Примеры формула крамера – Метод Крамера для решения СЛАУ: алгоритм, примеры задач

Теорема Крамера, формула и примеры

Пусть задана система уравнений с неизвестными

   

– матрица этой системы, а – столбец свободных членов

   

Если определитель матрицы системы , то системы линейных уравнений (1) имеет единственное решение, которое вычисляется по формулам

   

где – определители матриц, которые получаются из матрицы заменой -го столбца на столбец свободных членов .

Примеры решения задач

Понравился сайт? Расскажи друзьям!

ru.solverbook.com

Примеры решений: Метод Крамера

Пример 1. Решить систему уравнений методом Крамера

Решение: 

Составим и вычислим сначала главный определитель этой системы:

Так как , то система имеет единственное решение, которое можно найти по правилу Крамера:

где получаются из определителя путем замены 1-го, 2-го или 3-го столбца, соответственно, на столбец свободных членов.

Таким образом:

Итак, – единственное решение.

 

Пример 2. Решить систему уравнений методом Крамера

Решение: 

Составим главный определитель этой системы:

Используя свойства определителя, создадим в первом столбце нули. Для этого

  • Вторую и третью строку оставим без изменеий, 
  • Умножим вторую строку на -2 и добавим к первой
  • Умножим вторую строку на -1 и добавим к четвертой

После этих преобразований значение определителя не изменится, но он наберет следующий вид

Теперь, воспользовавшись определением определителя и разложив его по элементам четвертого столбца, получим:

 

Итак, главный определитель системы уравнений отличен от нуля. По правилу Крамера такая система имеет единственное решение. Найдем его. Для этого создадим и вычислим еще четыре определители:

 

По правилу Крамера имеем решение:

Итак, – единственное решение.

anet.lectra.me

Формулы Крамера Википедия

Ме́тод Крамера (правило Крамера) — способ решения систем линейных алгебраических уравнений с числом уравнений равным числу неизвестных с ненулевым главным определителем матрицы коэффициентов системы (причём для таких уравнений решение существует и единственно).

[1]

Описание метода[ | ]

Для системы n{\displaystyle n} линейных уравнений с n{\displaystyle n} неизвестными (над произвольным полем)

{a11x1+a12x2+…+a1nxn=b1a21x1+a22x2+…+a2nxn=b2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯an1x1+an2x2+…+annxn=bn{\displaystyle {\begin{cases}a_{11}x_{1}+a_{12}x_{2}+\ldots +a_{1n}x_{n}=b_{1}\\a_{21}x_{1}+a_{22}x_{2}+\ldots +a_{2n}x_{n}=b_{2}\\\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\a_{n1}x_{1}+a_{n2}x_{2}+\ldots +a_{nn}x_{n}=b_{n}\\\end{cases}}}

с определителем матрицы системы Δ{\displaystyle \Delta }, отличным от нуля, решение записывается в виде

xi=1Δ|a11…a1,i−1b1a1,i+1…a1na21…a2,i−1b2a2,i+1…a2n…………………an−1,1…an−1,i−1bn−1an−1,i+1…an−1,nan1…an,i−1bnan,i+1…ann|{\displaystyle x_{i}={\frac {1}{\Delta }}{\begin{vmatrix}a_{11}&\ldots &a_{1,i-1}&b_{1}&a_{1,i+1}&\ldots &a_{1n}\\a_{21}&\ldots &a_{2,i-1}&b_{2}&a_{2,i+1}&\ldots &a_{2n}\\\ldots &\ldots &\ldots &\ldots &\ldots &\ldots &\ldots \\a_{n-1,1}&\ldots &a_{n-1,i-1}&b_{n-1}&a_{n-1,i+1}&\ldots &a_{n-1,n}\\a_{n1}&\ldots &a_{n,i-1}&b_{n}&a_{n,i+1}&\ldots &a_{nn}\\\end{vmatrix}}}

(i-ый столбец матрицы системы заменяется столбцом свободных членов).
В другой форме правило Крамера формулируется так: для

ru-wiki.ru

Формулы Крамера Вики

Ме́тод Крамера (правило Крамера) — способ решения систем линейных алгебраических уравнений с числом уравнений равным числу неизвестных с ненулевым главным определителем матрицы коэффициентов системы (причём для таких уравнений решение существует и единственно).

[1]

Описание метода[ | код]

Для системы n{\displaystyle n} линейных уравнений с n{\displaystyle n} неизвестными (над произвольным полем)

{a11x1+a12x2+…+a1nxn=b1a21x1+a22x2+…+a2nxn=b2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯an1x1+an2x2+…+annxn=bn{\displaystyle {\begin{cases}a_{11}x_{1}+a_{12}x_{2}+\ldots +a_{1n}x_{n}=b_{1}\\a_{21}x_{1}+a_{22}x_{2}+\ldots +a_{2n}x_{n}=b_{2}\\\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\a_{n1}x_{1}+a_{n2}x_{2}+\ldots +a_{nn}x_{n}=b_{n}\\\end{cases}}}

с определителем матрицы системы Δ{\displaystyle \Delta }, отличным от нуля, решение записывается в виде

xi=1Δ|a11…a1,i−1b1a1,i+1…a1na21…a2,i−1b2a2,i+1…a2n…………………an−1,1…an−1,i−1bn−1an−1,i+1…an−1,nan1…an,i−1bnan,i+1…ann|{\displaystyle x_{i}={\frac {1}{\Delta }}{\begin{vmatrix}a_{11}&\ldots &a_{1,i-1}&b_{1}&a_{1,i+1}&\ldots &a_{1n}\\a_{21}&\ldots &a_{2,i-1}&b_{2}&a_{2,i+1}&\ldots &a_{2n}\\\ldots &\ldots &\ldots &\ldots &\ldots &\ldots &\ldots \\a_{n-1,1}&\ldots &a_{n-1,i-1}&b_{n-1}&a_{n-1,i+1}&\ldots &a_{n-1,n}\\a_{n1}&\ldots &a_{n,i-1}&b_{n}&a_{n,i+1}&\ldots &a_{nn}\\\end{vmatrix}}}

(i-ый столбец матрицы системы заменяется столбцом свободных членов).
В другой форме правило Крамера формулируется так: для любых коэффициентов c1, c2, …, cn справедливо равенство:

(c1x1+c2x2+⋯+cnxn)⋅Δ=−|a11a12…a1nb1a21a22…a2nb2……………an1an2…annbnc1c2…cn0|{\displaystyle (c_{1}x_{1}+c_{2}x_{2}+\dots +c_{n}x_{n})\cdot \Delta =-{\begin{vmatrix}a_{11}&a_{12}&\ldots &a_{1n}&b_{1}\\a_{21}&a_{22}&\ldots &a_{2n}&b_{2}\\\ldots &\ldots &\ldots &\ldots &\ldots \\a_{n1}&a_{n2}&\ldots &a_{nn}&b_{n}\\c_{1}&c_{2}&\ldots &c_{n}&0\\\end{vmatrix}}}

В этой форме метод Крамера справедлив без предположения, что Δ{\displaystyle \Delta } отличен от нуля, не нужно даже, чтобы коэффициенты системы были бы элементами целостного кольца (определитель системы может быть даже делителем нуля в кольце коэффициентов). Можно также считать, что либо наборы b1,b2,…,bn{\displaystyle b_{1},b_{2},…,b_{n}} и x1,x2,…,xn{\displaystyle x_{1},x_{2},…,x_{n}}, либо набор c1,c2,…,cn{\displaystyle c_{1},c_{2},…,c_{n}} состоят не из элементов кольца коэффициентов системы, а какого-нибудь модуля над этим кольцом. В этом виде формула Крамера используется, например, при доказательстве формулы для определителя Грама и Леммы Накаямы.

Пример[ | код]

Система линейных уравнений с вещественными коэффициентами:

{a11x1+a12x2+a13x3=b1a21x1+a22x2+a23x3=b2a31x1+a32x2+a33x3=b3{\displaystyle {\begin{cases}a_{11}x_{1}+a_{12}x_{2}+a_{13}x_{3}=b_{1}\\a_{21}x_{1}+a_{22}x_{2}+a_{23}x_{3}=b_{2}\\a_{31}x_{1}+a_{32}x_{2}+a_{33}x_{3}=b_{3}\\\end{cases}}}

Определители:

Δ=|a11a12a13a21a22a23a31a32a33|,  Δ1=|b1a12a13b2a22a23b3a32a33|,  {\displaystyle \Delta ={\begin{vmatrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\\\end{vmatrix}},\ \ \Delta _{1}={\begin{vmatrix}b_{1}&a_{12}&a_{13}\\b_{2}&a_{22}&a_{23}\\b_{3}&a_{32}&a_{33}\\\end{vmatrix}},\ \ }
Δ2=|a11b1a13a21b2a23a31b3a33|,  Δ3=|a11a12b1a21a22b2a31a32b3|{\displaystyle \Delta _{2}={\begin{vmatrix}a_{11}&b_{1}&a_{13}\\a_{21}&b_{2}&a_{23}\\a_{31}&b_{3}&a_{33}\\\end{vmatrix}},\ \ \Delta _{3}={\begin{vmatrix}a_{11}&a_{12}&b_{1}\\a_{21}&a_{22}&b_{2}\\a_{31}&a_{32}&b_{3}\\\end{vmatrix}}}

В определителях столбец коэффициентов при соответствующей неизвестной заменяется столбцом свободных членов системы.

Решение:

x1=Δ1Δ,  x2=Δ2Δ,  x3=Δ3Δ{\displaystyle x_{1}={\frac {\Delta _{1}}{\Delta }},\ \ x_{2}={\frac {\Delta _{2}}{\Delta }},\ \ x_{3}={\frac {\Delta _{3}}{\Delta }}}

Пример:

{2×1+5×2+4×3=30×1+3×2+2×3=1502×1+10×2+9×3=110{\displaystyle {\begin{cases}2x_{1}+5x_{2}+4x_{3}=30\\x_{1}+3x_{2}+2x_{3}=150\\2x_{1}+10x_{2}+9x_{3}=110\\\end{cases}}}

Определители:

Δ=|2541322109|=5,  Δ1=|305415032110109|=−760,  {\displaystyle \Delta ={\begin{vmatrix}2&5&4\\1&3&2\\2&10&9\\\end{vmatrix}}=5,\ \ \Delta _{1}={\begin{vmatrix}30&5&4\\150&3&2\\110&10&9\\\end{vmatrix}}=-760,\ \ }
Δ2=|23041150221109|=1350,  Δ3=|253013150210110|=−1270.{\displaystyle \Delta _{2}={\begin{vmatrix}2&30&4\\1&150&2\\2&110&9\\\end{vmatrix}}=1350,\ \ \Delta _{3}={\begin{vmatrix}2&5&30\\1&3&150\\2&10&110\\\end{vmatrix}}=-1270.}

x1=−7605=−152,  x2=13505=270,  x3=−12705=−254{\displaystyle x_{1}=-{\frac {760}{5}}=-152,\ \ x_{2}={\frac {1350}{5}}=270,\ \ x_{3}=-{\frac {1270}{5}}=-254}

Вычислительная сложность[ | код]

Метод Крамера требует вычисления n+1{\displaystyle n+1} определителей размерности n×n{\displaystyle n\times n}. При использовании метода Гаусса для вычисления определителей метод имеет сложность по элементарным операциям сложения-умножения порядка O(n4){\displaystyle O(n^{4})}, что сложнее, чем метод Гаусса при прямом решении системы. Поэтому метод, с точки зрения затрат времени на вычисления, считался непрактичным. Однако в 2010 году было показано, что метод Крамера может быть реализован со сложностью O(n3){\displaystyle O(n^{3})}, сравнимой со сложностью метода Гаусса

[2].

Литература[ | код]

  • Мальцев А. И. Основы линейной алгебры. — Изд. 3-е, перераб., М.: «Наука», 1970. — 400 c.

Примечания[ | код]

  1. Cramer, Gabriel. Introduction à l’Analyse des lignes Courbes algébriques (фр.) 656–659. Geneva: Europeana (1750). Проверено 18 мая 2012.
  2. Ken Habgood and Itamar Arel. 2010. Revisiting Cramer’s rule for solving dense linear systems. In Proceedings of the 2010 Spring Simulation Multiconference (SpringSim ’10)

См. также[ | код]

ru.wikibedia.ru

Метод Крамера, примеры с решением

Одним из методов решения систем линейных уравнений является метод Крамера. Используется для нахождения решения систем, в которых количество строк равно количеству неизвестных. То есть для квадратных систем уравнений. Основан он на вычислении определителей матрицы: основного и дополнительных, получающихся замещением одного из столбца основного определителя на столбец свободных членов системы алгебраических уравнений. Рассмотрим сам алгоритм метода Крамера и примеры с решением.

Дано СЛАУ

Найти неизвестные

Алгоритм решения заключается в том, что  составляется из системы матрица и столбец свободных членов

Далее вычисляется основной определитель матрицы и дополнительные , получающиеся из основного определителя путем поочередного замещения столбцов на столбец свободных членов

Если получается , тогда система не может быть решена методом Крамера! 

В итоге по формуле метода Крамера находим неизвестные в системе линейных уравнений:

Примеры с решением

Пример 1
Решить систему линейных уравнений методом Крамера: 
Решение

Составляем матрицу и выписываем столбец свободных членов

Вычисляем главный определитель матрицы:

Замечаем, что  , то систему можно решить методом Крамера.

Вычисляем первый дополнительный определитель  . Подставляем столбец свободных членов  на место первого столбца в основной матрице:

Аналогично вычислим :

Точно также находим :

По формуле Крамера:

Ответ
Пример 2

Решить систему уравнений методом Крамера:

Решение

Попробуем  решить методом Крамера. Найдем основной определитель системы уравнений:

Внимание! Получили , а это означает, что данную систему нельзя решить методом Крамера. Алгоритм завершает  свою работу. Советуем воспользоваться другим методом для решения, например, матричным  методом или Гаусса.

Ответ
Метод Крамера нельзя применить к данной системе линейных уравнений

xn--24-6kcaa2awqnc8dd.xn--p1ai

Матричная форма формулы Крамера

С.К. Соболев

Матричный способ решения СЛАУ, формулы Крамера, свойство присоединенной матрицы и основное свойство линейной зависимости.

Рассмотрим систему линейных алгебраических уравнений (СЛАУ ), содержащую
т уравнений и п неизвестных:

(1)

Пусть

– матрица коэффициентов при неизвестных, столбец свободных членов (чисел стоящих справа от равенства в системе (1)) и столбец неизвестных соответственно системы (1). Матрица А называется основной матрицей системы (1). Тогда очевидно, что система (1) может быть кратко записана в матричной форме

. Форма (1) называется координатной записью системы.Если , т.е. число уравнений равно числу неизвестных, то СЛАУ называется «квадратной », она принимает вид: (2)

Если же матрица А к тому же не вырождена, т.е.

, то тогда СЛАУ (2) можно решить как матричное уравнение по формуле . (3)

Этот метод называется матричным способом решения СЛАУ (2).

Пример. Решить систему матричным способом, если это возможно:

Решение . Запишем эту систему как матричное уравнение

, где
, . Вычисляем: , следовательно, матричный способ применим. Находим обратную матрицу:

Следовательно,

.

Ответ:

Формулы Крамера для решения СЛАУ

Эти формулы применимы для решения СЛАУ при тех же условиях, что и матричный способ, а именно, когда матрица А коэффициентов при неизвестных этой СЛАУ квадратная и не вырожденная . Для нахождения неизвестных квадратной системы (2) надо вычислить главный определитель

, убедиться что , и затем вычислить п вспомогательных определителей , где определитель () получается из главного определителя заменой в нем k -го столбца на столбец В свободных членов:

Тогда решением системы (2) будет:

.

Вывод формул Крамера . Распишем подробно формулу (3)

.

Вспомним, что

, где – алгебраическое дополнение элемента , равное , а – определитель порядка , полученный из главного определителя D вычеркиванием i -й строки и j -го столбца. Получим .

Итак, матричный способ дает формулу

(4)

Сравним эту формулу с выражением для

, полученным по формуле Крамера: . (5)

Заметим, что у всех элементов k -го столбца этого определителя алгебраические дополнения точно такие же, как и у элементов k -го столбца матрицы А . Поэтому, разложив определитель в (5) по этому столбцу, получим:

. (6)

Полученная формула (6) в точности совпадает с (4). Формулы Крамера доказаны.

Пример. Решить систему

методом Крамера, если это возможно:

Решение . Вычислим главный определитель системы:

, следовательно, метод Крамера применим. Далее вычислим три вспомогательных определителя:

Следовательно,

.

Дополнение 1. При выводе на лекции в ауд. 220 формулы для обратной матрицы через алгебраические дополнения использовалось основное свойство присоединенной матрицы

.

Доказательство этого свойства, в свою очередь, опиралось на два свойства определителя:

(1) Сумма произведений элементов произвольной строки квадратной матрицы на соответствующие алгебраические дополнения этой же строки равна определителю этой матрицы (и аналогично для столбцов) :

(разложение по i -й строке),
(разложение по j -му столбцу)

(2) Сумма произведений элементов произвольной строки квадратной матрицы на соответствующие алгебраические дополнения другой строки равна нулю (и аналогично для столбцов) :

, (для строк, при ),
(для столбцов, при )

Свойство (1) нам известно из общих свойств определителя, которые у нас идут без доказательства. Среди этих свойств есть, в частности, такое:
если в определителе две строки или два столбца совпадают, то он равен нулю .

Теперь докажем свойство (2). Заменим в определителе


j – строку на строку с номером i . Понятно что после этого у полученного определителя две одинаковые строки, и потому он равен нулю. Заметим также, что алгебраические дополнения изменённой j -й строки не изменились, т.к. они не зависят от элементов этой строки. Разложим определитель по j -й строке, получим:

Аналогично доказывается для столбцов.

Дополнение 2. Относительно линейной зависимости векторов теории линейного пространства, просьба не путать:

Общий критерий линейной зависимости векторов произвольного линейного пространства: Совокупность векторов линейно зависима тогда и только тогда, когда один из векторов выражается в виде линейной комбинации остальных.

Основное свойство линейной зависимости : Пусть даны n векторов линейного пространства , и еще какие-то т векторов этого же пространства, каждый из которых линейно выражается через , причем, . Тогда векторы линейно зависимы .

Доказательство этого свойства есть в лекциях, присланных на вашу Почту.

mirznanii.com

Метод Крамера – вывод формул — Мегаобучалка

Метод Крамера.

Метод Крамера применяется для решения систем линейных алгебраических уравнений (СЛАУ), в которых число неизвестных переменных равно числу уравнений и определитель основной матрицы отличен от нуля. В этой статье мы разберем как по методу Крамера находятся неизвестные переменные и получим формулы. После этого перейдем к примерам и подробно опишем решение систем линейных алгебраических уравнений методом Крамера.

При изучении материала Вам может быть полезна статья вычисление определителя матрицы, свойства определителя.

Навигация по странице.

  • Метод Крамера – вывод формул.
  • Алгоритм решения систем линейных алгебраических уравнений методом Крамера.
  • Примеры решения систем линейных алгебраических уравнений методом Крамера.

Метод Крамера – вывод формул.

Пусть нам требуется решить систему линейных уравнений вида

где x1, x2, …, xn – неизвестные переменные, ai j , i = 1, 2, …, n, j = 1, 2, …, n – числовые коэффициенты, b1, b2, …, bn – свободные члены. Решением СЛАУ называется такой набор значений x1, x2, …, xn при которых все уравнения системы обращаются в тождества.

В матричном виде эта система может быть записана как A ⋅ X = B, где – основная матрица системы, ее элементами являются коэффициенты при неизвестных переменных, – матрица – столбец свободных членов, а – матрица – столбец неизвестных переменных. После нахождения неизвестных переменных x1, x2, …, xn, матрица становится решением системы уравнений и равенство A ⋅ X = B обращается в тождество .

Будем считать, что матрица А – невырожденная, то есть, ее определитель отличен от нуля. В этом случае система линейных алгебраических уравнений имеет единственное решение, которое может быть найдено методом Крамера. (Методы решения систем при разобраны в разделе решение систем линейных алгебраических уравнений).

Метод Крамера основывается на двух свойствах определителя матрицы:

1. Определитель квадратной матрицы равен сумме произведений элементов какой-либо строки (столбца) на их алгебраические дополнения:



2. Сумма произведений элементов какой-либо строки (столбца) квадратной матрицы на алгебраические дополнения соответствующих элементов другой строки (столбца) равна нулю:

Итак, приступим к нахождению неизвестной переменной x1. Для этого умножим обе части первого уравнения системы на А1 1 , обе части второго уравнения – на А2 1 , и так далее, обе части n-ого уравнения – на Аn 1 (то есть, уравнения системы умножаем на соответствующие алгебраические дополнения первого столбца матрицы А):

Сложим все левые части уравнения системы, сгруппировав слагаемые при неизвестных переменных x1, x2, …, xn, и приравняем эту сумму к сумме всех правых частей уравнений:

Если обратиться к озвученным ранее свойствам определителя, то имеем

и предыдущее равенство примет вид

откуда

Аналогично находим x2. Для этого умножаем обе части уравнений системы на алгебраические дополнения второго столбца матрицы А:

Складываем все уравнения системы, группируем слагаемые при неизвестных переменных x1, x2, …, xn и применяем свойства определителя:

Откуда
.

Аналогично находятся оставшиеся неизвестные переменные.

Если обозначить

то получаем формулы для нахождения неизвестных переменных по методу Крамера .

Замечание.

Если система линейных алгебраических уравнений однородная, то есть , то она имеет лишь тривиальное решение (при ). Действительно, при нулевых свободных членах все определители будут равны нулю, так как будут содержать столбец нулевых элементов. Следовательно, формулы дадут .

К началу страницы

megaobuchalka.ru