна произведению матрицы B на матрицу, обратную матрице A слева. Найдём матрицу, обратную матрице A.

Сначала найдём определитель матрицы A:

.

Найдём алгебраические дополнения матрицы A:

.

Составим матрицу алгебраических дополнений:

.

Транспонируя матрицу алгебраических дополнений, находим матрицу, союзную с матрицей A:

.

Теперь у нас есть всё, чтобы найти матрицу, обратную матрице A:

.

Наконец, находим неизвестную матрицу:


Решить матричное уравнение самостоятельно, а затем посмотреть решение

Пример 3. Решить матричное уравнение

.

Решение. Данное уравнение имеет вид X ⋅ A = B, то есть в произведении матрицы A и неизвестной матрицы

X матрица A находится справа. Поэтому решение следует искать в виде , то есть неизвестная матрица равна произведению матрицы B на матрицу, обратную матрице A справа. Найдём матрицу, обратную матрице A.

Сначала найдём определитель матрицы A:

.

Найдём алгебраические дополнения матрицы A:

.

Составим матрицу алгебраических дополнений:

.

Транспонируя матрицу алгебраических дополнений, находим матрицу, союзную с матрицей A:

.

Находим матрицу, обратную матрице A:

.

Находим неизвестную матрицу:

До сих пор мы решали уравнения с матрицами второго порядка, а теперь настала очередь матриц третьего порядка.

Пример 4. Решить матричное уравнение

.

Решение. Это уравнение первого вида: A ⋅ X = B, то есть в произведении матрицы A и неизвестной матрицы X матрица A находится слева. Поэтому решение следует искать в виде , то есть неизвестная матрица равна произведению матрицы B на матрицу, обратную матрице A слева. Найдём матрицу, обратную матрице A.

Сначала найдём определитель матрицы A:

.

Найдём алгебраические дополнения матрицы A:

Составим матрицу алгебраических дополнений:

Транспонируя матрицу алгебраических дополнений, находим матрицу, союзную с матрицей

A:

.

Находим матрицу, обратную матрице A, и делаем это легко, так как определитель матрицы A равен единице:

.

Находим неизвестную матрицу:

Пример 5. Решить матричное уравнение

.

Решение. Данное уравнение имеет вид X ⋅ A = B, то есть в произведении матрицы A и неизвестной матрицы X матрица A находится справа. Поэтому решение следует искать в виде , то есть неизвестная матрица равна произведению матрицы B на матрицу, обратную матрице A справа. Найдём матрицу, обратную матрице A.

Сначала найдём определитель матрицы A:

.

Найдём алгебраические дополнения матрицы A:

Составим матрицу алгебраических дополнений:

.

Транспонируя матрицу алгебраических дополнений, находим матрицу, союзную с матрицей A:

.

Находим матрицу, обратную матрице A:

.

Находим неизвестную матрицу:

Пример 6. Решить матричное уравнение

.

Решение. Данное уравнение имеет вид A ⋅ X ⋅ B = C, то есть неизвестная матрица X находится в середине произведения трёх матриц. Поэтому решение следует искать в виде . Найдём матрицу, обратную матрице

A.

Сначала найдём определитель матрицы A:

.

Найдём алгебраические дополнения матрицы A:

.

Составим матрицу алгебраических дополнений:

.

Транспонируя матрицу алгебраических дополнений, находим матрицу, союзную с матрицей A:

.

Находим матрицу, обратную матрице A:

.

Найдём матрицу, обратную матрице B.

Сначала найдём определитель матрицы B:

.

Найдём алгебраические дополнения матрицы B:

Составим матрицу алгебраических дополнений матрицы B:

.

Транспонируя матрицу алгебраических дополнений, находим матрицу, союзную с матрицей B:

.

Находим матрицу, обратную матрице B:

.

Находим неизвестную матрицу:

Поделиться с друзьями

Начало темы “Матрицы”

Продолжение темы “Матрицы”

Другие темы линейной алгебры

function-x.ru

Матричный метод решения систем линейных уравнений

Матричный метод может применяться в решении систем линейных уравнений, в которых число неизвестных равно числу уравнений, то есть систем линейных уравнений с квадратной матрицей коэффициентов при неизвестных.

Другое условие применимости матричного метода – невырожденность матрицы коэффициентов при неизвестных, то есть неравенство нулю определителя этой матрицы.

Систему линейных уравнений, при выполнении вышеназванных условий, можно представить в матричном виде, а затем решить её путём отыскания обратной матрицы к матрице системы.

Решение систем линейных уравнений матричным методом основано на следующем свойстве обратной матрицы: произведение обратной матрицы и исходной матрицы равно единичной матрице. Обратная матрица обозначается символом .

Пусть нужно решить систему линейных уравнений:

Запишем эту систему уравнений в матричном виде:

Обозначим отдельно как A матрицу коэффициентов при неизвестных и как B матрицу неизвестных и матрицу свободных членов

.

Тогда

То есть, для нахождения решений системы нужно обе части уравнения умножить на матрицу, обратную матрице коэффициентов при неизвестных и приравнять соответствующие элементы полученных матриц.

Алгоритм решения системы линейных уравнений матричным методом разберём на следующем примере системы линейных уравнений второго порядка.

Пример 1. Решить матричным методом систему линейных уравнений:

Решение состоит из следующих шагов.

Шаг 1. Составляем следующие матрицы.

Матрица коэффициентов при неизвестных:

Матрица неизвестных:

Матрица свободных членов:

Это сделано для того, чтобы применить в решении уже записанные закономерности, основанные на свойстве обратной матрицы:

По выведенному выше последнему равенству и будем вычислять решения данной системы.

Но сначала проверим, не является ли матрица коэффициентов при неизвестных вырожденной, то есть можем ли вообще применять матричный метод:

.

Определитель этой матрицы не равен нулю, следовательно, можем применять матричный метод.

Шаг 2. Находим матрицу, обратную матрице коэффициентов при неизвестных:

.

Шаг 3. Находим матрицу неизвестных:

Итак, получили решение:

.

Сделаем проверку:

Следовательно, ответ правильный.

Для второго примера выберем систему линейных уравнений третьего порядка.

Пример 2. Решить матричным методом систему линейных уравнений:

Шаг 1. Составляем следующие матрицы.

Матрица коэффициентов при неизвестных:

Матрица неизвестных:

Матрица свободных членов:

Проверим, не является ли матрица коэффициентов при неизвестных вырожденной:

.

Определитель этой матрицы не равен нулю, следовательно, можем применять матричный метод.

Шаг 2. Находим матрицу, обратную матрице коэффициентов при неизвестных:

.

Шаг 3. Находим матрицу неизвестных:

Итак, получили решение:

.

Сделаем проверку:

Следовательно, ответ правильный.

Решить систему уравнений матричным методом самостоятельно, а затем посмотреть решение

Всё по теме “Системы уравнений и неравенств”

Начало темы “Линейная алгебра”

Поделиться с друзьями

function-x.ru

Произведение двух матриц: формула, решения, свойства

Определение. Произведением двух матриц А и В называется матрица С, элемент которой, находящийся на пересечении i-й строки и j-го столбца, равен сумме произведений элементов i-й строки матрицы А на соответствующие (по порядку) элементы j-го столбца матрицы В.

Из этого определения следует формула элемента матрицы C:

Произведение матрицы А на матрицу В обозначается АВ.

Пример 1. Найти произведение двух матриц А и B, если

,

.

Решение. Удобно нахождение произведения двух матриц А и В записывать так, как на рис.2:

На схеме серые стрелки показывают, элементы какой строки матрицы А на элементы какого столбца матрицы В нужно перемножить для получения элементов матрицы С , а линиями цвета элемента матрицы C соединены соответствующие элементы матриц A и B, произведения которых складываются для получения элемента матрицы C.

В результате получаем элементы произведения матриц:

 

Теперь у нас есть всё, чтобы записать произведение двух матриц:

.

Проверить решение этой и других подобных задач можно на калькуляторе произведения матриц онлайн.

Произведение двух матриц АВ имеет смысл только в том случае, когда число столбцов матрицы А совпадает с числом строк матрицы В .

Эту важную особенность будет легче запомнить, если почаще пользоваться следующими памятками:

Имеет место ещё одна важная особенность произведения матриц относительно числа строк и столбцов:

В произведении матриц АВ число строк равно числу строк матрицы А , а число столбцов равно числу столбцов матрицы В .

Пример 2. Найти число строк и столбцов матрицы C, которая является произведением двух матриц A и B следующих размерностей:

а) 2 Х 10 и 10 Х 5;

б) 10 Х 2 и 2 Х 5;

в) 4 Х 4 и 4 Х 10.

Решение:

а) 2 Х 5;

б) 10 Х 5;

в) 4 Х 10.

Далее – примеры на нахождение произведения двух матриц различной размерности.

Пример 3. Найти произведение матриц A и B, если:

.

Решение. Число строк в матрице A – 2, число столбцов в матрице B – 2. Следовательно, размерность матрицы C = AB – 2 X 2.

Вычисляем элементы матрицы C = AB.

Найденное произведение матриц: .

Найти произведение матриц самостоятельно, а затем посмотреть решение


Проверить решение этой и других подобных задач можно на калькуляторе произведения матриц онлайн.

Пример 5. Найти произведение матриц A и B, если:

.

Решение. Число строк в матрице A – 2, число столбцов в матрице B – 1. Следовательно, размерность матрицы C = AB – 2 X 1.

Вычисляем элементы матрицы C = AB.

Произведение матриц запишется в виде матрицы-столбца: .

Проверить решение этой и других подобных задач можно на калькуляторе произведения матриц онлайн.

Пример 6. Найти произведение матриц A и B, если:

.

Решение. Число строк в матрице A – 3, число столбцов в матрице B – 3. Следовательно, размерность матрицы C = AB – 3 X 3.

Вычисляем элементы матрицы C = AB.

Найденное произведение матриц: .

Проверить решение этой и других подобных задач можно на калькуляторе произведения матриц онлайн.

Пример 7. Найти произведение матриц A и B, если:

.

Решение. Число строк в матрице A – 1, число столбцов в матрице B – 1. Следовательно, размерность матрицы C = AB – 1 X 1.

Вычисляем элемент матрицы C = AB.

Произведение матриц является матрицей из одного элемента: .

Проверить решение этой и других подобных задач можно на калькуляторе произведения матриц онлайн.

Программная реализация произведения двух матриц на С++ разобрана в соответствующей статье в блоке “Компьютеры и программирование”.

Возведение матрицы в степень

Возведение матрицы в степень определяется как умножение матрицы на ту же самую матрицу. Так как произведение матриц существует только тогда, когда число столбцов первой матрицы совпадает с числом строк второй матрицы, то возводить в степень можно только квадратные матрицы. n-ая степень матрицы путём умножения матрицы на саму себя n раз:

Пример 8. Дана матрица . Найти A² и A³.

Решение:

Найти произведение матриц самостоятельно, а затем посмотреть решение

Пример 9. Дана матрица

Найти произведение данной матрицы и транспонированной матрицы , произведение транспонированной матрицы и данной матрицы.

Правильное решение и ответ.

Свойства произведения двух матриц

Свойство 1. Произведение любой матрицы А на единичную матрицу Е соответствующего порядка как справа, так и слева, совпадает с матрицей А , т.е. АЕ = ЕА = А .              

Иными словами, роль единичной матрицы при умножении матриц такая же, как и единицы при умножении чисел.

Пример 10. Убедиться в справедливости свойства 1, найдя произведения матрицы

на единичную матрицу справа и слева.

Решение. Так как матрица А содержит три столбца, то требуется найти произведение АЕ , где


единичная матрица третьего порядка. Найдём элементы произведения С = АЕ :


                                                                                               

Получается, что АЕ = А .

Теперь найдём произведение ЕА , где Е – единичная матрица второго порядка, так как матрица А содержит две строки. Найдём элементы произведения С = ЕА :



Доказано: ЕА = А .

Проверить решение этой и других подобных задач можно на калькуляторе произведения матриц онлайн.

Свойство 2. Произведение матрицы А на нуль-матрицу является нуль-матрицей. Это свойство очевидно, так как все элементы нуль-матрицы равны нулю.

Свойство 3. Произведение матриц некоммутативно:
.

Для этого достаточно показать, что равенство АВ = ВА не выполняется для каких-либо двух матриц.

Пример 11. Найти произведения матриц АВ и ВА, если

,

,

и убедиться в том, что эти произведения не равны друг другу:

.

Решение. Находим:

И действительно, найденные произведения не равны:
.

Проверить решение этой и других подобных задач можно на калькуляторе произведения матриц онлайн.

Свойство 4. Произведение матриц ассоциативно: (АВ)С = А(ВС) .

Свойство 5. Для произведения матриц выполняется дистрибутивный закон: (А + В) С = АС + ВС , С (А + В) = СА + СВ .

Свойство 6. Определитель произведения двух квадратных матриц равен произведению их определителей: если С = АВ , то

.

Поделиться с друзьями

Начало темы “Матрицы”

Продолжение темы “Матрицы”

Другие темы линейной алгебры

function-x.ru

Матричные уравнения и их решение

Определение и формулы матричных уравнений

ОПРЕДЕЛЕНИЕ Матричным уравнением называется уравнение, состоящее из нескольких матриц-коэффициентов и неизвестной матрицы

Простейшим матричным уравнением есть уравнение вида или ,

где — матрицы.

Алгоритм решения матричных уравнений

1. Матричное уравнение приводится к одному из простейших уравнений:

или

где — известные матрицы, — искомая (неизвестная) матрица.

ЗАМЕЧАНИЕ Существует также уравнение вида , но оно является комбинацией методов решения двух первых указанных простейших уравнений.

Чтобы привести произвольное матричное уравнение к одному из видов (1), надо все известные матрицы по свойствам уравнений перенести вправо, а неизвестную матрицу в левой части и свести подобные.

2. Разрешаем полученное простейшее уравнение относительно неизвестной матрицы .

2.1 Если в результате преобразований получили простейшее уравнение , то необходимо левую и правую часть этого равенства слева умножить на обратную матрицу к матрице :

   

ЗАМЕЧАНИЕ

Поскольку умножение матриц некоммутативно, то нужно строго соблюдать умножение слева или справа, иначе это влияет на результат.

2.2 Для простейшего уравнения после умножения справа на обратную матрицу получаем:

   

ЗАМЕЧАНИЕ Обратная матрица находится либо методом союзной матрицы, либо методом присоединенной матрицы.

3. Далее вычисляется одно из произведений или , что и определяет искомую матрицу.

4. Делаем проверку, для этого подставляем найденную матрицу в исходное уравнение.

Примеры решения задач

Понравился сайт? Расскажи друзьям!

ru.solverbook.com

Умножение матриц, онлайн калькулятор с решением

Наш онлайн калькулятор позволяет умножить матрицы всего за пару минут. Для умножения двух матриц выберите их размеры (количество столбцов первой матрицы должно быть равно количеству строк второй матрицы), введите все элементы и нажмите кнопку «Вычислить», калькулятор выдаст пошаговое решение и ответ! Каждый этап решения будет подробно расписан, это поможет вам понять, как был получен ответ и закрепить пройденный материал.

Заполните элементы матриц  

Первая матрица:

Вторая матрица:

A×B=?

Решили сегодня: раз, всего раз
Понравился сайт? Расскажи друзьям!

Как умножить матрицы онлайн

Умножать две матрицы можно только при условии, что в первой из них ровно такое же количество столбцов, сколько строк во второй. Сами же значения при этом могут быть не только целыми, но и дробными. Получив расшифровку вычисления этой задачи, вы сможете понять, как происходит перемножение. Это сэкономит ваше время и поможет лучше разобраться в вычислительных тонкостях.

Допустим, у вас имеется две матрицы, и вам предстоит найти их произведение. Сделать это оперативно и с наивысшей точностью вам поможет данный онлайн-калькулятор. Он не просто умножит две матрицы без затруднений за пару минут, но и позволит вам детальнее разобраться в самом алгоритме этих расчётов. Таким образом, применение онлайн-калькулятора способствует закреплению пройденного в теории материала. Можно также сначала производить вычисления вручную, а затем проверять их здесь, это превосходная тренировка для мозга.

Инструкция пользования данным онлайн-калькулятором не представляет сложности. Чтобы умножить матрицы онлайн для начала укажите количество имеющихся столбцов и строк в первой матрице посредством нажатия на иконки «+» или «-» слева от матрицы и под ней. Затем введите числа. Повторите те же операции для второй матрицы. Далее остаётся лишь кликнуть кнопку «Вычислить» – и перед вами откроется искомое значение вместе с детальным алгоритмом вычислений.

ru.solverbook.com